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Weighted censored quantile regression 

Chithran Vasudevan, Asokan Mulayath Variyath and Zhaozhi Fan1 

Abstract 

In this paper, we make use of auxiliary information to improve the efficiency of the estimates of the censored 
quantile regression parameters. Utilizing the information available from previous studies, we computed empirical 
likelihood probabilities as weights and proposed weighted censored quantile regression. Theoretical properties 
of the proposed method are derived. Our simulation studies shown that our proposed method has advantages 
compared to standard censored quantile regression. 

 
Key Words: Empirical Likelihood; Right censoring; Kaplan-Meier Estimator. 

 
 

1  Introduction 
 

In quantile regression (Koenker, 2005), the conditional quantiles of the response variable for a given set 

of predictor variables are modelled. The regression parameters are estimated by minimizing a check loss 

function at a specific quantile, ,  instead of the square loss function as in the standard linear regression. A 

quantile regression model based on properly selected quantiles could provide a global assessment of the 

covariate effects on the response, which is often ignored by the standard linear regression model. Recently, 

censored quantile regression has been studied extensively. Powell (1984) introduced the least absolute 

deviation (LAD) estimator, also called the median regression model for the left censored survival data, using 

the censored Tobit model (Tobin, 1958). Powell (1986) generalized the LAD estimation to any quantile.  

Portnoy (2003) introduced a censored quantile regression model under random censoring as a 

generalization of the Kaplan-Meier estimator recursively using the Kaplan-Meier estimator (Kaplan and 

Meier, 1958). Peng and Huang (2008) developed a censored quantile regression model based on the Nelson-

Aalen estimator using counting processes and martingale theory. In survival analysis setup, for the thi  

 1, 2, ,i n   subject, let iT  be the logarithm of the failure time, iC  the logarithm of right censoring 

time, iX  the p -vector covariate and let  min ,i i iY T C  be the logarithm of the survival time. For a 

given quantile, ,  the regression coefficients,   ,β  can be estimated as  

     
1

ˆ arg min min , ,
p

n

i i i
i

Y C


 
 

 β X β
R

Τ  (1.1) 

where     0 ,u u u     is the check loss function. 

In many studies, we may have some information about the target population from previous studies. This 

is common in survey sampling since surveys are carried out repeatedly with similar objectives. For example, 

in survey sampling, information about the population mean and variance could be available from previous 

surveys or records. The information of the parameters as well as type of relationship, distributional 
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assumptions, etc. also could be considered as auxiliary information available for analysis. The auxiliary 

information could be effectively used to improve the efficiency of the statistical inference (Kuk and Mak, 

1989; Rao, Kovar and Mantel, 1990; Chen and Qin, 1993). The idea used in this paper can be easily 

extendable in survey sampling to arrive efficient parameter estimates by making use of the information 

available from previous surveys. 

Consider a known relationship between the survival time, Y  (or the failure time, )T  and a set of 

covariates ,X  as  ; ,Y f X θ  where θ  is the parameter of interest. The knowledge about this 

relationship can be treated as auxiliary information. In a more general case, the auxiliary information can 

be expressed as   ; 0E g Z θ  for some d -dimensional parameter, ,dRθ  where Z  is the observed 

data from the present study and  ; ,qg RZ θ  some function with .q d  The parameter, θ  could be 

unknown, but can be estimated using the information available from previous studies.  

Chen and Qin (1993) introduced the use of auxiliary information to improve the efficiency of estimators 

in the context of survey sampling using empirical likelihood (Owen, 1988, 2001). Li and Wang (2003) 

accommodated the auxiliary information to the censored linear regression model using empirical likelihood 

by defining a synthetic variable (Koul, Susarla and Ryzin, 1981). Fang, Li, Lu and Qin (2013) proposed the 

effective use of auxiliary information in the linear regression model with right censored data using empirical 

likelihood, by utilizing the Buckley-James (Buckley and James, 1979) estimating equation. Tang and Leng 

(2012) introduced an empirical likelihood based linear quantile regression model using auxiliary 

information.  

In this paper, we propose an empirical likelihood (EL) based approach to accommodate auxiliary 

information to the censored quantile regression. EL is a non-parametric likelihood approach proposed by 

Owen (1988, 2001), which has similar properties of parametric likelihood. We utilize the EL based data 

driven probabilities as the weights by using the estimating function,  ;g Z θ  and incorporate those weights 

into the censored quantile regression model. The resulted weighted censored quantile regression parameter 

    can be estimated as 

     
1

ˆ arg min min , ,
p

n

i i i i
i

Y C


  
 

 β X β
R

Τ  (1.2) 

where ’si  are the weights. We propose to use the EL based data driven probabilities as the weights. Our 

simulation results show that the EL based weighted censored quantile regression performs more efficiently 

than the standard linear censored quantile regression. 

The rest of the paper is organized as follows. In Section 2, we present the estimation procedure of the 

EL based data driven probabilities. In Section 3, we introduce the EL based weighted censored quantile 

regression and investigate the asymptotic properties of the estimators. In Section 4, performance analysis of 

the proposed method is conducted using the simulations. The application to the north central cancer 

treatment lung cancer data is also presented as an illustration. Our conclusions are given in Section 5. 
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2  Estimation of weights using empirical likelihood 
 

We develop a method that converts the auxiliary information to the EL based data driven probabilities, 

which are further used in the weighted censored quantile regression as the weights. Qin and Lawless (1994) 

developed the EL approach based on a set of estimating equations. Let   1

n
i iZ  be the observed data and the 

available auxiliary information is represented by the estimating function  ;ig Z θ  with parameter, θ  which 

is known. Then, the maximum empirical likelihood is given by 

     EL
1 1 1

sup : 0, 1, ; 0 ,
n n n

i i i i i
i i i

L P P P P g
  

     θ Z θ  (2.1) 

where  Pri i iP Z z   and θ  is the parameter in the auxiliary information which can be assumed to be 

known. The parameter, θ  could be any parametric information available from the previous studies which 

has an influence on the model parameter,   .β  For a given  ; ,ig Z θ θ  should satisfy   ; 0iE g Z θ  

to avoid the non-existence of solutions due to convex hull issues. This is the scenario for when zero is not 

an inner point of the convex hull of the  ; , 1, 2, , ,ig i nZ θ   which will fail to provide positive ’s.iP  

For a given value of 0 ,θ θ  using the Lagrange multiplier method,  EL 0L θ  attains its maximum at  

  
  

0

0

0

1
, 1, 2, , .

