Criteria for choosing between calibration weighting and survey weighting
Section 4. Simulation study

In order to evaluate the Weff ^ S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqiaa qaaiGacEfacaGGLbGaaiOzaiaacAgaaiaawkWaamaaBaaaleaacaWG tbaabeaaaaa@3CBB@ criterion (3.4), so that we can determine whether to use calibration weights or sampling weights, we conducted a series of simulations using data observed for a population of 5,800 cottage-industry units. We considered six calibration variables, from which several variables of interest Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzb WaaSbaaSqaaiaadMgaaeqaaaaa@3953@ were generated, with consideration for linear regression models, while accounting for the strength of the link between the variables of interest and the calibration variables through the choice of residual variance in the regression models. Furthermore, to study the impact of the heteroskedasticity of the model residuals on the results obtained for criterion Weff ^ S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqiaa qaaiaabEfacaqGLbGaaeOzaiaabAgaaiaawkWaamaaBaaaleaacaWG tbaabeaakiaacYcaaaa@3D6F@ we also considered the case where the variables of interest are generated using models with heteroskedastic residuals.

For the purposes of these simulations, we selected 10,000 samples using a simple random sampling design (SRSD), with three sample sizes: 100, 200 and 400 cottage-industry units, to study the impact of the sample size on the results obtained. Across the 10,000 samples selected, we calculated the following indicators:

MSE ^ ¯ Cal = 1 10,000 s = 1 10,000 ( k s d k σ ^ k 2 [ ( w k s , C d k ) 2 d k + R ^ k s 2 ( d k 1 ) + ( R ^ k s 1 ) 2 ] ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaaeytaiaabofacaqGfbaacaGLcmaaaaWaaSbaaSqa aiaaboeacaqGHbGaaeiBaaqabaGccqGH9aqpdaWcaaqaaiaaigdaae aacaqGXaGaaeimaiaabYcacaqGWaGaaeimaiaabcdaaaWaaabCaeaa daqadaqaamaaqafabaGaamizamaaBaaaleaacaWGRbaabeaakiqbeo 8aZzaajaWaa0baaSqaaiaadUgaaeaacaaIYaaaaOWaamWaaeaadaWc aaqaamaabmaabaGaam4DamaaBaaaleaacaWGRbGaam4CaiaaygW7ca GGSaGaaGPaVlaadoeaaeqaaOGaeyOeI0IaamizamaaBaaaleaacaWG RbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaai aadsgadaWgaaWcbaGaam4AaaqabaaaaOGaey4kaSIabmOuayaajaWa a0baaSqaaiaadUgacaWGZbaabaGaaGOmaaaakmaabmaabaGaamizam aaBaaaleaacaWGRbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaa cqGHRaWkdaqadaqaaiqadkfagaqcamaaBaaaleaacaWGRbGaam4Caa qabaGccqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaaaaaGccaGLBbGaayzxaaaaleaacaWGRbGaeyicI4Saam4Caaqab0 GaeyyeIuoaaOGaayjkaiaawMcaaaWcbaGaam4Caiabg2da9iaaigda aeaacaqGXaGaaeimaiaabYcacaqGWaGaaeimaiaabcdaa0GaeyyeIu oakiaaykW7caGGUaaaaa@7EE1@

MSE ^ ¯ HT = 1 10,000 s = 1 10,000 ( V ^ Approx , s + k s d k σ ^ k 2 ( d k 1 ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaaeytaiaabofacaqGfbaacaGLcmaaaaWaaSbaaSqa aiaabIeacaqGubaabeaakiabg2da9maalaaabaGaaGymaaqaaiaabg dacaqGWaGaaeilaiaabcdacaqGWaGaaeimaaaadaaeWbqaamaabmaa baGabmOvayaajaWaaSbaaSqaaiaabgeacaqGWbGaaeiCaiaabkhaca qGVbGaaeiEaiaaygW7caGGSaGaaGjbVlaadohaaeqaaOGaey4kaSYa aabuaeaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGafq4WdmNbaKaada qhaaWcbaGaam4AaaqaaiaaikdaaaGcdaqadaqaaiaadsgadaWgaaWc baGaam4AaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaaaleaaca WGRbGaeyicI4Saam4Caaqab0GaeyyeIuoaaOGaayjkaiaawMcaaaWc baGaam4Caiabg2da9iaaigdaaeaacaqGXaGaaeimaiaabYcacaqGWa Gaaeimaiaabcdaa0GaeyyeIuoakiaaykW7caGGUaaaaa@6C59@

