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Improved Horvitz-Thompson estimator in survey sampling 

Xianpeng Zong, Rong Zhu and Guohua Zou1 

Abstract 

The Horvitz-Thompson (HT) estimator is widely used in survey sampling. However, the variance of the HT 
estimator becomes large when the inclusion probabilities are highly heterogeneous. To overcome this 
shortcoming, in this paper we propose a hard-threshold method for the first-order inclusion probabilities. 
Specifically, we carefully choose a threshold value, then replace the inclusion probabilities smaller than the 
threshold by the threshold. Through this shrinkage strategy, we construct a new estimator called the improved 
Horvitz-Thompson (IHT) estimator to estimate the population total. The IHT estimator increases the estimation 
accuracy much although it brings a bias which is relatively small. We derive the IHT estimator’s mean squared 
error and its unbiased estimator, and theoretically compare the IHT estimator with the HT estimator. We also 
apply our idea to construct an improved ratio estimator. We numerically analyze simulated and real data sets to 
illustrate that the proposed estimators are more efficient and robust than the classical estimators. 

 
Key Words: Horvitz-Thompson estimator; Inverse probability weighting; Hard-threshold; Robustness; Unequal 

probability sampling; Sampling without/with replacement; Ratio estimator. 

 
 

1  Introduction 
 

The Horvitz-Thompson (HT) estimator proposed by Horvitz and Thompson (1952) is widely used in 

survey sampling. It has also been applied to other fields such as functional data analysis (Cardot and 

Josserand, 2011) and the treatment effect (Rosenbaum, 2002). The HT estimator is an unbiased estimator 

constructed via inverse probability weighting. However, when the inclusion probabilities are highly 

heterogeneous, i.e., inclusion probabilities of some units are relatively tiny, the variance of the HT estimator 

becomes large due to inverse probability weighting. In this paper, we propose an improved Horvitz-

Thompson (IHT) estimator to address this problem. 

Our approach is to use a hard-threshold for the first-order inclusion probabilities. Specifically, we 

carefully choose an inclusion probability as the threshold. The inclusion probabilities that are smaller than 

the threshold are replaced by the threshold, while the others remain unchanged. In this way, we obtain the 

modified inclusion probabilities, and construct an estimator based on the modified inclusion probabilities 

through inverse probability weighting. We call this estimator the IHT estimator. This method looks very 

easy but is more efficient than the HT estimator. This hard-threshold approach can be explained as a 

shrinkage method. Shrinkage is very commonly used in statistics, such as ridge regression (Hoerl and 

Kennard, 1970) and high-dimensional statistics (Tibshirani, 1996). In this paper, we use it to reduce the 

negative effect of highly heterogeneous inclusion probabilities. Similar to other shrinkage methods, our 

approach introduces a bias, which is proved to be very small, but reduces the variance to a larger extent, so 

it improves the estimation efficiency. We will theoretically and numerically show the improvement from 

using the modified inclusion probabilities. In addition to the population total estimator, we also extend this 

strategy to the ratio estimator, and accordingly, an improved ratio estimator is obtained. 
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The remainder of the paper is organized as follows. Section 2 introduces the HT estimator and shows its 

drawback. Section 3 proposes our modified inclusion probabilities and the resultant IHT estimator. We also 

provide the IHT estimator’s properties, and theoretically compare it with the HT estimator in this section. 

Section 4 extends our idea to obtain an improved ratio estimator and shows that this modification is efficient. 

Section 5 presents numerical evidence from simulations and a real data analysis. Section 6 concludes. Proofs 

of theoretical results are given in the Appendix. 

 
2  HT estimator and its drawback 
 

Consider a finite population  1= , , NU U U  of size ,N  where kU  denotes the thk  unit. For 

simplicity, we write  = 1, , , , .U k N   For each unit ,k  suppose that the value ky  of the target 

characteristic Y  is measured. Our aim is to estimate the total, = ,y kU
t y  using a sample s  of size n  

which is randomly drawn from the population .U  We implement unequal probability sampling without 

replacement. Denote   =1

N
k k  as the first-order inclusion probabilities and  kl k l   as the second-order 

inclusion probabilities. 

Horvitz and Thompson (1952) proposed the HT estimator as follows  

 HT
ˆ = .k

k s k

y
t


   

The HT estimator HTt̂  is an unbiased estimator of yt  and its variance is  

 2
HT 2

ˆ( ) = ,kk kl
k l kU U

k lk k l

V t y y y
  

 
   (2.1) 

where 2=kk k k    for all k  and =kl kl k l     for all .k l  When the inclusion probabilities are 

highly imbalanced, i.e., some ’sk  are very small, the variance of the HT estimator may be very large. 