1 ;i

i

P i n
n g

 


θ
Z θ


Τ

 (2.2) 

The Lagrange multiplier, 
0

  is the solution to the equation 

 
 

  
0

0

1 0

;
0.

1 ;

n
i

i i

g

n g



Z θ

Z θΤ
  

The estimated  ’siP   are used as the weights  i  in (1.2) for the weighted censored quantile 

regression. In some cases, θ  may not be available and in such situations, we can use an estimate of ,θ  say 
ˆ

Aθ  obtained from previous studies. Chen and Qin (1993) showed that for a random sample, ,iY  and  ’siP   

are estimated using (2.2),    
1

n

n i ii
F y P Y y


    has smaller variance than the empirical distribution 

function,    1
1

ˆ .
n

n in i
F y Y y


    As a result, with Bahadur representation (Bahadur, 1966), for a given 

 0 1 ,    the quantile estimate,  1
nF   has smaller variance than  1ˆ

nF   (See Kuk and Mak, 1989; 

Rao et al., 1990). Hence our proposed method is expected to be more efficient than the ordinary censored 

quantile regression. 

 
3  Estimation of weighted censored quantile regression parameters 
 

Define the distribution function of iT  conditional on the p -vector covariate, iX  as  
iT iF t X  

 Pr .i iT t X  Let         log 1 Pr , , 1 ,
iT i i i i i it T t N t Y t        X X   and  iM t   

    .
ii T i iN t t Y   X  Here  

iT i  X  is the cumulative hazard function conditional on  ,i iN tX  is 

the counting process and  iM t  is the martingale process associated with  iN t  (Fleming and Harrington, 

2011). We consider an extension of censored quantile regression estimation procedure proposed by Peng 

and Huang (2008), incorporating the ’siP  as known weights arrived based on the auxiliary information 
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available through the known parameter .  Note that   and  β  are distinct parameters and estimating 

function  :g z   used for computing ’siP  are different from the estimating functions used for quantile 

regression parameters in (1.1). Since ’siP  are independent of   ,    i i iE P M t X 0  (by the 

martingale property) for 0,t   we have  

        0 0

1

,i i

n

i i i T i i
i

E n P N e e Y 



    X β X βX X 0Τ Τ  (3.1) 

where  0 β  denotes the true   ,β  in (1.2) for a given quantile, .  

Since   , 1, 2, ,
iT i i n  X   are unknown functions, Peng and Huang (2008) derived the 

relationship between   0i
T i ie Y X β XΤ  and  0 β  to use (3.1) to estimate  0 .β  Using the fact that 

  0i u
iF e X β XF

Τ  and utilizing the monotonicity of  0
T
iX    in ,  they showed that 

       0

0
,i i u

T i i ie Y Y e dH u


   X β X βX Τ Τ  where    log 1H u u    for 0 1.u   

So, our weighted censored quantile regression estimating equation is 

  , ,nn S  β 0  (3.2) 

where  

           0
1

, .i i

n
u

n i i i i
i

S P e Y e dH u





   X β X ββ X Τ Τ   

Here ’siP  are defined in (2.2). Let     , ,ns E S β β  and the martingale property of    gives 

 0 , .s  β 0  For a particular quantile, k  and an estimator of    0
ˆ,k k β β  is a right-continuous step 

function which jumps only on a grid,  0 10 1 .L L U           Here L  depends on the 

sample size, .n  The size of L  is defined as  1max .L k kk
     

For different quantiles,  0 1 0 1, , , 0 1 ,L L            based on (3.2), we can obtain 

   ˆ 1, 2, ,k k L β   by recursively solving the following monotone estimating equation for   :kβ  

            1
ˆ

1
1 0

.k ri i

n k

i i i i r r
i r

n P e Y e H H   



 

    X β X βX 0Τ Τ  (3.3) 

We define the estimators,  ˆ
kβ  as the generalized solutions (Fygenson and Ritov, 1994) because equation 

(3.3) is not continuous and the solution may not be unique.  

 
3.1  Asymptotic theory 
 

We derived the asymptotic properties of the EL based weighted censored quantile regression estimators 

using the approach of Peng and Huang (2008). Now we prove the uniform consistency and weak Gaussian 

convergence of the proposed weighted censored quantile regression estimator,  ˆ .β  

Define    Pr ,F t Y t X X    Pr ,F t Y t X X    Pr , 1 ,F t Y t   X X  f y X  

   f y dF y dy  X X  and     .f y dF y dyX X   (For a vector ,h  2 th, lTh hh h l    

component of ,h h  is the Euclidean norm of .)h  
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Define  
0 0; ,i i igW Z θ XΤ 1, 2, ,i n   as a p -vector. 

 

Regularity conditions: 
 

R.1:  The observations, , 1, 2, ,i i nZ   are iid observations from some distribution. Without 

loss of generality, we assume that  , ,i i i iY  X ZΤΤ  for all 1, 2, , .i n   

R.2:  There exists 0θ  such that   0; 0,iE g Z θ  the matrix       0 0 0; ;i iE g gΣ θ Z θ Z θ Τ  

is positive definite,  ;g

z θ
θ  is continuous in the neighborhood of 0 .θ  The matrix   ;gE 


Z θ
θ  

is of full rank. 