MSE ( Weff ^ S ) = 1 10,000 s = 1 10,000 ( Weff ^ s Weff ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaqadaqaamaaHaaabaGaae4vaiaabwgacaqGMbGa aeOzaaGaayPadaWaaSbaaSqaaiaadofaaeqaaaGccaGLOaGaayzkaa Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaeymaiaabcdacaqGSaGaaeim aiaabcdacaqGWaaaamaaqahabaWaaeWaaeaadaqiaaqaaiaabEfaca qGLbGaaeOzaiaabAgaaiaawkWaamaaBaaaleaacaWGZbaabeaakiab gkHiTiaabEfacaqGLbGaaeOzaiaabAgaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaaabaGaam4Caiabg2da9iaaigdaaeaacaqGXaGa aeimaiaabYcacaqGWaGaaeimaiaabcdaa0GaeyyeIuoakiaac6caaa a@5D07@

The simulation results for heteroskedastic regression models are presented in Table 4.1 below, while the results for homoskedastic models are given in Table A.1 in the appendix.

Table 4.1
(Heteroskedastic populations): Simulation results for the Weff ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeqabeqadiWaceGabeqabeWabeqaeeaakeaadaqiaa qaaiaabEfacaqGLbGaaeOzaiaabAgaaiaawkWaaaaa@3BAB@ criterion, by sample size and degree of the link between the variables of interest and the calibration variables
Table summary
This table displays the results of (Heteroskedastic populations): Simulation results for the Weff ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeqabeqadiWaceGabeqabeWabeqaeeaakeaadaqiaa qaaiaabEfacaqGLbGaaeOzaiaabAgaaiaawkWaaaaa@3BAB@ criterion Variables of interest, Y1 , Y2 , Y3 , Y4 , Y5 and Y6 (appearing as column headers).
Variables of interest
Y1 Y2 Y3 Y4 Y5 Y6
(R2 = 0.01) (R2 = 0.10) (R2 = 0.20) (R2 = 0.50) (R2 = 0.75) (R2 = 0.98)
n = 100 MSE Cal MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaae4qaiaabggacaqGSbaabeaaaaa@3EB1@ (107) 12,301.13 9,334.81 1,860.23 173.61 59.47 3.07
MSE HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaaeisaiaabsfaaeqaaaaa@3DBA@ (107) 11,285.46 8,643.37 1,841.84 323.46 212.69 160.35
MSE ˜ HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaa qaaiaab2eacaqGtbGaaeyraaGaay5adaWaaSbaaSqaaiaabIeacaqG ubaabeaaaaa@3E7C@ (107) 11,285.44 8,643.34 1,841.81 323.43 212.66 160.32
Weff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGxb GaaeyzaiaabAgacaqGMbaaaa@3D12@ 1.09 1.08 1.01 0.54 0.28 0.02
MSE ^ ¯ Cal MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaaeytaiaabofacaqGfbaacaGLcmaaaaWaaSbaaSqa aiaaboeacaqGHbGaaeiBaaqabaaaaa@3F84@ (107) 12,463.22 9,484.87 1,984.51 180.37 62.07 3.21
MSE ^ ¯ HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaaeytaiaabofacaqGfbaacaGLcmaaaaWaaSbaaSqa aiaabIeacaqGubaabeaaaaa@3E8D@ (107) 11,856.45 9,068.99 1,929.87 330.59 215.13 160.07
Weff ^ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaae4vaiaabwgacaqGMbGaaeOzaaGaayPadaaaaaaa @3DE5@ 1.08 1.07 1.00 0.55 0.30 0.02
MSE ( Weff ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaqadaqaamaaHaaabaGaae4vaiaabwgacaqGMbGa aeOzaaGaayPadaaacaGLOaGaayzkaaaaaa@41CB@ 0.030 0.034 0.030 0.02 0.008 0.00005
n = 200 MSE Cal MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaae4qaiaabggacaqGSbaabeaaaaa@3EB1@ (107) 5,931.78 4,500.60 905.42 81.86 27.99 1.41
MSE HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaaeisaiaabsfaaeqaaaaa@3DBA@ (107) 5,543.74 4,245.87 904.76 158.89 104.48 78.77
MSE ˜ HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaa qaaiaab2eacaqGtbGaaeyraaGaay5adaWaaSbaaSqaaiaabIeacaqG ubaabeaaaaa@3E7C@ (107) 5,543.72 4,245.85 904.75 158.88 104.46 78.75
Weff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGxb GaaeyzaiaabAgacaqGMbaaaa@3D12@ 1.07 1.06 1.00 0.52 0.27 0.02
MSE ^ ¯ Cal MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaaeytaiaabofacaqGfbaacaGLcmaaaaWaaSbaaSqa aiaaboeacaqGHbGaaeiBaaqabaaaaa@3F84@ (107) 5,770.29 4,382.31 969.57 83.81 28.68 1.48
MSE ^ ¯ HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaaeytaiaabofacaqGfbaacaGLcmaaaaWaaSbaaSqa aiaabIeacaqGubaabeaaaaa@3E8D@ (107) 5,673.08 4,341.19 924.64 160.71 105.06 78.71
Weff ^ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaae4vaiaabwgacaqGMbGaaeOzaaGaayPadaaaaaaa @3DE5@ 1.05 1.05 1.01 0.53 0.28 0.02
MSE ( Weff ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaqadaqaamaaHaaabaGaae4vaiaabwgacaqGMbGa aeOzaaGaayPadaaacaGLOaGaayzkaaaaaa@41CB@ 0.008 0.008 0.007 0.006 0.002 0.00005
n = 400 MSE Cal MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaae4qaiaabggacaqGSbaabeaaaaa@3EB1@ (107) 3,847.61 2,919.12 589.97 53.05 18.13 0.94
MSE HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaaeisaiaabsfaaeqaaaaa@3DBA@ (107) 3,629.83 2,780.03 592.40 104.04 68.41 51.57
MSE ˜ HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaa qaaiaab2eacaqGtbGaaeyraaGaay5adaWaaSbaaSqaaiaabIeacaqG ubaabeaaaaa@3E7C@ (107) 3,629.82 2,780.02 592.39 104.03 68.40 51.56
Weff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGxb GaaeyzaiaabAgacaqGMbaaaa@3D12@ 1.06 1.05 0.99 0.51 0.27 0.02
MSE ^ ¯ Cal MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaaeytaiaabofacaqGfbaacaGLcmaaaaWaaSbaaSqa aiaaboeacaqGHbGaaeiBaaqabaaaaa@3F84@ (107) 3,718.79 2,889.81 594.01 53.89 18.44 0.95
MSE ^ ¯ HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaaeytaiaabofacaqGfbaacaGLcmaaaaWaaSbaaSqa aiaabIeacaqGubaabeaaaaa@3E8D@ (107) 3,687.44 2,821.34 602.39 104.83 68.68 51.60
Weff ^ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaa qaamaaHaaabaGaae4vaiaabwgacaqGMbGaaeOzaaGaayPadaaaaaaa @3DE5@ 1.04 1.04 0.98 0.52 0.27 0.02
MSE ( Weff ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaqadaqaamaaHaaabaGaae4vaiaabwgacaqGMbGa aeOzaaGaayPadaaacaGLOaGaayzkaaaaaa@41CB@ 0.004 0.005 0.004 0.003 0.001 0.00001