 
3  Improved HT estimator 
 

In this section, we improve the HT estimator in the sense of reducing its mean squared error (MSE). The 

resultant estimator is referenced as the IHT estimator. For doing this, we first propose the modified first-

order inclusion probabilities, where the hard-threshold method is used to reduce the effect of those inclusion 

probabilities with relatively tiny values.  

Definition 1. Let      1 2 N      be the ordered values of the first-oder inclusion probabilities 

 1 2, , , .N    Assume that there exists an integer 2K   such that     11 .K K    We define the 

modified first-order inclusion probabilities as follows  

 
 

   

*
> ,

= 1 .
,

k k K

k
kK K

k N
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From the definition, we partition the finite population into two parts:   1 = : >k KU k    with size 

,N K  and   2 = : k KU k    with size .K  For 1 ,U  the first-order inclusion probabilities remain 

unchanged, while all of first-order inclusion probabilities for 2U  are replaced by   .K  From this hard-

threshold, we get our modified first-order inclusion probabilities  *
=1 .N

k k  Obviously, the choice of K  is 

very important. In Section 3.2, we shall provide a simple way to choose .K  

Remark on existence of .K  The assumption in Definition 1 is quite weak. If    2 > 1 2 1 ,   then the 

sampling fraction 1 1
3 3> .Nf   However that situation that 1

3>f  rarely happens in practical surveys. 

Thus, the inequality that    2 1 2 1    generally holds. 

Instead of the original first-order inclusion probabilities   =1 ,N
k k  we use our defined modified first-

order inclusion probabilities  *
=1

N
k k  to construct an improved Horvitz-Thompson (IHT) estimator by 

inverse probability weighting.  

Definition 2. The IHT estimator is defined as  

 
*

ˆ = .k
IHT

k s k

y
t


   

Unlike the unbiased HT estimator, the IHT estimator is biased. However, this modification leads to much 

smaller MSE due to reducing the variance. It is worth pointing out that, although we focus on sampling 

without replacement in this paper, our modification idea is equally applicable to the Hansen-Hurwitz 

estimator (Hansen and Hurwitz, 1943) for sampling with replacement. 

 
3.1  Properties of the IHT estimator 
 

In this section, we derive the properties of the IHT estimator. We first provide the expressions of its bias, 

variance, MSE and an unbiased estimator of MSE in Theorem 1. Then we compare the IHT estimator with 

the HT estimator in Theorems 2 and 3. 
 

Theorem 1. The bias and variance of the IHT estimator ˆ
IHTt  are expressed as  

                                             
 

2

ˆ = 1 ,k
IHT kU

K

Bias t y




  

 
   

and  

   2
*2 * *

ˆ = ,kk kl
IHT k k lU U

k lk k l

Var t y y y
  

 
    

respectively, where  = 1 , =kk k k kl kl k l         k l  as defined before. Therefore, its MSE is 

given by  

  
 

2

2

2
*2 * *

ˆ = 1 .k kk kl
IHT k k k lU U U

k lk k lK

MSE t y y y y

   

    
   

  
    (3.1) 
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An unbiased estimator of the MSE is  

 

     
 

     
 

2 2

2

2
2 2

2
*2 * *

ˆ =

,

k k lK K K
IHT k k ls s

k klK Kk l

kk kl
k k ls s

k lk k l

MSE t y y y

y y y

     
   

  





  


 
 

 

 
    

where = , = ,kk kl

k klkk kl 
  

 
s  is the sample set, and 2 2= .s s U  

 

Proof. See Appendix A.1. 

To derive the properties of the IHT estimator, we need the following regularity conditions: 

Condition C.1. *
,> 0, > 0,min mini U i j Ui ij       and  

 < .lim sup max ij i j
i j UNarrow

n   
 

    

Condition C.2. max i U iy C   with C  a positive constant not depending on .N  

Condition C.1 is a common condition imposed on the first-order and second-order inclusion 

probabilities. The same conditions are used in Breidt and Opsomer (2000), where further comments on C.1 

are provided. Condition C.2 is also a common condition. 
 