R.3:  There exist functions  ljH z  such that for θ  in the neighborhood of 0 ,θ    ; ,l

j

g
ljH


 z θ z  

where for a constant   2, ljC E H C  Z  for 1, ,l q   and 1, , .j d   

R.4:  sup i
i

 X  and sup .i i
i

 X Y  

R.5: (a) Each component of    0E e X βX Τ  is a Lipschitz function of .  

 (b)  f t x  and  f t x  are bounded above uniformly in t  and .x  

R.6: (a)   0f e X b X Τ  for all 0( ),db B  where  
 

     00,
: inf

U

pd d
 




   b μ b μ βB R  

for 0,d   and      ,E e X bμ b X Τ  is a neighbourhood containing 

    0 , 0, .U  β  

 (b) To have the positive definiteness,  2 0.E  X  

 (c) Each component of       1
2 2E f e e E f e e


    X b X b X b X bX X X XΤ Τ Τ Τ  is 

uniformly bounded in    0 0; .d db B B  

R.7:  For any  
 ,

0, , inf
U

U v
v

 



  eigmin     0 02 0,E f e e    X β X βX X Τ Τ  where eigmin    

denotes the minimum eigenvalue of a matrix. 
 

Theorem 1. Assuming that the regularity conditions R.1-R.7 hold, if lim 0,Ln
  then 

 
   0

,

ˆsup 0,
U

p
v 

 


 β β  where 0 .Uv    
 

Theorem 2. Assuming that the regularity conditions R.1-R.7 hold, if 1 2lim 0,Ln
n


  then 

    1 2
0

ˆn  β β  weakly converges to a zero-mean Gaussian process for  , ,Uv   where 

0 .Uv    
 

To prove Theorems 1 and 2, we need to show that    
0 01

max ; 1 .i pi n
g o 

Z θΤ  We consider two 

different types of  ; .ig Z θ  First,  ;ig Z θ  does not contain the censored observations, as given in (4.1). 

The second,  ; ,ig Z θ  contains the censored observations, as given in (4.5). 

In the case of uncensored observations, by Owen (1991) and Lemma 11.2 of Owen (2001), we have 

   01
max ; .i pi n

g o n
 

Z θ  By Lemma 1 of Tang and Leng (2012), we have under the regularity 

conditions R.2, R.3; the 
0

  in (2.2) satisfies  
0

1 .p n
O   So, 

      
0 01

1
max ; 1 .i p p pi n

g O o n o
n 

  
 

Z θΤ  (3.4) 
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Under the condition R.4; Qin and Jing (2001) proved    
0 01

max ; 1i pi n
g o 

Z θΤ  for the  g   with 

censored observations. 

Now following Owen (2001), using Taylor’s series expansion of the weights, ’siP  defined in (2.2) can 

be rewritten as,  

              

 
  

    

 

0

0

0

0

0

0

0

1

1 ;

1
1 ; 1 1

1 1
1 ; ; 1, 2, , .

i

i

i p

i p

P
n g

g o
n

g o i n
n n
















    

         

θ
Z θ

Z θ

Z θ 

Τ

Τ

Τ

  

Now we rewrite the  ,nS β  as 

 

            
        

          
        

0

0

0 0
1

0
1

0 0
1

0
1

1 1
, 1 ;

1

1 1
;

1

1

i i

i i

i i

i i

n
u

n i i i i p
i

n
u

i i i
i

n
u

i i i i p
i

n
u

i i i
i

i i

S g e Y e dH u o
n n

e Y e dH u
n

g e Y e dH u o
n n

e Y e dH u
n

n

















 











          

  

     
 

  



 

 

 

 

X β X β

X β X β

X β X β

X β X β

β Z θ X

X

Z θ X

X

W









Τ Τ

Τ Τ

Τ Τ

Τ Τ

Τ

Τ









         0
1

1
.i i

n
u

i p
i

e Y e dH u o
n






    
 

 X β X βΤ Τ

  

Asymptotically, by (3.4) we have  1 ; 1, 2, , .i po i n W   So,  

                       0
1

1 1
, .i i

n
u

n i i i p
i

S e Y e dH u o
n n






     
 

 X β X ββ X Τ Τ   

Asymptotically this estimating function,  ,nS β  is equivalent to that in Peng and Huang (2008). 

Following the similar arguments of Peng and Huang (2008), we complete the proofs of Theorems 1 and 2. 

As indicated in Peng and Huang (2008), the estimation of asymptotic variance of the quantile regression 

estimates is not easy since the covariance matrix of the limiting process of     0
ˆn      involves 

unknown density function  f y X  and   .f y X  Instead of using a smoothing or other numerical 

approximations, we suggest a simple bootstrap approach to estimate the standard errors of the regression 

estimates. This approach is used in our performance analysis discussed in next section. 
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4  Performance analysis 
 

We conduct extensive simulation studies to compare the performance between our proposed EL based 

weighted censored quantile regression estimator and the standard censored quantile regression estimator. 

For our simulation, we use the models discussed in Tang and Leng (2012).  

The simulation models used to generate the logarithmic event time  rT  and logarithmic censoring time 

 rC  for the thr  1, 2, ,r N   subject are given in Table 4.1 under four Cases (i)-(iv). 

