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Small area quantile estimation via spline regression and 
empirical likelihood 

Zhanshou Chen, Jiahua Chen and Qiong Zhang1 

Abstract 

This paper studies small area quantile estimation under a unit level non-parametric nested-error regression model. 
We assume the small area specific error distributions satisfy a semi-parametric density ratio model. We fit the 
non-parametric model via the penalized spline regression method of Opsomer, Claeskens, Ranalli, Kauermann 
and Breidt (2008). Empirical likelihood is then applied to estimate the parameters in the density ratio model based 
on the residuals. This leads to natural area-specific estimates of error distributions. A kernel method is then 
applied to obtain smoothed error distribution estimates. These estimates are then used for quantile estimation in 
two situations: one is where we only have knowledge of covariate power means at the population level, the other 
is where we have covariate values of all sample units in the population. Simulation experiments indicate that the 
proposed methods for small area quantiles estimation work well for quantiles around the median in the first 
situation, and for a broad range of the quantiles in the second situation. A bootstrap mean square error estimator 
of the proposed estimators is also investigated. An empirical example based on Canadian income data is included. 

 
Key Words: Small area quantile; Penalized spline; Empirical likelihood; Density ratio model; Nested-error regression 

model. 

 
 

1  Introduction 
 

Sample surveys are widely used to obtain information about totals, means, medians and other quantities 

of finite populations. Likewise, similar information on sub-populations such as individuals in specific areas 

and socio-demographic groups are also of interest. Often, a survey is designed to collect information of 

interest at the population level but leads to insufficient direct information on sub-populations. Because of 

this, estimating sub-population parameters with satisfactory precision and evaluating their accuracy pose 

serious challenges to statisticians. Statisticians must resort to suitable models to pool the information across 

small areas in order to properly estimate parameters for small areas when only small samples or no samples 

in these areas are available from the sample survey. 

Research on small area estimation has received increased attention from both public and private sectors. 

As historical remarks, we refer to Fay and Herriot (1979), Battese, Harter and Fuller (1988), Prasad and Rao 

(1990), and Lahiri and Rao (1995) among many others. For a general review of the developments in small 

area estimation, we refer to Pfeffermann (2002) and Pfeffermann (2013) and the books of Rao (2003) and 

Rao and Molina (2015). See also Jiang and Lahiri (2006a), Jiang and Lahiri (2006b) and Jiang (2010) for 

recent publications. 

Compared to quantiles, there are relatively more research activities on estimating small area means. 

Studies on small area quantile estimation are gaining ground. The M-quantile approach of Chambers and 

Tzavidis (2006) has achieved substantial success. This approach uses the M-quantile approach to 
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characterize the conditional distributions of the response variable y  given covariates .x  This information 

is then used to predict unobserved response values based on which the small area population distributions 

are estimated. Small area quantile estimation is a natural and welcome side-benefit. See Tzavidis and 

Chambers (2005), Pratesi, Ranalli and Salvati (2008), Tzavidis, Salvati and Pratesi (2008), and Salvati, 

Tzavidis and Pratesi (2012) for these developments. 

Another approach for small area quantile estimation is proposed by Molina (2010). Let s  and r  be the 

sets of sampled and non-sampled units in a survey and sy  and ry  be vectors of corresponding response 

values. Under a parametric assumption on the joint distribution of sy  and ry  (or the transformed responses) 

they proposed to work out the conditional distribution of ry  given sy  (and other information). After having 

the joint distribution and therefore the conditional distribution properly estimated, they suggested sampling 

from the estimated conditional distribution to create an artificial but complete population with unobserved 

ry  filled up. The population distribution is estimated based on the completed population. This approach 

works well for estimating small area means and quantiles. Other methods we are aware of include Tzavidis, 

Marchetti and Chambers (2010), Chaudhuri and Ghosh (2011) and Chen and Liu (2018). Tzavidis et al. 

(2010) proposed a general framework for robust small area estimation, based on representing a small area 

estimator as a function of a predictor of this small area cumulative distribution function. Chaudhuri and 

Ghosh (2011) proposed an empirical likelihood based Bayesian method. Chen and Liu (2018) proposed an 

approach for populations admitting a nested-error linear regression model combined with error distributions 

satisfying a semi-parametric density ratio model (DRM). Simulations indicate that the DRM-based method 

stands out when the error distributions are skewed. 

In this paper, we are interested in the situation where the regression function is not linear, although the 

nested-error regression model remains appropriate similar to Opsomer et al. (2008). Clearly, methods 

derived under linear models may lead to substantial bias if the linearity assumption is violated. To reduce 

the potential risk of serious bias, Opsomer et al. (2008) proposed an Empirical Best Linear Unbiased 

Prediction (EBLUP) for the small area means under a non-parametric regression model via penalized splines 

(P-splines); Jiang, Ngueyen and Rao (2010) developed an adaptive fence approach employing a non-

parametric model selection technique; Sperlich and José Lombardía (2010) used the local polynomial 

inference method in the context of small area estimation; Rao, Sinha and Dumitrescu (2014) proposed a 

robust EBLUP under a P-splines approximated mixed model; Torabi and Shokoohi (2015) proposed a 

unified analysis of both discrete and continuous responses under P-spline regression models. 

We follow their lead and extend their results to allow non-normal error distributions in the nested-error 

non-parametric regression model. More specifically, we assume the nested-error non-parametric regression 

model but relax the small area error distribution assumption from normal to a flexible semi-parametric 

DRM. We use the P-splines regression approach of Opsomer et al. (2008) to fit the nonlinear regression. 

Empirical likelihood is then applied to estimate the parameters in the DRM based on the residuals. This 

leads to natural area specific error distribution estimation. A kernel method is then applied to obtain 
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smoothed estimates of error distributions and small area quantiles. We construct quantile estimates in two 

situations: one is where we have knowledge of only covariate power means at the population level, the other 

is where we have covariate values of all sample units in the population. Our approach should inherit the 

merits of working under a non-parametric regression model, and gain from avoiding a parametric error 

distribution assumption. The resulting small area quantile estimates are hence more robust. Simulations 

indicate that when the regression function is approximately linear, the performance of the proposed 

approach is competitive. The proposed approach outperforms when the regression relationship is quadratic 

or exponential. 

The rest of the paper is organized as follows. Section 2 introduces the model and assumptions. Section 3 

presents the proposed approach. Section 4 proposes a bootstrap procedure for estimating mean squared 

errors. In Section 5, we use Monte Carlo methods to evaluate the performance of the proposed method and 

compare it with some existing methods. An application example is reported in Section 6. Section 7 contains 

some concluding remarks. 

 
2  Model and assumptions 
 

Consider a finite population containing 
=0

=
m

ii
N N  sample units partitioned into 1m   small areas 

  , : = 1, 2, , ,ij ij ix y j N = 0, 1, , .i m  Consider a nested-error non-parametric regression model 

with one covariate:  

  0= ,ij ij i ijy m x v    (2.1) 

where ijx  is an auxiliary variable, iv  denotes an area-specific random effect and ij  are random errors. The 

regression function  0m   is unspecified, but can be approximated sufficiently well by a spline function  

    0 0 1
=1

; , = .
K

pp
p k k

k

m x x x x         β γ   (2.2) 

Here p  is the degree of the spline, =p px x  when > 0x  and 0 otherwise, , = 1, ,k k K   are a set of 

fixed constants called knots,  0= , , p  β   is a coefficient vector of the parametric portion of the 

model, and  1= , , K  γ   is the vector of spline coefficients, K  is the number of spline knots. If knot 

locations cover the range of x  and K  is sufficiently large, the class of P-spline (2.2) can approximate any 

smooth function  0m   with a high degree of accuracy, even with a small p  (Boor, 2001). Ruppert, Wand 

and Carroll (2003) recommended using the number of spline knots K  as the minimum of 40 and the number 

of unique ’sx  divided by 4. 

We assume that a random sample from the population is obtained under an uninformative sampling plan 

such that (2.1) remains valid for the sampled units. Our immediate task is to fit this model based on the 

sampled data and we follow the approach of Opsomer et al. (2008). For ease of presentation, we first 

introduce some matrix notation. Let in  be the number of units sampled from small area .i  The response 
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values from the thi  area will be denoted as  1 2= , , , .
ii i i iny y y y   We then pile them up to form the 

response vector of length :n  0 1= , , , .n m   Y y y y  We similarly define i  and n  for error term. We use 

 0= , , mv v v   for area specific random effects and create a matrix D  such that  

 
0 10 1= ( , , , )

mn n m nv v v  Dv 1 1 1   

with k1  being a length k  vector of 1’s.  We further construct matrices nX  and nZ  so that their rows are 

made up of  

       1= 1, , , , = , ,
p pp

ij ij ij ij ij ij Kx x x x 
 

   x z    

in a proper order. With these matrices and vectors, the data in the sample under model (2.1) are connected 

by  

 = .n n n n  Y X β Z γ Dv   (2.3) 

Opsomer et al. (2008) fitted this model under the assumption that the components of ,γ  of v  and   are 

all independent and identically normally distributed with variances 2 , 2
v  and 2   respectively. The 

solutions to the fit are given by  

                                                              
 

   
 

1

1
1 1

1

ˆ ˆ ˆ= ,

ˆˆ ˆˆ = ,

ˆ ˆ ˆ= ,

ˆˆ ˆˆ =

n n v

v n n

n n n n

n n n

 






 



  

 

 

 

V Z Σ Z DΣ D Σ

v Σ D V Y X β

β X V X X V Y

γ Σ Z V Y X β

  

where ˆ ˆ ˆ, ,v Σ Σ Σ  are restricted maximum likelihood estimates of the covariance matrices of ,γ v  and ,  

and V̂  is the estimate of  var .nV Y  

Opsomer et al. (2008) then gave the empirical best linear unbiased predictor of the small area mean:  

 0 1
ˆ ˆ ˆ ˆ ˆ ˆ= ,p

i i p i i iY X X v      z γ  (2.4) 

where , , p
i iX X  are the means of the powers of population units ijx  in area ,i  i.e., 1

=1
= iN

s s
i i ijj

X N x   

for = 1, , ,s p  and ˆiz γ  stands for the true means of the spline basis functions over the small area .i  

Clearly, the above discussion easily extends to non-parametric additive models with two or more covariates 

(Lin and Zhang (1999), Ruppert et al. (2003) and Wood (2006)). 

In this paper, we follow Opsomer et al. (2008) to get all the fitted values. For small area quantile 

estimation, we remove the normality assumption on .ij  Instead, we assume that their distributions  iG u  

satisfy a DRM so that for = 1, , ,i m  

       0log = ,i idG u dG u u q  (2.5) 
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with a pre-specified basis function  uq  and an area-specific tilting parameter .i  One may include = 0i  

in the above equation by setting 0 = 0.  We require the first element of  uq  to be one, so that the first 

element of i  is a normalization parameter. The DRM includes normal, Gamma, and many other 

distribution families as special cases. Discussions about DRM can be found in Anderson (1979), Qin and 

Zhang (1997), Kezioua and Leoni-Aubina (2008) and Chen and Liu (2013). 

Equations (2.1), (2.2) and (2.5) together form the platform of this paper for small area quantile 

estimation. Our work differs from Opsomer et al. (2008) in that we focus on small area quantile estimation 

without a normality assumption on   .iG   At the same time, this paper differs from Chen and Liu (2018) 

by postulating a non-parametric regression relationship between ijy  and ijx  instead of a linear one. 

 
3  Proposed approach 
 

For any  0, 1 ,   the th  quantile of a distribution F  is defined to be  

                                                                   = inf : .u F u    

If  F̂ u  is an estimate of   ,F u  its - quantile is naturally estimated by  

   ˆ ˆ= inf : .u F u   (3.1) 

Under the distributional assumption on ,ij  we have  

                                                  
     

   
0

0

= ,

= .

ij ij ij i ij i

i ij i

P y u P u m x v x v

G u m x v

   

 




  

Hence, the population distribution of the thi  small area is given by  

                                                                1
0

=1

= .
iN

i i i ij i
j

F u N G u m x v     

Once iG  and  0m   are suitably estimated, so will be the small area quantiles. 

We follow the empirical likelihood idea of Chen and Liu (2018) for estimating   .iG   Suppose the 

values of ij  in the sample are known. Consider a candidate 0G  of the form  

                                                              0
,

= ,ij ij
i j

G u p I u    

where  I   is an indicator function and 
, =0 =1

= .im n

i j i j    We hence have  0=ij ijp dG   and under 

DRM     = expi st st i stdG p θ q  for = 0, 1, ,i m  which implies  

                                                                  
,

= exp .i st i st st
s t

G u p I u   θ q  (3.2) 

By Owen (2001), we obtain the empirical likelihood function  
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       0 1
, , ,

, , , = = exp ,n m i ij ij i ij
i j i j i j

L G G G dG p          
   θ q   

where the parameter θ  and ’sijp  satisfy 0,ijp   and for = 0, 1, , ,s m  

   
,

exp = 1.ij s ij
i j

p  θ q  (3.3) 

Note that we have used the convention 0 = 0θ  for simpler presentation. Because 1 , , mG G  are fully 

determined by  1= , , m  θ θ θ  and 0 ,G  we write the empirical log-likelihood as  

      0
,

, = log .n ij i ij
i j ij

G p   θ θ q   

Maximizing  0, Gθ  with respect to 0G  under the constraints (3.3) results in fitted probabilities  

    1

1

=1

ˆ = 1 exp ( ) 1
m

ij s s ij
s

p n  


       θ q  (3.4) 

and the profile log EL  

        
, =1 ,

= log 1 exp 1
m

n s s ij i ij
i j s i j

            θ θ q θ q   

with  1 , , m   being the solution to  

 
  

  ,
=1

exp 1
= 0.

1 exp 1

i st

m
s t

l l stl



 

 

     



θ q

θ q
  

Since the values of ij  are not available, we replace them by the residuals obtained from fitting model 

(2.1) under assumption (2.2): 

                                                      0
ˆˆ ˆˆ ˆ= ; ,ij ij ij iy m x v  β γ   

where  

  0 0 1
=1

ˆ ˆ ˆˆ ˆˆˆ ( ; , ) = .
K

pp
p k k

k

m x x x x         β γ   (3.5) 

Let  ˆ
n θ  be the log EL function  n θ  after ij  are replaced by ˆ .ij  We define the maximum EL 

estimator of θ  by  ˆ ˆ= argmax nθ θ  and estimate  iG u  by  

       
,

ˆ ˆ ˆˆ= expi st i st st
s t

G u p I u   θ q  (3.6) 

with  
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       1

1

=1

ˆˆ = 1 exp 1
m

st l l st
l

p n n n 


       θ q   

and 0
ˆ = 0.θ  The R package drmdel can be used to compute θ̂  and ˆ ijp  which has 11 choices of basis 

function   .uq  

Because  iG u  is discrete, the following kernel smoothed distribution  ˆ
iG u  leads to better quantile 

estimation:  

  
=1

ˆ
ˆ ˆ= ,

in
ij

i ij
j

u
G u w

b

   
 

  (3.7) 

where the weights are chosen to be    ˆ ˆˆ = ,ij i ij i ijw G G b     is a bandwidth parameter, and     is the 

distribution function of standard normal. As suggested by Chen and Liu (2013), we choose 

 1/5 ˆˆ= 1.06 min , 1.34b n Q  where ̂  is the standard deviation of the distribution ˆ
iG  and Q̂  is its 

interquartile range. 

In some applications, only population power means of covariates are known and can be used for 

statistical inference. In other applications, covariates of all members of the population are known. This leads 

two possible quantile estimates. In the first case, we estimate iF  by  

                                             1
0 0

=1

ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ= ; , ; , ,
in

a
i i i i ij i

j

F u n G u Y m x m x    β γ β γ  (3.8) 

where we use  0
ˆ ˆˆ ; ,im x β γ  specified in (3.5). 

When the census information about x  is available, we estimate iF  by  

         1
0

ˆˆ ˆ ˆ= ,
i i

b
i i ij i ij i

j s j r

F u N I y u G u m x v

 

     
 
   (3.9) 

where is  and ir  are sets of observed and unobserved units in small area .i  The rest of the specifications are 

the same as in (3.8). 

The proposed estimates resemble those of Chen and Liu (2018) but we use a non-parametric regression. 

Because collecting population power means of covariates is easier than collecting covariates values of all 

units in the population    ˆ a
iF u  is more broadly applicable than    ˆ .b

iF u  It is also computationally more 

efficient. Because    ˆ b
iF u  uses covariate values of all units in the population, it should statistically 

outperform when both are applicable. 

 
4  Bootstrap estimation of the mean squared errors 
 

The proposed small area quantile estimators are assembled with many intermediate steps. It is difficult 

to analytically evaluate the variances or mean squared error (MSE) of such estimators. We follow others 
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(Sinha and Rao (2009), Tzavidis et al. (2010) and Chen and Liu (2018)) to develop a bootstrap procedure 

as follows: 
 

Step 1 Obtain estimates 2ˆ ˆ ˆ, , vβ γ  and  0
ˆ ˆˆ , ,m x β γ  based on Model (2.1), and calculate  ˆ

iG u  as 

in (3.7). 

Step 2 Generate a bootstrap finite population  * *= , , = 0, , , = 1, ,ij ij iH y x i m j N   with  

               * * *
0

ˆ ˆˆ= , , ,ij ij i ijy m x v  β γ   

where the bootstrap residuals *
ij  are sampled from CDF  ˆ

iG u , and *
iv  are generated from 

 2ˆ0, .vN   

Step 3 From the bootstrap population * ,H  we select * =i in n  sample units from small area i  by 

simple random sampling without replacement, and repeat it L  times to get * , = 1, , .lh l L  

For each sample * ,lh  compute the estimates    *ˆ a l
iF u  and    *ˆ b l

iF u  as in (3.8) and (3.9) 

respectively. 

Step 4 Compute the empirical MSE estimator of ̂  as  

                  2* 1 * *

=1

ˆmse = ,
L

l

l

L      

where   * *ˆˆ =l lF u   denotes any functional of    *ˆ a lF u  or  *ˆ b lF  and   * *= F u   

with  *F u  being the known CDF of the bootstrap populations. 

Step 5 Repeat Steps 2 to 4, B times, and define the bootstrap MSE estimate as  

               1 *

=1

mse ,
B

b
b

B     

where  *mse b  is the  *mse   calculated in the thb  repetition.  

 

The performance of the bootstrap MSE estimator will be examined and reported in the simulation 

section. 

 
5  Monte Carlo simulations 
 

In this section, we use simulation to evaluate the performances of the proposed penalized spline 

regression model based empirical likelihood estimators (PEL) and their MSE estimates. When only the 

covariate population means are known the proposed estimators are compared with only the nested-error 

linear regression model based empirical likelihood estimator (LEL) of Chen and Liu (2018), and the direct 

estimator (DE). When covariate values are known for all sample units, the comparison is extended to also 

include six estimators of Tzavidis et al. (2010), denoted as EBLUP/naïve, EBLUP/CD, EBLUP/RKM, 

M-quantile/naïve, M-quantile/CD and M-quantile/RKM. Here, EBLUP/CD and M-quantile/CD denote the 

EBLUP and M-quantile estimator are obtained based on the CDF proposed by Chambers and Dunstan 
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(1986), and corresponding estimators based on the CDF proposed by Rao, Kovar and Mantel (1990) write 

as RKM. 

Similar to Chen and Liu (2018), we must choose  uq  in the DRM. Two candidates are    1 = 1,u u q  

and     2 = 1, sign .u u u q  Some preliminary simulation results indicate that    1 = 1,u u q  works 

well for the P-splines fitted non-parametric regression model, but  2 uq  does not. Instead, the choice of 

   * 2
2 = 1, ,u u u q  leads to competitive performance. So, we use  1 uq  and  *

2 uq  in our simulation. 

Following Rao et al. (2014) and Torabi and Shokoohi (2015), we generated data from the following three 

models:  

 

 

2

A : = 1 ,

B: = 1 ,

C: = 1 0.5 exp .

ij ij i ij

ij ij ij i ij

ij ij ij i ij

y x v

y x x v

y x x v







  

   

   

  

They lead to linear, quadratic and exponential regression functions respectively. We set the number of small 

areas to be 30 and area population sizes  = 500 1 , = 0, 1, , 29.iN i i   We generated covariate ijx  

from  0, 1 .N  Once ijx  are generated, we treated them as fixed in the simulation. The area-specific random 

effect iv  were generated from  0, 1 ,N  and the errors ij  were generated from the following four 

distributions.  

              

   

   

     

     2

i : 0, 1 ,

ii : 3 ,

iii : normal mixture 0.5 1, 1 0.5 1, 1 ,

iv : 0, , with 0.5, 2 , = 0, , 29.i i

N

t

N N

N U i 

 



  

Distribution (ii) has a heavy tail, distributions (ii) and (iii) are symmetric, and distribution (iv) is 

heteroscedastic. 

We used = 1,000R  repetitions in the simulation and drew random samples of size = 500n  without 

replacement from the population in each repetition. To avoid the possibility that some small areas have too 

few sample units, we drew 60n   units at the population level and allocated an additional 2 units in each 

small area. We used R package mgcv for the REML method with default options for values of p  and K  

when fitting the P-spline function (2.4). We calculated estimates of the 5%, 25%, 50%, 75%, and 95% small 

area quantiles denoted as DE, LEL1, LEL2, PEL1, PEL2, for direct estimator, estimators of Chen and Liu 

(2018) and the proposed estimators using  1 q  and  2 .q  We report their average mean squared error 

(AMSE) and absolute biases (ABIAS) defined below:  

 

       

     

21

=0 =1

1 1 1

=0 =1 =1

ˆAMSE = 1 ,

ˆABIAS = 1 ,

m R
r r

i i
i r

m R R
r r

i i
i r r

R m

m R R

 

 



  

 

 



  
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where  ˆ r
i  is either one of the quantile estimates of for the thi  small area in the thr  repetition. The results 

under Models A, B, and C are given in Tables 5.1-5.3 respectively. Both PEL and LEL are based on  ˆ a
iF  

and its mirror version in Chen and Liu (2018). 

Under Model A, the linear model is valid. Hence, we expect LEL to be superior. According to Table 5.1, 

two methods are similar for the 25%, 50% and 75% quantiles. LELs outperform PELs for the 5% quantile 

while the comparison reverses for the 95% quantile. Both PEL and LEL outperform DE for the 25%, 50% 

and 75% quantiles with big margins. An overall impression is that the proposed methods still work 

satisfactorily. 

Under Model B, the linear model breaks down mildly. Results in Table 5.2 show that the PEL estimators 

have lower AMSE for lower quantiles. The LELs still have low AMSE in spite of have higher ABIAS. The 

advantage of the proposed PEL under the non-parametric nested-error regression models focus for quantiles 

in middle levels. With fewer observations near extreme quantiles, the non-parametric model is hard to fit. 

The linearity is seriously violated under Model C. LEL is expected to have poor performance and this is 

evident as shown in Table 5.3. At the same time, PELs work well for the 25%, 50% and 75% quantiles. The 

choice of  *
2 uq  also helps in general. For extreme quantiles, PELs remain unworth the trouble compared 

with DE. 

 
 
Table 5.1 
AMSE and ABIAS of small area quantile estimators under Model A 
 

  AMSE ABIAS 

   DE LEL1 LEL2 PEL1 PEL2 DE LEL1 LEL2 PEL1 PEL2 

Error distribution (i) 5% 0.470 0.120 0.142 0.121 0.162 0.346 0.022 0.028 0.024 0.032 
25% 0.219 0.074 0.080 0.074 0.082 0.081 0.006 0.006 0.006 0.006 
50% 0.187 0.067 0.067 0.067 0.068 0.011 0.005 0.005 0.006 0.006 
75% 0.218 0.074 0.079 0.074 0.082 0.081 0.007 0.005 0.008 0.006 
95% 0.470 0.121 0.142 0.123 0.165 0.340 0.024 0.031 0.023 0.033 

Error distribution (ii) 5% 1.287 0.249 0.786 0.276 1.726 0.352 0.011 0.023 0.011 0.089 
25% 0.297 0.196 0.217 0.178 0.186 0.084 0.022 0.036 0.021 0.031 
50% 0.238 0.187 0.182 0.167 0.154 0.011 0.010 0.010 0.010 0.009 
75% 0.304 0.197 0.233 0.179 0.189 0.081 0.023 0.038 0.023 0.032 
95% 1.344 0.249 1.919 0.319 2.297 0.349 0.013 0.034 0.015 0.100 

Error distribution (iii) 5% 0.636 0.165 0.199 0.163 0.234 0.408 0.008 0.013 0.008 0.019 
25% 0.340 0.132 0.147 0.133 0.152 0.109 0.010 0.007 0.011 0.008 
50% 0.306 0.128 0.128 0.130 0.132 0.014 0.007 0.007 0.007 0.007 
75% 0.340 0.133 0.151 0.134 0.156 0.108 0.011 0.009 0.012 0.008 
95% 0.651 0.168 0.205 0.166 0.243 0.410 0.010 0.016 0.010 0.022 

Error distribution (iv) 5% 1.225 2.589 0.787 2.679 0.651 0.504 0.220 0.028 0.222 0.071 

25% 0.574 0.681 0.380 0.652 0.349 0.114 0.174 0.047 0.157 0.017 

50% 0.488 0.273 0.277 0.241 0.291 0.017 0.010 0.010 0.009 0.010 

75% 0.571 0.700 0.383 0.670 0.349 0.121 0.183 0.057 0.166 0.012 

95% 1.251 2.611 0.795 2.709 0.655 0.519 0.207 0.037 0.210 0.082 
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Table 5.2 
AMSE and ABIAS of small area quantile estimators under Model B 
 

  AMSE ABIAS 

   DE LEL1 LEL2 PEL1 PEL2 DE LEL1 LEL2 PEL1 PEL2 

Error distribution (i) 5% 0.524 2.998 2.991 0.404 0.439 0.382 1.520 1.502 0.017 0.019 
 25% 0.474 0.182 0.183 0.259 0.262 0.177 0.118 0.123 0.018 0.017 
 50% 0.865 0.907 0.951 0.215 0.219 0.092 0.785 0.791 0.031 0.031 
 75% 1.963 0.985 1.170 0.817 0.825 0.132 0.602 0.616 0.021 0.021 
 95% 7.850 3.083 3.783 9.163 9.193 1.200 1.159 1.185 0.251 0.251 

Error distribution (ii) 5% 1.227 2.768 3.065 0.492 1.691 0.352 1.430 1.423 0.067 0.143 
 25% 0.562 0.280 0.268 0.331 0.327 0.189 0.087 0.087 0.027 0.024 
 50% 0.976 0.924 0.957 0.287 0.281 0.098 0.728 0.733 0.046 0.046 
 75% 2.119 1.023 1.231 0.817 0.854 0.129 0.557 0.572 0.034 0.034 
 95% 8.392 2.989 4.864 8.405 9.180 1.250 1.140 1.147 0.112 0.119 

Error distribution (iii) 5% 0.842 2.171 2.207 0.425 0.491 0.500 1.252 1.238 0.013 0.014 
 25% 0.657 0.209 0.209 0.292 0.296 0.176 0.076 0.077 0.010 0.011 
 50% 0.935 0.791 0.805 0.244 0.249 0.082 0.679 0.682 0.026 0.027 
 75% 1.983 0.981 1.086 0.739 0.752 0.131 0.588 0.597 0.024 0.024 
 95% 8.020 2.782 3.251 8.344 8.385 1.219 1.059 1.078 0.144 0.145 