Theorem 2. For the HT estimator ˆ
HTt  and the IHT estimator ˆ ,IHTt  under the Conditions C.1-C.2, we have  

      1 1 1ˆ ˆ= 0, = ;HT IHTBias N t Bias N t O n     

and  

        1 1 1 1ˆ ˆ= , = .HT IHTMSE N t O n MSE N t O n      

 

Proof. See Appendix A.2. 

From Theorem 2, the squared-bias of our IHT estimator is very small compared to its MSE. Although 

our IHT estimator brings a bias to reduce the variance, the price for this is relatively small. The following 

theorem theoretically compares the efficiency of the two estimators.  
 

Theorem 3. Under the Conditions C.1-C.2, we have  

      1 1 1ˆ ˆ .IHT HTMSE N t MSE N t o n     (3.2) 

Especially, for Poisson sampling, we obtain  

    1 1ˆ ˆ ,IHT HTMSE N t MSE N t    

where the strict inequality is true if there exist 2k l U   such that       .k k l lK Ky y       
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Proof. See Appendix A.3. 

Theorem 3 shows that, under some mild conditions, the proposed IHT estimator is asymptotically more 

efficient than the HT estimator. From the proof in Appendix A.3, the term  1o n   in equation (3.2) is due 

to the interaction term from the second-order inclusion probabilities. We theoretically bound the term as 

 1 .o n   For Poisson sampling, the term does not exist, so the MSE of the IHT estimator is uniformly not 

larger than that of the HT estimator. Empirically, we compare the IHT estimator with the HT estimator in 

Section 5. 

 
3.2  The choice of K  
 

The efficiency of the IHT estimator relies on the choice of ,K  which provides a control of the variance-

and-bias tradeoff. The choice of K  needs to satisfy the condition that    < 1 1K K   of Definition 1, 

since the modified inclusion probabilities would cause large bias when K  becomes large. On the other 

hand, the improvement of the IHT estimator would not be significant if K  is small. In the proofs of 

Theorem 3, equation (A.5) provides a lower bound of the main term of    1 1
HT IHT

ˆ ˆMSE MSE .N t N t   

The lower bound increases as  K  increases. Therefore, denoting the maximum value 

    * : 1 1= max ,ii iK     we choose *K  as the threshold. In practice, we propose the following 

algorithm to find the maximum value * .K  

        
 

 

   

1 2

=1

1 1
11 2

 

Step i Obtain the ordered inclusion probabilities by sorting

rom small to large.

Step ii Test and modify.

If satisfies and the modified first-order

, ,

f

i> ,  

, N

N
k k

j jj jj

  



   

Algorithm 1 The choice of


K

          1*

1

nclusion

probabilities are d

,

efin

,

ed as

an

, , , ,

d

= ,

= .

j j j j N

j

K j

    


π 

 

  

Note that the choice of *K  based on Algorithm 1 is not optimal in terms of MSE. However, we simulate 

an example in Section 5 where the performance of Algorithm 1 is very close to that of the theoretically ideal 

choice. 

 
4  Extension to the ratio estimator 
 

When an auxiliary variable is available, the ratio estimator is usually used to estimate the population 

total. In this section, we extend the IHT estimator to the case of ratio estimation. 
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4.1  Improved ratio estimator 
 

Denote the ratio between the population totals of Y  and Z  as  

 = ,y zR t t   

where yt  and zt  are the totals of the finite populations Y  and ,Z  respectively. Let ˆ = ,k

k

y
y s

t    

ˆ = ,k

k

z
z s

t   *
*ˆ = ,k

k

y
y s

t    and *
*ˆ = .k

k

z
z s

t    The classical estimator and our modified estimator of R  

are given by  

 * * *ˆ ˆˆ ˆ ˆ ˆ= , and = .y z y zR t t R t t      

We assume that the population total zt  is known. To estimate the population total yt  of ,Y  the classical 

ratio estimator is given by  

 ˆ ˆ ˆ= .R z y zY t t t    

Alternatively, our improved ratio estimator of yt  based on the modified inclusion probabilities is expressed 

as  

 * * *ˆ ˆ ˆ= .R z y zY t t t    

 
4.2  Properties of the improved ratio estimator 
 

To show theoretically that the improved ratio estimator *ˆ
RY  is more efficient than the classical ratio 

estimator ˆ ,RY  we need the following regularity conditions: 

Condition C.3. = ,lim n
N N c  where  0, 1c   is a constant. 

Condition C.4.    1= ,max i j k U ijk ij k O n   
     and  

    24 6 3 = .max ijkl ijk l ij k l i j k l
i j k l U

O n          
   

     

Condition C.3 is a common condition. The same condition is used in Breidt and Opsomer (2000). 