 

Table 4.1 
Four simulation models to generate event and censoring times 
 

Cases Models Error Distribution 
(i) 

0 1 1 2 2 ,r r r rT x x u       

0 1 1 2 2 .r r r rC x x v       
 , 0, 1r ru v N~  

(ii) 
0 1 1 2 2 ,r r r rT x x u       

0 1 1 2 2 .r r r rC x x v       
 , 3r ru v t~  

(iii)  0 1 1 2 2 0 0 1 2 2 ,r r r r r rT x x x x u            

 0 1 1 2 2 0 0 1 2 2 .r r r r r rC x x x x v            
 , 0, 1r ru v N~  

(iv)  0 1 1 2 2 0 0 1 2 2 ,r r r r r rT x x x x u            

 0 1 1 2 2 0 0 1 2 2 .r r r r r rC x x x x v            
 , 3r ru v t~  

 
In Cases (i) and (ii), event times and censoring times are generated from the homoscedastic models and 

in Cases (iii) and (iv), we considered heteroscedastic models to examine the efficiency gain of our proposed 

method over the standard censored quantile regression. We set the parameter values as θ Τ  

   0, 1, 0.2 , 0.3, 0.1, 0.1  π Τ  and selected γ Τ  to maintain approximately 30% of the censoring 

proportion in each case. We generated explanatory variables from zero mean bivariate normal distribution 

with covariance,  

 
1 2

1 2

,

,

1
.

1

x x

x x





 
  
  

  

We considered two different ways to compute the EL based probability weights. In numerical study -I, we 

compute ’siP  based on the auxiliary information related to the failure time, ,iT  whereas in numerical study 

-II, ’siP  are computed using the observed survival time,  min , .i i iY T C  In numerical study -II, we 

employ the synthetic variable approach (Koul et al., 1981; Qin and Jing, 2001; Li and Wang, 2003) to 

compute the EL based data driven probability weights.  

 

4.1  Numerical study -I 
 

To compute ’s,iP  first we need to have a known population parameter, ,θ  or its estimate. We considered 

a linear relation between T  and  1 2,X XX  with slopes 1(  and 2 )  and intercept  0  as the auxiliary 

information. We estimated θ  using the standard linear regression (least square) based on a large, finite 
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population with size, N   10,000. We need to generate censoring times as well to compute the event 

indicator,  i i iT C    and survival time,  min ,i i iY T C  to estimate the censored quantile 

regression parameters. To fit the weighted censored quantile regression model given in (1.2), we generated 

another n  observations   1, n
i i iy x  with ,n N  using the same models given in Table 4.1. We considered 

the sample sizes, n   100 and 200 and three quantiles,    0.25, 0.50, 0.75. For our proposed method, we 

estimated ’siP  using the estimating function,  , ;i ig t x θ  defined based on the normal equations of the 

linear least squares method as,  

      ˆ; , ; , 1, 2, , .i i i i i i ig g t t i n   z θ x θ x x θ Τ  (4.1) 

For a given quantile, ,  the true value of the censored quantile regression parameters  0 β  are estimated 

from the population of size, N   10,000. In general, under a linear model assumption, the true value of the 

censored quantile regression slope parameters are the same as the θ  (i.e.,    1 1 2 2, ).        But 

for the intercept, it is    1
0 0 ,F      where F  is the error distribution. We conducted 1,000 

simulations and computed mean bias, standard error (SE) and 95% coverage probability (CP) of the model 

parameter estimates for different sample sizes using 250 bootstrap samples. We compared the performance 

of our proposed method (CQR-EL1) with the standard censored quantile regression (CQR) model. We 

present the simulation results in Tables 4.2 to 4.5 respectively for Cases (i)-(iv) with 
1 2, 0.x x   

 
Table 4.2 
Bias, SE and CP of regression parameters for Case (i) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL1 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0042 0.0170 0.0647 0.0027 0.0180 0.0771 

1  0.0029 0.0035 0.0094 -0.0014 -0.0048 0.0030 

2  -0.0049 -0.0141 -0.0100 -0.0047 -0.0124 -0.0171 

200 0  0.0218 0.0298 0.0501 0.0199 0.0322 0.0635 

1  0.0016 0.0026 0.0057 0.0008 0.0028 0.0048 

2  -0.0020 -0.0032 -0.0078 -0.0010 0.0001 -0.0071 

SE 100 0  0.1449 0.1404 0.2268 0.1103 0.1086 0.2110 

1  0.1533 0.1515 0.2141 0.1159 0.1109 0.2000 

2  0.1519 0.1525 0.2198 0.1149 0.1109 0.2082 

200 0  0.0973 0.0929 0.1292 0.0720 0.0703 0.1221 

1  0.1040 0.1029 0.1341 0.0746 0.0718 0.1173 

2  0.1041 0.1027 0.1354 0.0752 0.0717 0.1177 

CP 100 0  93.3 93.4 95.7 95.8 96.6 97.0 

1  94.7 95.8 96.5 95.1 96.2 97.9 

2  96.0 96.3 96.4 96.4 96.4 96.9 

200 0  92.3 91.9 92.7 92.7 92.5 94.8 

1  94.5 96.2 95.0 95.0 95.5 96.9 

2  93.6 95.0 95.2 94.2 94.9 95.8 
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Table 4.3 
Bias, SE and CP of regression parameters for Case (ii) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL1 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0105 0.0288 0.1088 0.0119 0.0270 0.1062 

1  0.0063 0.0214 0.0169 0.0005 0.0102 0.0066 

2  0.0164 0.0096 -0.0170 0.0152 0.0079 -0.0184 

200 0  0.0267 0.0355 0.0821 0.0276 0.0340 0.0760 

1  0.0006 -0.0032 0.0050 0.0042 0.0032 0.0024 

2  0.0112 0.0025 0.0051 0.0029 -0.0038 -0.0057 

SE 100 0  0.1871 0.1538 0.2980 0.1522 0.1304 0.2914 

1  0.1946 0.1664 0.2698 0.1555 0.1318 0.2480 

2  0.1955 0.1676 0.2733 0.1556 0.1327 0.2543 

200 0  0.1235 0.1029 0.1621 0.0998 0.0871 0.1556 

1  0.1301 0.1146 0.1663 0.1010 0.0893 0.1473 

2  0.1315 0.1149 0.1671 0.1023 0.0897 0.1465 

CP 100 0  95.5 93.1 94.7 96.2 94.8 97.2 

1  95.6 93.5 96.4 95.7 95.6 97.8 

2  95.9 95.4 96.4 96.0 95.0 97.2 

200 0  93.1 91.2 94.0 93.0 93.8 95.7 

1  95.0 95.5 95.4 94.8 95.5 96.2 

2  95.5 95.7 95.5 95.0 95.2 96.3 

 
 
Table 4.4 
Bias, SE and CP of regression parameters for Case (iii) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL1 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0062 0.0088 0.0224 0.0055 0.0085 0.0254 

1  0.0042 0.0051 0.0076 0.0034 0.0016 0.0057 

2  -0.0038 -0.0039 -0.0069 -0.0013 0.0003 -0.0010 

200 0  0.0064 0.0072 0.0167 0.0064 0.0089 0.0195 

1  0.0012 0.0038 0.0033 -0.0006 -0.0003 -0.0014 

2  -0.0015 -0.0031 -0.0017 -0.0004 0.0002 0.0023 

SE 100 0  0.0472 0.0466 0.0767 0.0349 0.0338 0.0737 

1  0.0566 0.0570 0.0796 0.0424 0.0411 0.0708 

2  0.0567 0.0575 0.0807 0.0425 0.0418 0.0720 

200 0  0.0313 0.0301 0.0402 0.0225 0.0213 0.0345 

1  0.0371 0.0377 0.0489 0.0276 0.0267 0.0402 

2  0.0367 0.0376 0.0488 0.0270 0.0267 0.0401 

CP 100 0  94.4 95.0 96.1 94.3 96.0 97.1 

1  95.0 95.2 95.5 95.2 95.3 97.4 

2  96.6 96.7 97.3 95.4 96.6 98.0 

200 0  94.1 93.4 94.9 93.2 94.0 94.1 

1  94.0 94.9 96.0 93.0 95.1 95.9 

2  94.6 95.0 95.3 94.4 95.3 94.8 
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Table 4.5 
Bias, SE and CP of regression parameters for Case (iv) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL1 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0066 0.0097 0.0364 0.0048 0.0076 0.0273 

1  0.0031 0.0039 0.0041 0.0026 0.0043 0.0036 

2  0.0008 -0.0009 -0.0018 0.0008 -0.0035 -0.0028 

200 0  0.0083 0.0089 0.0243 0.0100 0.0103 0.0258 

1  -0.0020 0.0016 0.0017 -0.0022 -0.0008 -0.0018 

2  0.0008 -0.0012 -0.0031 0.0026 0.0012 0.0004 

SE 100 0  0.0600 0.0507 0.1103 0.0466 0.0407 0.1038 

1  0.0667 0.0592 0.0993 0.0514 0.0468 0.0885 

2  0.0677 0.0600 0.1014 0.0525 0.0470 0.0921 

200 0  0.0395 0.0327 0.0521 0.0305 0.0260 0.0464 

1  0.0429 0.0386 0.0568 0.0331 0.0298 0.0491 

2  0.0429 0.0389 0.0580 0.0331 0.0301 0.0501 

CP 100 0  93.5 95.0 97.7 94.7 95.5 97.8 

1  95.6 96.6 97.0 96.0 96.3 97.3 

2  96.0 96.2 97.3 95.8 96.7 97.0 

200 0  93.0 93.9 94.9 93.5 93.4 94.1 

1  95.6 95.8 94.7 94.5 95.2 95.4 

2  94.5 95.9 95.5 94.5 96.0 95.2 

 
 

From Tables 4.2-4.5, we see that our proposed estimator has approximately zero bias. A comparison of 

SE of CQR-EL1 with CQR indicates that the SE of CQR-EL1 reduces remarkably for all the parameters 

irrespective of any quantile. For example, we consider the scenario of n   100 and    0.25 for 

comparison purposes throughout this paper. From Table 4.2, for CQR, SE of 1̂  is 0.1533 and for CQR-

EL1, SE of 1̂  is reduced to 0.1159. When the sample size is increased to 200, SE of 1̂  of our proposed 

method further is reduced to 0.0746. If we compare the CP of our proposed method with the nominal level 

of 95%, CQR-EL1 provides approximately 95% coverage and becomes more stable when the sample size 

increases. Similar conclusions can be reached for Case (ii) (results are in Table 4.3) even though we 

considered heavy tailed distribution for the failure time compared to Case (i). For example, SE of 1̂  using 

CQR is 0.1946, whereas it is only 0.1555 for the CQR-EL1 based estimate. We also observed that SE is 

comparatively high in Case (ii) compared to Case (i). 

In Cases (iii) and (iv), the error depends on the covariates. Simulation results for these Cases (Tables 4.4 

and 4.5) are almost similar to the cases where error is independent of covariates. For example, in Case (iii) 

(Table 4.4), SE of 1̂  is 0.0566 and 0.0424 for CQR and CQR-EL1 respectively. Similarly, in Case (iv) 

(Table 4.5), SE of 1̂  is 0.0667 and 0.0514 for CQR and CQR-EL1 respectively. Here, we could also see a 

slight increase in the SE of estimates for Case (iv) because of the heavy tailed distribution assumption for 

the failure time compared to Case (iii). 
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4.2  Numerical study -II 
 

In most of the survival data with random right censoring, the observed data are the triplet 

  min , , , .Y T C  X  We consider a linear relationship between the survival time  Y  and the 

covariates as the auxiliary information. Here we cannot use the EL estimating function,  g   defined in 

(4.1) because of the censoring. There are other methods available in the literature which take care of the 

right censoring in the linear regression. 

Koul et al. (1981) introduced a synthetic data approach by transforming the survival time, rY  to a 

synthetic variable, rY  as  

 
 

; 1, 2, , ,
1

r r
r

r

Y
Y r N

G Y


 


   (4.2) 

where r  is the censoring indicator and  G   is the distribution of the censoring time.    E Y E YX X  

if C  is independent of both X  and .Y  When  G   is unknown, we can replace it with its Kaplan-Meier 

estimator. The estimator of  G   using the Kaplan-Meier (Kaplan and Meier, 1958) estimator is  

  
    , 0

1

ˆ1 ,
1

r rY tN

N
r

N r
G t

N r

 



      




 (4.3) 

where   ’srY  are ordered and the corresponding censoring indicator is   .r  We can estimate θ  as  

   1 .rYθ X X X Τ Τ  (4.4) 

Qin and Jing (2001) and Li and Wang (2003) independently provided the estimating function to compute 

the EL based data driven probabilities as 

      ; , , ; , 1, 2, , .i i i i i i i ig g y y i n   z θ x θ x x θ    Τ  (4.5) 

We can compute the iy  and  ˆ
nG t  using the sample analogues of (4.2) and (4.3) respectively.  

To compute ’s,iP  we consider a linear relation between Y  and  1 2,X XX  with slopes 1(  and 2 )  

and intercept  0 .  We estimate θ  using (4.4) based on a large, finite population with size, N   10,000. 

To fit the weighted censored quantile regression model given in (1.2), we generate another n  observations 

  1, n
i i iy x  with n N  using the same models given in Table 4.1. For our proposed method, we estimate 

’siP  using the estimating function,  , , ;i i ig y x θ  given in (4.5). 

Similar to numerical study -I, we present the results based on 1,000 simulations and report the bias, 

standard error (SE) and empirical coverage probability (CP) for the nominal level of 95% based on 250 

bootstrap samples. We provide the summary of the simulation results for this study in Tables 4.6-4.9. 

Similar to the population information related to T  (numerical study -I), conclusions are almost similar 

for uncorrelated covariates. From Tables 4.6-4.9 we see that our proposed method (CQR-EL2) provides 

unbiased estimates irrespective of any sample size and quantile. If we consider the coverage probability, 
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both CQR and CQR-EL2 provide approximately 95% coverage. For any quantile, there is a reduction in the 

standard error of CQR-EL2 parameter estimates compared to CQR parameter estimates. If we consider Case 

(i) as a basic model, CQR-EL2 with Case (ii) has reasonably higher SE along with CQR because of the 

heavy tailed distribution of the observed survival time. When the error depended on the covariates (Cases 

(iii) & (iv)), the SE of CQR-EL2 reduced considerably.  

We also conducted large number of simulations with correlated covariates with 
1 2,x x   0.5 as well as 

constructed weights based on simple relationship with one covariate only for both numerical studies. The 

results of these simulations are not provided here to save the space. The conclusions arrived are almost 

similar to the uncorrelated covariate cases.  

In numerical study -I, we noticed that there is a slight reduction in SE of 2̂  using heteroscedastic models 

for CQR-EL1. But use of the estimating function,  1, , ;i i ig y x  θ  (CQR-EL2), does not reduce the SE of 

2̂  under heteroscedastic models. Since we utilized only partial population information in relation to 1 ,X  

the standard error of 0̂  and 1̂  reduced for CQR-EL2 compared to CQR. The standard error of 2̂  was 

not changed.  

Our simulation studies reveal that auxiliary information greatly enhances the efficiency of estimation, if 

the population information related to both 1X  and 2X  is available. If the population information is only 

related to 1 ,X  the efficiency gain is limited to 0  and 1  only. However, under heteroscedastic models, 

the efficiency of estimating 2  slightly improved in numerical study -I, but not in numerical study -II. 

 
Table 4.6 
Bias, SE and CP of regression parameters for Case (i) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0042 0.0170 0.0647 0.0217 0.0275 0.0720 

1  0.0029 0.0035 0.0094 -0.0491 -0.0411 -0.0090 

2  -0.0049 -0.0141 -0.0100 0.0116 -0.0029 -0.0194 

200 0  0.0218 0.0298 0.0501 0.0220 0.0323 0.0562 

1  0.0016 0.0026 0.0057 -0.0295 -0.0273 -0.0119 

2  -0.0020 -0.0032 -0.0078 0.0034 0.0053 -0.0011 

SE 100 0  0.1449 0.1404 0.2268 0.1273 0.1233 0.2160 

1  0.1533 0.1515 0.2141 0.1475 0.1416 0.2075 

2  0.1519 0.1525 0.2198 0.1416 0.1414 0.2162 

200 0  0.0973 0.0929 0.1292 0.0840 0.0798 0.1239 

1  0.1040 0.1029 0.1341 0.0970 0.0921 0.1278 

2  0.1041 0.1027 0.1354 0.0957 0.0936 0.1304 

CP 100 0  93.3 93.4 95.7 94.3 96.1 96.8 

1  94.7 95.8 96.5 94.6 96.1 96.9 

2  96.0 96.3 96.4 95.4 95.4 97.4 

200 0  92.3 91.9 92.7 92.9 92.3 94.3 

1  94.5 96.2 95.0 95.3 95.3 94.8 

2  93.6 95.0 95.2 93.5 94.9 95.9 
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Table 4.7 
Bias, SE and CP of regression parameters for Case (ii) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0105 0.0288 0.1088 0.0306 0.0461 0.1139 

1  0.0063 0.0214 0.0169 -0.0841 -0.0503 -0.0216 

2  0.0164 0.0096 -0.0170 0.0329 0.0260 -0.0094 

200 0  0.0267 0.0355 0.0821 0.0419 0.0508 0.0921 

1  0.0006 -0.0032 0.0050 -0.0022 -0.0010 -0.0188 

2  0.0112 0.0025 0.0051 0.0251 0.0137 0.0133 

SE 100 0  0.1871 0.1538 0.2980 0.1619 0.1379 0.2768 

1  0.1946 0.1664 0.2698 0.1863 0.1595 0.2548 

2  0.1955 0.1676 0.2733 0.1787 0.1549 0.2632 

200 0  0.1235 0.1029 0.1621 0.1048 0.0900 0.1551 

1  0.1301 0.1146 0.1663 0.1214 0.1052 0.1575 

2  0.1315 0.1149 0.1671 0.1185 0.1044 0.1606 

CP 100 0  95.5 93.1 94.7 95.9 94.2 97.5 

1  95.6 93.5 96.4 94.8 93.3 96.7 

2  95.9 95.4 96.4 94.2 94.2 96.3 

200 0  93.1 91.2 94.0 93.5 93.0 94.7 

1  95.0 95.5 95.4 94.5 94.0 94.9 

2  95.5 95.7 95.5 94.8 94.5 95.4 

 
 
Table 4.8 
Bias, SE and CP of regression parameters for Case (iii) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0062 0.0088 0.0224 0.0127 0.0146 0.0302 

1  0.0042 0.0051 0.0076 -0.0071 -0.0043 0.0021 

2  -0.0038 -0.0039 -0.0069 0.0018 0.0017 -0.0040 

200 0  0.0064 0.0072 0.0167 0.0094 0.0105 0.0197 

1  0.0012 0.0038 0.0033 -0.0042 -0.0026 -0.0007 

2  -0.0015 -0.0031 -0.0017 0.0009 -0.0003 0.0015 

SE 100 0  0.0472 0.0466 0.0767 0.0448 0.0445 0.0801 

1  0.0566 0.0570 0.0796 0.0541 0.0549 0.0830 

2  0.0567 0.0575 0.0807 0.0538 0.0558 0.0833 

200 0  0.0313 0.0301 0.0402 0.0292 0.0283 0.0396 

1  0.0371 0.0377 0.0489 0.0348 0.0356 0.0484 

2  0.0367 0.0376 0.0488 0.0344 0.0359 0.0488 

CP 100 0  94.4 95.0 96.1 93.9 94.7 96.9 

1  95.0 95.2 95.5 94.6 94.7 96.3 

2  96.6 96.7 97.3 95.8 96.4 97.3 

200 0  94.1 93.4 94.9 93.9 93.8 94.9 

1  94.0 94.9 96.0 94.1 94.3 95.0 

2  94.6 95.0 95.3 94.0 95.4 94.3 
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Table 4.9 
Bias, SE and CP of regression parameters for Case (iv) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0066 0.0097 0.0364 0.0189 0.0169 0.0419 

1  0.0031 0.0039 0.0041 -0.0138 -0.0073 -0.0000 

2  0.0008 -0.0009 -0.0018 0.0074 0.0060 0.0024 

200 0  0.0083 0.0089 0.0243 0.0124 0.0119 0.0273 

1  -0.0020 0.0016 0.0017 -0.0097 -0.0051 -0.0032 

2  0.0008 -0.0012 -0.0031 0.0019 0.0004 -0.0020 

SE 100 0  0.0600 0.0507 0.1103 0.0548 0.0486 0.1159 

1  0.0667 0.0592 0.0993 0.0618 0.0581 0.1018 

2  0.0677 0.0600 0.1014 0.0616 0.0578 0.1066 

200 0  0.0395 0.0327 0.0521 0.0359 0.0304 0.0516 

1  0.0429 0.0386 0.0568 0.0397 0.0364 0.0558 

2  0.0429 0.0389 0.0580 0.0397 0.0368 0.0579 

CP 100 0  93.5 95.0 97.7 92.9 95.2 97.6 

1  95.6 96.6 97.0 94.2 95.5 97.4 

2  96.0 96.2 97.3 96.3 97.0 97.6 

200 0  93.0 93.9 94.9 93.3 94.2 95.8 

1  95.6 95.8 94.7 94.0 95.5 95.2 

2  94.5 95.9 95.5 94.9 96.0 94.7 

 

Note that the value of the auxiliary parameter value plays a big role in the efficiency of the weighted 

censored quantile regression parameter estimates. If the estimate of   based present study data and previous 

study (or known   value) are very close, then all weights will be close to 1 n  and solutions to (1.1) and 

(1.2) remain the same. If data on previous studies are not available, we can make of the data available in the 

present study to estimate the value of .  In this case, if dimensions of   and estimating equation  ,g z   

are same, then all weights will be equal to 1 n  and solutions to (1.1) and (1.2) remain same. However, if 

the dimensions of  ,g z   is greater than that of ,  the weights  ˆp   is no longer equal to 1 n  and this 

scheme provides an efficiency gain over the conventional QR estimates (Tang and Leng, 2012). 

 

4.3  Case example 
 

The North Central Cancer Treatment Group (NCCTG) was initiated by a group of physicians from the 

north central region of the United States of America and the Mayo Clinic in Rochester, Minnesota. This 

study was conducted by NCCTG to determine whether the conclusions from the patient-completed 

questionnaire and those already obtained by the patient’s physician were independent or not (Loprinzi, 

Laurie, Wieand, Krook, Novotny, Kugler, Bartel, Law, Bateman and Klatt, 1994). They used the 

performance scores (ECOG and Karnofsky) to assess the patient’s daily activities. The dataset is available 

in the “survival” package of R software with readings of 228 patients. Because of the incompleteness of 

some of the variables, we had to limit the dataset to 167 observations. For the illustration of our proposed 

method, we changed our focus to identify the effect of following covariates over the observed survival time 

at different quantiles. We considered “age”, patient’s age in years; “sex”, (Male = 1 Female = 2); “ph.ecog”, 
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ECOG performance score measured by physician (0 = good 5 = dead); “meal.cal”, calories consumed at 

meals and “wt.loss”, weight loss in the last six months as the covariates. After removing the incomplete 

patient readings, the available ECOG scores were 0,1 and 2 only. We defined two dummy categorical 

variables for “ph.ecog” as follows. 

 

1, if ph.ecog 1
ecog1

0, otherwise

1, if ph.ecog 2
ecog2

0, otherwise.


 



 


  

To demonstrate the usefulness of our proposed method, we randomly selected a part (100 observations) 

of the complete data (167 observations) by considering it to be the data available from the previous study. 

We assumed that there exists a linear relation between the logarithm of the observed survival time and all 

the continuous explanatory variables (age, meal.cal and wt.loss) as the available auxiliary information. We 

estimated the  0 age meal wt, , ,   θ  by the least square method based on 100 observations where the 

response is the synthetic variable defined by (4.2). Then we computed the EL based data driven probability 

weights for the present study data points (67 observations). After computing the weights, we estimated the 

weighted censored quantile regression parameters using Peng and Huang (2008) method with all the 

covariates. For the present study data, the censoring proportion is 0.283. Interestingly, we estimated the 

regression parameters using CQR up to the th86  quantile, where as we could estimate to the th90  quantile 

using CQR-EL2. Along with the estimates for the quantiles,    0.25, 0.50, 0.75, we report standard error 

(SE) and 95% confidence limits using 250 bootstrap samples as well in Table 4.10. 

 
Table 4.10 
Estimates, SE and 95% CI for regression parameters of NCCTG lung cancer data 
 

     
CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

̂  Intercept 5.4777 4.2651 5.5380 4.7531 4.1729 6.4258 
Age -0.0168 0.0179 0.0040 -0.0047 0.0202 -0.0032 
Sex 0.7201 0.6180 0.4181 0.7606 0.6638 0.3651 

ECOG1 -0.7059 -0.5449 -0.2029 -0.5701 -0.5355 -0.2884 
ECOG2 -0.8677 -0.9402 -0.8336 -1.1584 -1.0612 -1.0192 
MealCal 0.0004 0.0001 0.0001 0.0004 0.0001 -0.0000 
WtLoss -0.0007 -0.0084 -0.0023 -0.0023 -0.0100 -0.0135 

SE Intercept 1.9235 1.4314 1.7494 1.6628 1.4149 1.4666 
Age 0.0277 0.0188 0.0225 0.0256 0.0184 0.0176 
Sex 0.5610 0.3389 0.3716 0.5374 0.3317 0.2809 

ECOG1 0.6521 0.3436 0.3375 0.6498 0.3493 0.2434 
ECOG2 1.0317 0.5410 0.6061 0.9336 0.5413 0.3879 
MealCal 0.0009 0.0006 0.0008 0.0009 0.0006 0.0005 
WtLoss 0.0181 0.0128 0.0231 0.0157 0.0124 0.0100 

CI Intercept (1.6, 9.14) (2.38, 8) (2.08, 8.94) (1.79, 8.31) (2.32, 7.87) (3.14, 8.89) 
Age (-0.07, 0.04) (-0.04, 0.04) (-0.04, 0.05) (-0.06, 0.04) (-0.03, 0.04) (-0.03, 0.04) 
Sex (-0.45, 1.74) (0, 1.33) (-0.13, 1.33) (-0.39, 1.71) (-0.04, 1.27) (-0.07, 1.03) 

ECOG1 (-1.75, 0.81) (-1.15, 0.2) (-0.97, 0.35) (-1.86, 0.69) (-1.18, 0.19) (-0.78, 0.18) 
ECOG2 (-2.88, 1.16) (-2, 0.12) (-2.11, 0.26) (-2.83, 0.83) (-2.13, -0.01) (-1.73, -0.21) 
WtLoss (-0.04, 0.03) (-0.03, 0.02) (-0.05, 0.04) (-0.04, 0.02) (-0.03, 0.01) (-0.04, 0) 
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From Table 4.10, we see that the standard error of the estimates of all the continuous variable parameters 

and the intercept reduced considerably because we considered the auxiliary information related to them. For 

the remaining variables, a reduction of standard error can also be seen, even though we did not consider any 

auxiliary information related to them. In the censored quantile regression with the EL based data driven 

probability weights, we see narrower 95% confidence limits for all the variables compared to those using 

the standard censored quantile regression. 

 
5  Conclusions 
 

We proposed a method which effectively use the auxiliary information to improve the efficiency of the 

censored quantile regression estimator. We developed a methodology to transform the population 

information available from previous clinical trials or from some existing facts into non-parametric empirical 

likelihood based data driven probabilities. We developed the EL based data driven probability computation 

for both known and unknown cases of prior information regarding population parameters. We applied these 

probabilities as the weights into Peng and Huang (2008) censored quantile regression model. Our proposed 

method is efficient compared to standard censored quantile regression and provides consistent estimators of 

regression coefficients with asymptotic normality. Our simulations studies showed that the standard error 

of the parameter estimates based on our proposed methods (CQR-EL1 and CQR-EL2) is lower than the 

standard method (CQR) when we use all the covariates for computing the EL based data driven probability 

weights. Our proposed weighted censored quantile regression method provides almost the same coverage 

probability compared to the nominal level. In the case of heteroscedastic models, even the use of the 

auxiliary information regarding a subset of population parameters improved the efficiency of the estimates 

of all the parameters by using CQR-EL1. But in CQR-EL2, the efficiency improvement was limited to the 

corresponding subset of variables and intercept. In homoscedastic models, the use of auxiliary information 

regarding a subset of population parameters improved the efficiency only for that particular subset of 

parameters and the intercept in both CQR-EL1 and CQR-EL2. In the real data analysis, we observed that 

our proposed method provides more efficient quantile estimates and narrower confidence limits compared 

to the standard censored quantile regression. 
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