Error distribution (iv) 5% 1.458 3.913 3.066 2.414 0.814 0.557 1.195 1.172 0.226 0.053 
 25% 0.919 0.460 0.397 0.474 0.472 0.206 0.154 0.137 0.058 0.017 
 50% 1.183 0.913 0.920 0.398 0.416 0.071 0.629 0.640 0.048 0.023 
 75% 2.195 1.223 1.209 1.022 0.902 0.163 0.471 0.511 0.033 0.031 
 95% 8.043 2.954 3.420 7.476 7.639 1.268 0.975 1.042 0.104 0.115 

 
 

Table 5.3 
AMSE and ABIAS of small area quantile estimators under Model C 
 

  AMSE ABIAS 

   DE LEL1 LEL2 PEL1 PEL2 DE LEL1 LEL2 PEL1 PEL2 

Error distribution (i) 5% 0.279 1.340 1.258 0.092 0.151 0.267 0.997 0.978 0.051 0.031 
25% 0.146 0.316 0.263 0.087 0.098 0.068 0.282 0.280 0.035 0.046 
50% 0.152 0.326 0.403 0.094 0.096 0.011 0.215 0.227 0.019 0.015 
75% 0.335 0.868 1.368 0.225 0.244 0.029 0.665 0.700 0.043 0.044 
95% 7.011 0.890 6.818 27.97 27.81 0.291 0.206 0.301 1.398 1.384 

Error distribution (ii) 5% 1.180 1.181 1.355 0.278 1.776 0.286 0.849 0.836 0.090 0.174 
25% 0.205 0.461 0.395 0.201 0.208 0.063 0.317 0.327 0.085 0.098 
50% 0.201 0.450 0.502 0.201 0.191 0.024 0.226 0.235 0.013 0.012 
75% 0.528 0.943 1.422 0.390 0.422 0.017 0.641 0.681 0.096 0.104 
95% 7.478 0.890 6.306 23.33 25.01 0.479 0.089 0.107 1.055 1.084 

Error distribution (iii) 5% 0.438 1.063 1.004 0.157 0.240 0.349 0.826 0.803 0.065 0.034 
25% 0.299 0.328 0.289 0.158 0.181 0.120 0.158 0.161 0.009 0.020 
50% 0.305 0.364 0.409 0.174 0.179 0.013 0.151 0.157 0.035 0.029 
75% 0.428 0.709 1.035 0.275 0.308 0.077 0.499 0.524 0.015 0.017 
95% 6.718 0.974 4.704 24.79 25.04 0.232 0.321 0.378 1.336 1.325 

Error distribution (iv) 5% 1.078 4.146 2.303 3.378 0.685 0.444 0.918 0.803 0.409 0.035 
25% 0.530 0.829 0.531 0.668 0.380 0.107 0.105 0.156 0.147 0.071 
50% 0.490 0.526 0.565 0.297 0.344 0.021 0.177 0.188 0.054 0.017 
75% 0.718 1.454 1.412 1.149 0.542 0.076 0.438 0.542 0.061 0.048 
95% 6.430 2.492 4.002 22.54 21.92 0.462 0.364 0.242 1.258 1.042 
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Next, we study estimators applicable when covariate values are known for all sample units. The 

simulation includes EB0, EB1, EB2, MQ0, MQ1 and MQ2 stand for EBLUP/naïve, EBLUP/CD, 

EBLUP/RKM, M-quantile/naïve, M-quantile/CD and M-quantile/RKM respectively. We set relatively 

small population sizes = 500iN  to save some computation. Table 5.4 contains the AMSE of these 

estimators under Models A, B and C with  0, 1N  error distribution. To save space, we do not present the 

corresponding bias results. The simulation results show that the proposed method has lower AMSE and 

ABIAS (not presented) in general. It works well even for quantiles at rather extreme levels. 

To save space, we pool the AMSE results for all 5 levels of quantiles in Table 5.5. The entry 

corresponding to iA  is the average AMSE for estimating quantiles at levels 5%, 25%, 50%, 75%, and 95% 

when data are generated from Model A with error distribution (i). We notice that with more detailed 

information on covariates, the LEL and PEL estimators are substantially more accurate compared to results 

in Tables 5.1-5.3. From Model A to Model C, the regression line becomes less linear. Correspondingly, the 

proposed quantile estimators have greater advantages against other estimators. 

Now we evaluate the bootstrap MSE estimator proposed in Section 4. Because this method involves 

heavy computation, we confined the simulation to the estimator based on    ˆ b
iF u  with basis function 

   1 = 1,u u q  and put = 100, = 100.B L  We report the average ratios of the estimated MSEs and the 

simulated MSEs across all the small areas. The closer the ratio to one, more accurate the bootstrap MSE 

estimate. From Table 5.6 we can see that the average ratios close to one in majority situations except for 

error distribution (iv) on extreme levels of quantiles. We conclude that the bootstrap MSE estimator is 

generally satisfactory. 

 
Table 5.4 
AMSE of 10 quantile estimators when all covariance values are known with N(0, 1) error distribution 
 

   EB0 EB1 EB2 MQ0 MQ1 MQ2 LEL1 LEL2 PEL1 PEL2 

Model A 5% 0.477 0.123 0.501 0.536 0.127 0.499 0.128 0.146 0.078 0.110 
25% 0.139 0.073 0.154 0.198 0.074 0.154 0.073 0.078 0.065 0.073 
50% 0.061 0.066 0.124 0.119 0.066 0.124 0.066 0.066 0.064 0.064 
75% 0.145 0.074 0.149 0.204 0.074 0.149 0.074 0.080 0.066 0.073 
95% 0.491 0.125 0.394 0.552 0.129 0.395 0.126 0.146 0.079 0.113 

Model B 5% 1.270 2.500 0.928 1.682 2.575 0.946 2.965 2.949 0.079 0.110 
25% 0.351 0.152 0.239 0.262 0.149 0.239 0.193 0.193 0.069 0.069 
50% 0.834 0.723 0.285 0.631 0.722 0.284 0.899 0.944 0.071 0.073 
75% 0.314 0.634 0.532 0.257 0.644 0.530 0.986 1.160 0.082 0.084 
95% 3.710 2.095 3.690 4.209 2.059 3.685 3.235 3.900 0.154 0.156 

Model C 5% 0.346 0.830 0.415 0.708 0.307 0.351 1.087 1.028 0.075 0.130 
25% 0.345 0.173 0.169 0.388 0.110 0.154 0.263 0.224 0.066 0.075 

50% 0.340 0.170 0.142 0.207 0.150 0.136 0.291 0.349 0.065 0.067 

75% 0.288 0.577 0.211 0.191 0.376 0.227 0.731 1.088 0.068 0.087 

95% 2.578 11.47 8.087 5.194 14.64 11.96 0.868 4.215 0.148 0.156 
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Table 5.5 
Average AMSE over 5 quantiles when all covariate values are known 
 

Model EB0 EB1 EB2 MQ0 MQ1 MQ2 LEL1 LEL2 PEL1 PEL2 

iA  0.263 0.092 0.264 0.322 0.094 0.264 0.093 0.103 0.070 0.087 

iiA  0.810 1.379 1.822 0.810 1.381 1.796 0.217 0.370 0.203 0.744 

iiiA  0.754 0.183 0.408 0.819 0.183 0.407 0.149 0.168 0.135 0.168 

ivA  0.687 0.186 0.399 0.746 0.188 0.399 0.281 0.196 0.256 0.164 

iB  1.296 1.221 1.135 1.408 1.230 1.138 1.832 1.829 0.091 0.098 

iiB  1.442 1.714 2.348 1.496 1.718 2.343 1.596 1.812 0.230 0.504 

iiiB  1.270 1.081 1.357 1.348 1.088 1.351 1.399 1.521 0.163 0.179 

ivB  1.346 1.177 1.315 1.436 1.183 1.317 1.565 1.701 0.205 0.166 

iC  0.799 2.645 1.805 1.339 3.117 2.566 0.648 1.381 0.084 0.103 

iiC  1.441 3.439 3.368 2.232 3.967 3.898 0.725 1.168 0.241 0.377 

iiiC  1.141 2.516 1.898 1.834 2.937 2.572 0.595 1.133 0.153 0.186 

ivC  1.149 2.499 1.909 1.821 2.933 2.639 0.767 1.176 0.280 0.179 

 
Table 5.6 
Average ratios of bootstrap MSEs and simulated MSEs 
 

  iA  iiA  iiiA  ivA  iB  iiB  iiiB  ivB  iC  iiC  iiiC  ivC  

5% 1.01 1.03 1.05 0.36 1.05 0.98 1.01 0.39 0.99 1.19 1.10 0.27 

25% 1.00 0.99 1.05 0.74 1.03 0.99 0.95 1.03 1.03 0.97 0.99 0.73 

50% 1.06 1.04 0.97 1.10 1.01 1.03 0.96 0.99 1.09 0.96 0.97 1.03 

75% 1.01 0.99 1.06 0.76 1.10 1.01 0.98 0.90 1.06 0.96 1.03 0.52 

95% 1.04 1.20 1.10 0.33 0.89 1.02 1.13 1.02 0.95 1.37 1.13 0.69 

 
6  Empirical application 
 

We now illustrate the proposed estimators based on the data set Survey of Labour and Income Dynamics 

(SLID) provided by Statistics Canada (2014) downloaded from University of British Columbia library data 

centre. The data contain 147 variables and 47,705 sample units. We are grateful to Statistics Canada for 

making the data set available, but we do not address the original goal of the survey here. Instead, we use it 

as a superpopulation to study the effectiveness of the proposed small area quantile estimator. 

In this study, we singled out 9 of the 147 variables. They are ttin, gender, spouse, edu, age, 

yrx, tweek, jobdur and tpaid, standing respectively for: total income, gender, whether living with the 

spouse, the highest level of education, age, years of experience, number of weeks employed, education level, 

months of duration of current job and total hours paid at this job. After removing units containing missing 

values in these 9 variables as well as those with ttin 0,  we obtained a data set containing 28,302 sample 

units. The covariates power means at the population level are still calculated based on all available 

observations. We created 28 sub-populations (namely small areas) labeled as  4 1 ,k i  = 1, 2, , 7,k   
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= 1, 2, 3, 4i  based on gender-spouse-edu combinations. Here k  denotes education level and = 1, 2, 3, 4i  

denote male living with the spouse, female living with spouse, male not living with spouse and female not 

living with spouse respectively. The education levels are given as follows.  

 

 

  

No more than 10 years elementary and secondary school

11-13 years of elementary and secondary school but did not graduate

Graduated high school

Some u

1

2

3

4 niversity or non-universi

k Highest education level

ty postsecondary with no certificate

Non-university postsecondary or university certificate below Bachelor’s

Bachelor’s degree

University certificate above Bachel

5

6

7 or’s

  

We regarded  log ttin  as the response variable and fitted linear and additive non-parametric 

regressions with respect to other 5 variables. Based on the whole data, the adjusted R-square of the non-

parametric fit is 0.482 which is much larger than 0.370 obtained by fitting the linear regression. This 

suggests that a non-parametric mixed model is a good choice. Figure 6.1 shows the fitted curves of 

log(ttin) with respect to these two covariates. Also, the R-square is as high as 0.483 even if the model 

includes only covariates age and tpaid and a random effect. These exploratory analyses prompt us to use 

only these two covariates in our simulation. We carried the simulation with sample sizes = 200; 500n  and 

1,000. To make sampling proportions in small areas close to their sizes, we let = 2, = 1, , 28i in a i   

with ia  generated from the multinomial distribution with = .i ip N N  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  Fitted curves of log(ttin) with respect to age and tpaid. 
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The simulated AMSE of 10 estimators based on 1,000 repetitions are reported in Table 6.1. We first 

notice that both our PEL estimators outperform the other estimators, in general, indicating the advantage of 

our non-parametric DRM based small area estimation technique. The PEL1 compared to PEL2 has the lower 

AMSE for 5%, 25%, and 50% quantiles, but slightly higher AMSE for 75% and 95% quantiles indicating 

the heteroscedasticity of data is not serious. Regardless the PEL estimators, we notice the LEL estimators 

outperform other estimators for 5% quantile, and have similar performance for other quantiles. Increasing 

the sample size reduces the AMSE of all estimators. Clearly, it is hard to estimate the 5% quantile with a 

good precision because the data are skewed toward the left so there are few observations for estimating the 

lower quantiles. Interestingly, LEL1 is not affected as much by the skewness. We feel that the kernel 

smoothing step (3.7) is helpful here. Without this smoothing step, LEL1 would perform much worse. 

Unreported simulations show that the ABIAS of all estimators decreases in general as the sample size 

increases and this is most apparent for DE. 

To check the performance of the proposed first estimator which using only covariate average 

information. In Figures 6.2, we depict the 2.5%, 50%, and 97.5% quantiles of 1,000 small area median 

estimates by the DE, LEL1, LEL2, PEL1, PEL2 with sample size = 200n  with the true medians marked 

by dots. The y-axis is the total income and x-axis is the education level. It is seen that the PEL2 boxes are 

the shortest for most small areas. 

Table 6.2 reports the bootstrap MSE estimates as well as the average ratios of bootstrap and simulated 

MSEs of the small area median estimators based on    ˆ a
iF u  and    ˆ b

iF u  with sample size = 200.n  The 

number of simulation repetition is 500 with basis function    1 = 1,u u q  and = 100, = 100.B L  We can 

see the estimator    ˆ a
iF u  has higher MSE than    ˆ ,b

iF u  and most average ratios close to one. 

 
Table 6.1 
AMSE of small area quantile estimators based on real data 
 

   EB0 EB1 EB2 MQ0 MQ1 MQ2 LEL1 LEL2 PEL1 PEL2 

n = 200 5% 0.784 0.769 0.901 0.714 0.763 0.885 0.245 0.421 0.242 0.336 

25% 0.107 0.256 0.488 0.102 0.261 0.467 0.115 0.131 0.097 0.152 

50% 0.080 0.119 0.236 0.064 0.116 0.223 0.076 0.095 0.056 0.102 

75% 0.122 0.100 0.142 0.085 0.102 0.138 0.085 0.076 0.069 0.068 

95% 0.233 0.190 0.280 0.141 0.138 0.266 0.217 0.179 0.117 0.096 

n = 500 5% 0.793 0.603 0.826 0.710 0.579 0.805 0.173 0.345 0.210 0.301 

25% 0.072 0.110 0.207 0.076 0.119 0.197 0.069 0.127 0.063 0.091 

50% 0.049 0.050 0.074 0.036 0.050 0.072 0.053 0.076 0.040 0.043 

75% 0.108 0.044 0.060 0.055 0.046 0.058 0.054 0.047 0.046 0.043 

95% 0.257 0.128 0.152 0.109 0.058 0.148 0.138 0.125 0.086 0.077 

n = 1,000 5% 0.792 0.397 0.542 0.706 0.377 0.528 0.078 0.130 0.095 0.144 

25% 0.054 0.056 0.098 0.066 0.067 0.095 0.041 0.043 0.038 0.056 

50% 0.034 0.026 0.032 0.027 0.026 0.031 0.019 0.028 0.018 0.024 

75% 0.102 0.024 0.030 0.043 0.026 0.030 0.037 0.033 0.019 0.023 

95% 0.270 0.088 0.090 0.095 0.114 0.090 0.074 0.067 0.053 0.057 
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Table 6.2 
Bootstrap MSE estimates and average ratios of the estimated and simulated MSEs 
 

     ˆ a
iF u     ˆ b

iF u  

 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 
MSE  0.542 0.196 0.117 0.098 0.165 0.204 0.093 0.068 0.062 0.102 
Ratio  0.843 0.959 1.014 0.988 0.871 0.969 0.994 1.003 0.996 0.975 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.2 The bottom, middle and top lines of each bar denote 2.5%, 50% and 97.5% quantiles of 1,000 small 
area estimates of the total income. The dot in each bar denotes true small area median. Five bars in 
each cluster are formed by DE, LEL1, LEL2, PEL1, PEL2 estimates. Top two plots: male living 
(left) and not living (right) with spouse; Bottom two plots: female living (left) and not living (right) 
with spouse. Seven clusters in each plot correspond to 7 education levels. 
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7  Conclusion 
 

We studied the small area quantile estimation under the nested-error non-parametric regression model 

and a semi-parametric DRM assumption on error distributions. We proposed two quantile estimators based 

on P-splines and empirical likelihood approach. Simulation results show that the proposed estimators are 

robust and have respectable efficiency under both linear and non-parametric regression functions for mid-

range quantiles. The proposed approach can be extended to non-parametric regression models with multiple 

covariates in principle, though it will lead to many more parameters to be estimated. This problem will be 

investigated in a future work. 
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