Condition C.4 is a mild assumption on the third-order and fourth-order inclusion probabilities. In 

Appendix A.5, we present some frequent examples which satisfy Condition C.4. 

Comparing our improved estimators with the classical estimators, we have the following result. 
 

Theorem 4. If Conditions C.1-C.4 are satisfied, and 1 2kc z c   for all k U  with 1c  and 2c  some 

positive constants, then  

      * 1ˆ ˆ .MSE R MSE R o n     

Furthermore,  

       1 * 1 1ˆ ˆ .R RMSE N Y MSE N Y o n      
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Proof. See Appendix A.4. 

Like Theorem 3, Theorem 4 shows that the proposed method improves the classical ratio estimators with 

a tolerance of order  1 .o n   

 
5  Numerical studies 
 

In this section, we assess the empirical performance of our IHT estimator using three synthetic examples 

and one real example. We consider the following two cases: the estimation of a population total and the 

estimation of a population ratio, where our IHT estimators are compared with the HT estimator. We measure 

the efficiency improvement in terms of 
HT IHT

HT

MSE MSE

MSERe = 100%,   where HTMSE  and IHTMSE  denote 

the MSE of the HT estimators and IHT estimators, respectively. We additionally compare the IHT estimator 

with the HT estimator in the sense of inference performance in the real example. 

 

5.1  Simulations 
 

Example 1: An illustrative example 

We generate a finite population Y  of size = 3,000,N  where the thk  unit value 0=k ky y  and 

 0 0, 1 .ky N  Our aim is to estimate the population mean 1= .kN U
Y y  We perform Poisson sampling 

according to the inclusion probabilities set as follows  

 1 1,000 1,001 2,000 2,001 3,000= = = 0.2, = = = 0.001, and = = = 0.08.          

In this example, the HT estimator is not efficient since one third of the inclusion probabilities are 0.001, tiny 

relative to 0.08 or 0.2. From our hard-threshold strategy, we replace these tiny probabilities with 0.08, so 

the modified inclusion probabilities are given by  

 * * * * * *
1 1,000 1,001 2,000 2,001 3,000= = = 0.2, = = = 0.08, and = = = 0.08.          

Note that the modified probabilities are not obtained according to Algorithm 1. It is an illustrative example 

to show that our hard-threshold can bring efficiency improvement. By setting the iteration time = 2,000,M  

we get the simulated biases, variances and MSEs of our IHT estimator and the HT estimator. The results 

are shown in Table 5.1. 

 
Table 5.1 
Performance of Example 1 
 

HTMSE  IHTMSE  HTBias  IHTBias   HTVar  IHTVar  Re   

0.1187  0.0751  5.374 610   0.0723  0.1187  0.0029  36.71%  

 
From the table, the variance of the HT estimator is much larger than that of the IHT estimator, so it loses 

its efficiency in terms of MSE compared to the IHT estimator although the HT estimator is unbiased. 

Furthermore, in order to show the variations of both estimators, we plot their values among 2,000 iterations 
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in Figure 5.1. It clearly displays that, although there is small bias for the IHT estimator, its variation is much 

less than that of the HT estimator. These observations empirically verify our theoretical results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  The plots of both estimators in Example 1. 
 

Example 2: ’si  depend on an auxiliary variable 

We generate the finite population Y  of size = 3,000N  as follows: = 3k ky x    
23 3 ,ke   where kx  and ke  are independently generated from  0, 2U  and  0, 1N  respectively, 

and 0 1   controling the correlation of Y  and .X  We consider three sampling methods: Poisson 

sampling, PPS sampling and PS  sampling. The sampling fraction = =n
Nf  0.02, 0.04, 0.06, 0.08, 0.10, 

0.15, 0.20, 0.30. We report the results in Figure 5.2, where =  0.8, and list the specific Re values of 

Figure 5.2 in Table 5.4. 

From these results, we get the same observations as Example 1. It indicates that our IHT estimator 

outperforms the HT estimator in terms of MSE and that the improvement is generally substantial. 

Comparing with Figures 5.2(a), 5.2(b), and 5.2(c), PS  sampling obtains the biggest advantage of the IHT 

estimator over the HT estimator, followed by PPS sampling and Poisson sampling. We also show the results 

for different   values under PS  sampling in Table 5.2, where the case of =f  0.08 is reported and other 

cases are ignored because of the similarity. It is observed from the table that, no matter what value   takes, 

the IHT estimator has uniformly much less MSE than the HT estimator.  
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Table 5.2 
The performance of Example 2 for different   values, where = 0.08f  
 

  HTMSE  IHTMSE  HTBias  IHTBias  HTVar  IHTVar  Re  

0 3.45 210  1.36 210  3.43 510  5.82 410  3.45 210  1.30 210  60.70% 
0.1 2.51 210  1.38 210  1.16 510  8.25 410  2.51 210  1.30 210  44.91% 
0.3 2.43 210  1.24 210  4.65 610  8.86 410  2.43 210  1.15 210  48.97% 
0.5 2.38 210  1.07 210  9.83 610  8.44 410  2.38 210  9.88 310  54.92% 
0.8 9.38 310  5.22 310  3.04 710  3.16 410  9.38 310  4.91 310  44.33% 
0.9 4.75 310  2.65 310  7.98 610  2.64 410  4.74 310  2.38 310  44.27% 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The performance of our IHT estimator and the HT estimator in Example 2, where = 0.8.  From 

left to right: the MSE performance, the squared-bias performance, and the variance performance. 

 

0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3                      0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3                      0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3 

   
   

   
   

   
   

  M
SE

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

M
SE

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 M
SE

 
 0

.0
0 

   
  0

.0
1 

   
 0

.0
2 

   
  0

.0
3 

   
  0

.0
4 

   
   

   
   

   
   

   
   

   
   

   
   

0.
00

   
   

   
0.

01
   

   
 0

.0
2 

   
   

   
0.

03
   

   
 0

.0
4 

   
   

   
   

   
   

   
   

  0
.0

0 
   

 0
.0

2 
  0

.0
4 

   
0.

06
   

 0
.0

8 
   

0.
10

  
         HT                                                                                                                                         HT                                                                                                                                          HT 
         Improved HT                                                                                                                       Improved HT                                                                                                                      Improved HT

(a) Poisson sampling 

(b) PPS sampling 

(c) PS sampling 

   
   

   
   

   
S

qu
ar

ed
 b

ia
s 

   
   

   
   

   
   

   
   

   
   

   
   

   
 S

qu
ar

ed
 b

ia
s 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

S
qu

ar
ed

 b
ia

s 
 0

.0
0 

   
  0

.0
1 

   
 0

.0
2 

   
  0

.0
3 

   
  0

.0
4 

   
   

   
   

   
   

   
   

   
   

   
   

0.
00

   
   

   
0.

01
   

   
 0

.0
2 

   
   

   
0.

03
   

   
 0

.0
4 

   
   

   
   

   
   

   
   

  0
.0

0 
   

 0
.0

2 
  0

.0
4 

   
0.

06
   

 0
.0

8 
   

0.
10

 

   
   

   
   

   
 V

ar
ia

nc
e 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  V
ar

ia
nc

e 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

V
ar

ia
nc

e 
 0

.0
0 

   
  0

.0
1 

   
 0

.0
2 

   
  0

.0
3 

   
  0

.0
4 

   
   

   
   

   
   

   
   

   
   

   
   

0.
00

   
   

   
0.

01
   

   
 0

.0
2 

   
   

   
0.

03
   

   
 0

.0
4 

   
   

   
   

   
   

   
   

  0
.0

0 
   

 0
.0

2 
  0

.0
4 

   
0.

06
   

 0
.0

8 
   

0.
10

 

 

         HT                                                                                                                                         HT                                                                                                                                          HT 
         Improved HT                                                                                                                       Improved HT                                                                                                                       Improved HT

 
          HT                                                                                                                                         HT                                                                                                                                          HT 
          Improved HT                                                                                                                       Improved HT                                                                                                                       Improved HT 

0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3                      0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3                      0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3 

0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3                      0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3                      0.02    0.04   0.06    0.08    0.1     0.15    0.2     0.3 



174 Zong, Zhu and Zou: Improved Horvitz-Thompson estimator in survey sampling 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Example 2 (continued): The performance of Algorithm 1 and the effect of the outcome’s coefficient 

of variation 
 

Here we empirically investigate the performance of Algorithm 1 and the effect of the outcome’s 

coefficient of variation on our IHT estimator. We generate a finite population through a linear model with 

an intercept: 2= 3 3 3 ,k k ky x e         where kx  and ke  are the same as Example 2. We 

set = 1,000,N  and control the coefficient of variation of the outcome by varying the intercept term 

 = 10, 5, 0, 5, 10 .   Firstly, we study the performance of Algorithm 1. Note that the optimal choice 

optK  can be derived via minimizing equation (3.1). We compare the MSE values based on optK  and *K  

from Algorithm 1, and report the results of =f  0.03 in Table 5.3 and ignore other cases because of the 

similarity. From the table, the MSE values based on *K  are very close to those based on opt .K  It indicates 

that Algorithm 1 provides an efficient choice of .K  Secondly, we investigate the effect of the outcome’s 

coefficient of variation. From the table, the IHT estimator always performs much better than the HT 

estimator when   takes different values. It indicates that our IHT is robust to the outcome’s coefficient of 

variation. 

 
Table 5.3 
Performance of Algorithm 1, where = 0.03f  
 

  Y  *K  optK  HTMSE  *MSE
K

 optMSE  Re  

-10 -7.80 125 166 3.3928 1.4130 1.3448 58.35% 
-5 -2.81 125 174 0.7097 0.3073 0.2907 56.70% 
0 2.19 125 164 0.0623 0.0245 0.0237 60.67% 
5 7.20 125 160 1.4056 0.5884 0.5647 58.14% 

10 12.24 125 159 4.7510 1.9916 1.9121 58.08% 

 
Example 3: The estimation of population ratio 

We generate two populations Y  and Z  of size = 3,000:N 2
1 1 1= 12 3 3 ,k ky x e       and 

2
2 2 2= 12 3 3 ,k kz x e       where  0, 1 ,kx U  1 0, 1e N  and  2 0, 1 .e N  Our aim 

is to estimate the ratio = ,y zR t t  where 
=1

=
N

y kk
t y  and 

=1
= .

N

z kk
t z  We set  1 2,   as (0.3, 0.4) 

or (0.7, 0.8), and report the results of two cases in Figures 5.3(a) and 5.3(b), respectively. Similar to the 

estimation of the population total in examples given above, Figure 5.3 shows that our improved estimator 

outperforms the classical estimator. We also list the specific Re values of Figure 5.3 in Table 5.4, where the 

MSEs decrease by 27% to 47%. 

 
Table 5.4 
Some specific Re  values of Figures 5.2 and 5.3 
 

f  0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.30 
Figure 5.2(a) 12.73% 25.33% 45.52% 54.71% 18.15% 30.94% 18.96% 21.99% 
Figure 5.2(b) 57.92% 49.78% 49.48% 40.52% 33.81% 57.44% 36.45% 48.70% 
Figure 5.2(c) 58.98% 54.41% 70.42% 53.75% 36.05% 48.72% 52.05% 57.65% 
Figure 5.3(a) 35.09% 27.92% 35.16% 28.09% 31.50% 28.00% 29.07% 36.31% 
Figure 5.3(b) 38.57% 47.18% 42.76% 39.27% 37.49% 46.20% 44.14% 39.55% 



Survey Methodology, 2019 (special issue) 175 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Performance of Example 3. From left to right: the MSE performance, the squared-bias 
performance, and the variance performance. 

 
5.2  Real example 
 

We investigate the data set “Lucy” in the R package “TeachingSampling” (Gutierrez, 2009). This data 

set includes the variables of 2,396 firms: ID, Level, Income, Employees, and Taxes. Our aim is to estimate 

the Employees mean Y  of the 2,300 small or mid-sized firms  = 60.59 .Y  We set the Income as the size 

of the firm, and perform PS  sampling. The sample size n  is set among {46, 92, 138, 184, 230, 345, 460, 

690}. We list the results in Table 5.5, where the bias, variance, MSE and Re values are reported. We also 

present the number *K  chosen by Algorithm 1. From Table 5.5, our IHT estimator has much better 

performance than the HT estimator in terms of MSE. As the sampling fraction f  increases, the value of 
*K  decreases. It means that the number of the modified inclusion probabilities decreases as the sampling 

fraction increases. This makes sense since the effect of the small inclusion probabilities becomes weak when 

the sample size increases.  

In this real example, we additionally compare the IHT estimator with the HT estimator in the sense of 

inference performance. Since the squared bias of the IHT estimator is negligible as shown in Theorem 2, 

the confidence region with 95% coverage is constructed as follow:  

   ˆ ˆ1.96 MSE, 1.96 MSE ,t t   (5.1) 

where t̂  is the IHT estimator, and MSE  is its MSE estimator. 
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Table 5.5 
The performance of estimation for the real data set “Lucy” 
 

n  46 92 138 184 230 345 460 690 

HTMSE  42.60 20.80 26.87 9.30 6.97 8.01 6.40 2.99 

IHTMSE  28.27 14.05 10.18 7.75 5.70 3.77 2.85 1.76 

HTBias  0.0092 0.0002 0.0004 0.0020 0.0041 0.0001 0.0005 0.0112 

IHTBias  0.7520 0.3375 0.2562 0.1093 0.1253 0.0831 0.0539 0.0626 

HTVar  42.59 20.80 26.87 9.30 6.97 8.01 6.40 2.97 

IHTVar  27.52 13.71 9.92 7.64 5.57 3.68 2.79 1.70 

Re   33.64% 32.46% 62.13% 16.75% 18.31% 53.01% 55.49% 41.09% 

*K  166 100 72 59 49 36 29 21 

 
We iteratively simulate = 5,000M  times and calculate the mean and variance of MSE estimator, and 

the 95% coverage probabilities. The coverage probabilities (CP) are calculated as CP =  

  1
=1

M

mM m
I t A  where t  is the finite population mean and  mA  is the constructed 95% confidence 

region of the thm  iteration using equation (5.1). The inference performance is reported in Table 5.6. From 

the table, we have two observations. Firstly, our IHT estimator has smaller MSE than the HT estimator, but 

it attains almost the same coverage as the HT estimator. Thus, much narrower confidence intervals of the 

IHT estimator are constructed than those of the HT estimator. Secondly, for the HT estimator, the MSE 

estimator is much unstable due to the high heterogeneousness of the inclusion probabilities, while our IHT 

can efficiently overcome this problem. As a summary, our IHT estimator not only increases the estimation 

accuracy much at the expense of bringing a negligible bias, but also brings much more stable MSE estimator 

than the HT estimator. 

 
Table 5.6 
The inference performance of “Lucy” data set 
 

f  HT  IHT  

MSE   E MSE   Var MSE CP  MSE   E MSE   Var MSE  CP  
0.02 219 76.1 8.28 410  91% 48.9 48.4 1.37 310  90% 
0.04 109 173 2.90 710  92% 26.9 26.9 196 92% 
0.06 72.7 118 9.11 610  91% 18.4 18.2 117 91% 
0.08 54.3 67.5 1.94 610  93% 14.2 14.1 37.9 92% 
0.10 43.2 59.5 1.46 610  93% 11.4 11.2 22.8 93% 
0.15 28.5 27.2 2.40 510  93% 7.47 7.40 17.1 93% 

 
6  Concluding remarks 
 

In this paper, we have proposed a novel and simple method to improve the Horvitz-Thompson estimator 

in survey sampling. Compared with the HT estimator, the proposed IHT estimator improves the estimation 

accuracy at the expense of introducing a small bias. Empirical studies show that the improvement is 
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substantial. This new idea has also been used to construct an improved ratio estimator. Naturally, applying 

it to other estimators, such as the regression estimator and the treatment effect estimator, is of interest as 

well, and this warrants further study. 

The choice of the threshold K  is important in our method. Although we have suggested an easy 

algorithm for the choice and have numerically showed that our choice is very close to the optimal one in 

terms of MSE, it may not be optimal in terms of MSE. How to choose an optimal threshold is a meaningful 

topic for future research. 
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Appendix 
 
A.1  Proof of Theorem 1 
 

To obtain the MSE of the IHT estimator, we first define = 1kI  or 0, = 1, , ,k N  if the thk  unit is 

drawn or not, then  

                                        = , Var = , Cov , = for ,k k k kk k l klE I I I I k l      

where  = 1 , = .kk k k kl kl k l         So the bias of the IHT estimator is  

                              
 

2
IHT *

ˆBias = = 1 .k k
k k kU U U

k K

y
t E I y y


 


      

    (A.1) 

The variance of the IHT estimator is given by  
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(A.2)

 



178 Zong, Zhu and Zou: Improved Horvitz-Thompson estimator in survey sampling 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Combining (A.1) and (A.2), we obtain  

                

     

 

 

2
IHT IHT IHT
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2
*2 * *2
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*2 * *2
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ˆ ˆ ˆMSE = Bias Var
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(A.3)

 

It is directly verified that      IHT IHT
ˆ ˆMSE = MSE .E t t  Therefore, Theorem 1 is proved. 

 

A.2  Proof of Theorem 2 
 

Using Conditions C.1 and C.2, we see that   1k K      for each 2 ,k U  and 

 
2

1= .max k l U kl k l O n   
    Then, from equation (2.1), we have  
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Similarly, by the MSE of the IHT estimator given in (3.1), we observe  
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From Conditions C.1 and C.2, it is readily seen that  

  
   

 
2 2 2

1
IHT

1 1 1ˆBias = 1 1 = ,k k
k k kU U U

K K

K
t y y y O n

N N K N

 
 




    
 

     

where the third and fourth steps are valid due to   1k K      for each 2k U  and  1= ,K N O n   

respectively. 
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A.3  Proof of Theorem 3 
 

From equation (2.1), since the HT estimator is unbiased, we have  

  
1 2

2 2
HT 3 42 2

ˆMSE = .kk kk kl
k k k lU U U

k lk k k l

Y y y y y F F
   

   
   

 
     (A.4) 

To illustrate the effectiveness of the new estimator, we compare equation (A.3) and equation (A.4). We 

prove 3 1F F  at first. It is clear that  
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Using the Cauchy-Schwarz inequality, we have  
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where the strict inequality holds if there exist 2k l U   such that       .k k l lK Ky y       

Further,  
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From Definition 1, we have     11k K K      for each 2 ,k U  thus 0.D E   So 

3 1 = 0F F D C D E      holds. 

For the terms 2F  and 4 ,F  we note that  
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Using Conditions C.1 and C.2, it is seen that  
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where the third and fourth steps are valid due to   1k K      for each 2 ,k U  1= ,K N O n   and 
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and  3
2

2= .N O n   

Thus, together with 3 1 ,F F  we have  

                                                      1 1 1
IHT HT

ˆ ˆMSE MSE .N t N t o n      

For the Poisson sampling case, we have 4 2= = 0.F F  Hence, for Poisson sampling, we obtain  

                                                    1 1
IHT HT

ˆ ˆMSE MSE .N t N t    

 

A.4  Proof of Theorem 4 
 

First note that  
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      2 2
2 * 2 1ˆ ˆ .u u u uN E t t N E t t o n        

Thus, for the terms I and II, we get  

      1I II .E E o n    (A.6) 

Now, we need to prove that the expectations of III and IV are negligible. Observe that,  
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Using Theorem 2 and Lemma 1, we see that  3 2(III) =E O n   and    3 2IV = .E O n   

Combining these and equation (A.6), we get  

      * 1ˆ ˆMSE MSE .R R o n     

It implies that      1 * 1 1ˆ ˆMSE MSE .R RN Y N Y o n     

 
A.5  Discussion on Condition C.4 
 

Case 1: Simple random sampling without replacement 

Under the simple random sampling without replacement, we have that = n
i N  for ,i U  
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where the last equality is from Condition C.3. We also obtain  
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where the last equality is from Condition C.3. Thus, Condition C.4 holds under the simple random sampling 

without replacement. 
 

Case 2: Poisson sampling 

From the independence of Poisson sampling, =ij i j    for ,i j U  =ijk i j k     for 

,i j k U    and =ijkl i j k l      for .i j k l U     Hence, = 0,ijk ij k    and ijkl   

4 6 3 = 0.ijk l ij k l i j k l           It follows that Poisson sampling satisfies Condition C.4. 

 

A.6  A lemma for proving Theorem 4 
 

Lemma 1. For the HT estimator ĤTt  and the IHT estimator ˆ ,IHTt  under the Conditions C.1-C.4, we have  
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For the first term I, using 1k    and 1k kI    for any ,k U  we get  
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For the terms II and III, we have  
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where the last step is from Conditions C.1 and C.4. It implies that    2IV = .E O n   For the last term V, 

we have that  
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where the last step is from Conditions C.1 and C.4. Thus,    
4

2
HT

ˆ =E t t O n   holds. 

Next we shall prove    
4

2
IHT

ˆ = .E t t O n   Noting that  
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we have  

            
4 4 4 3 2 2 3 4

IHT
ˆ = = 4 6 4 .E t t E A E A E A E A E A            (A.7) 

Similar as the proofs of the result    
4

2
HT

ˆ = ,E t t O n   using * 1,k    it is easy to obtain  
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  (A.8) 

From equation (A.8), we have that    2 1=E A O n   and    3 3 2= .E A O n   Meanwhile   = 0E A  and  
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Therefore, from equation (A.7), we prove that    
4

2
IHT

ˆ = .E t t O n   
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