Hence, the simulation results show that the Weff criterion proposed to measure the impact of using calibration weights helps us to identify situations where calibration weighting should not be used, i.e., when the variable of interest is weakly correlated with the calibration variables ( R 2 < 0 .20 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGH8aapcaqGWaGaaeOl aiaabkdacaqGWaaacaGLOaGaayzkaaGaaiOlaaaa@3F30@ Furthermore, the Weff ^ S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqiaa qaaiaabEfacaqGLbGaaeOzaiaabAgaaiaawkWaamaaBaaaleaacaWG tbaabeaaaaa@3CB5@ estimator (3.4) proposed to estimate the Weff criterion proved to be an effective estimator, recording the same performances, regardless of the strength of the link between the variable of interest and the calibration variables. Heteroskedastic residuals for regression models, representing the link between the variable of interest and the calibration variables, had little impact on the performances of the Weff criterion and the Weff ^ S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqiaa qaaiaabEfacaqGLbGaaeOzaiaabAgaaiaawkWaamaaBaaaleaacaWG tbaabeaakiaac6caaaa@3D71@ estimator. We also noted a lack of impact in using approximation (2.8) for the variance under design k S d k x k β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqa qaaiaadsgadaWgaaWcbaGaam4AaaqabaGccaWH4bWaa0baaSqaaiaa dUgaaeaajugybiadaITHYaIOaaGccaWHYoaaleaacaWGRbGaeyicI4 Saam4uaaqab0GaeyyeIuoaaaa@45AE@ since the impact of the deviation between the AMSE for the HT estimator ( MSE HT ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaiaab2eacaqGtbGaaeyramaaBaaaleaacaqGibGaaeivaaqabaaa kiaawIcacaGLPaaaaaa@3D2A@ and its approximation MSE ˜ HT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaa qaaiaab2eacaqGtbGaaeyraaGaay5adaWaaSbaaSqaaiaabIeacaqG ubaabeaaaaa@3C59@ (2.10) was negligible in the results for the Weff criterion. This was predictable since the design being considered was a SRSD.


Date modified: