Critère de choix entre la pondération de calage et celle de sondage
Section 2. Estimateur du total d’une variable d’intérêt

Soit U = { 1 , , N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGvb Gaeyypa0ZaaiWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGa aGjbVlaad6eaaiaawUhacaGL9baaaaa@4296@ une population de taille N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGob aaaa@382E@ à partir de laquelle on sélectionne un échantillon s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGZb aaaa@3853@ de taille n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUb aaaa@384E@ selon un plan de sondage p ( s ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWb WaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaaiOlaaaa@3B83@ On note par S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtb aaaa@3833@ la variable aléatoire telle que p ( s ) = P ( S = s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWb WaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0Jaamiuamaabmaa baGaam4uaiabg2da9iaadohaaiaawIcacaGLPaaaaaa@410B@ et par π k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4Aaaqabaaaaa@3A34@ et π k l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@3B25@ respectivement les probabilités d’inclusion d’ordre un et deux du plan de sondage p ( s ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWb WaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaaiOlaaaa@3B83@ On s’intéresse à une variable d’intérêt Y = ( y 1 , , y k , , y N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzb Gaeyypa0ZaaeWaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiil aiaaysW7cqWIMaYscaGGSaGaaGjbVlaadMhadaWgaaWcbaGaam4Aaa qabaGccaGGSaGaaGjbVlablAciljaacYcacaaMe8UaamyEamaaBaaa leaacaWGobaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGccWaGyB OmGikaaaaa@4F31@ en ayant pour objectif l’estimation de son total t y = k U y k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0b WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0ZaaabeaeaacaWG5bWaaSba aSqaaiaadUgaaeqaaaqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHri s5aOGaaiOlaaaa@428A@ Pour cela, on considère la classe des estimateurs linéaires t ^ y w = k S w k S y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadEhaaeqaaOGaeyypa0Zaaabeaeaa caWG3bWaaSbaaSqaaiaadUgacaWGtbaabeaakiaadMhadaWgaaWcba Gaam4AaaqabaaabaGaam4AaiabgIGiolaadofaaeqaniabggHiLdaa aa@45D2@ w k S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3b WaaSbaaSqaaiaadUgacaWGtbaabeaaaaa@3A4B@ sont des poids qui peuvent dépendre de l’échantillon S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtb aaaa@3833@ et des variables auxiliaires disponibles. Les poids de base utilisés sont ceux de sondage qui sont donnés par d k = 1 / π k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGa eqiWda3aaSbaaSqaaiaadUgaaeqaaaaaaaa@3E1A@ et qui correspondent à l’estimateur t ^ y π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiabec8aWbqabaaaaa@3B4B@ de Horvitz-Thompson (1952).

On suppose qu’on dispose de p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWb aaaa@3850@ variables auxiliaires X 1 , , X p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGyb WaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaaysW7cqWIMaYscaGGSaGa aGjbVlaadIfadaWgaaWcbaGaamiCaaqabaaaaa@40C3@ dont les valeurs peuvent être représentées par les vecteurs x k = ( x k 1 , , x k p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4b WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaeWaaeaacaWG4bWaaSba aSqaaiaadUgacaaIXaaabeaakiaacYcacaaMe8UaeSOjGSKaaiilai aaysW7caWG4bWaaSbaaSqaaiaadUgacaWGWbaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGccWaGyBOmGikaaaaa@4ABA@ et pour lesquelles le vecteur de leurs totaux t x = k U x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0b WaaSbaaSqaaiaahIhaaeqaaOGaeyypa0ZaaabeaeaacaWH4bWaaSba aSqaaiaadUgaaeqaaaqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHri s5aaaa@41D4@ est connu. La classe des estimateurs par calage est définie par t ^ y C = k S w k S , C y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadoeaaeqaaOGaeyypa0Zaaabeaeaa caWG3bWaaSbaaSqaaiaadUgacaWGtbGaaGzaVlaacYcacaaMc8Uaam 4qaaqabaGccaWG5bWaaSbaaSqaaiaadUgaaeqaaaqaaiaadUgacqGH iiIZcaWGtbaabeqdcqGHris5aaaa@4A2B@ w k S , C , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3b WaaSbaaSqaaiaadUgacaWGtbGaaGzaVlaacYcacaaMc8Uaam4qaaqa baGccaGGSaaaaa@3F92@ appelés poids de calage, vérifient l’équation de calage donnée par

k S w k S , C x k = k U x k . ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqa qaaiaadEhadaWgaaWcbaGaam4AaiaadofacaaMb8UaaiilaiaaykW7 caWGdbaabeaakiaahIhadaWgaaWcbaGaam4AaaqabaaabaGaam4Aai abgIGiolaadofaaeqaniabggHiLdGccqGH9aqpdaaeqaqaaiaahIha daWgaaWcbaGaam4AaaqabaaabaGaam4AaiabgIGiolaadwfaaeqani abggHiLdGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGG OaGaaGOmaiaac6cacaaIXaGaaiykaaaa@5A79@

Le calage permet de réduire la variance de l’estimateur d’un total surtout pour les variables d’intérêt qui sont liées aux variables auxiliaires utilisées dans le calage. Cependant, le calage conduit à un estimateur dont le biais est non nul. C’est pour cela que les poids de calage sont déterminés de telle sorte qu’ils soient les plus proches possible de ceux de sondage et ceci afin de pouvoir maîtriser ce biais.

2.1  Précision d’un estimateur linéaire du total

Pour mesurer la précision d’un estimateur linéaire du total, nous considérons l’approche basée sur le plan de sondage et le modèle. En effet, en plus de la distribution du plan de sondage, cette approche consiste à supposer que les valeurs y 1 , , y k , , y N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5b WaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaaysW7cqWIMaYscaGGSaGa aGjbVlaadMhadaWgaaWcbaGaam4AaaqabaGccaaMb8Uaaiilaiaays W7cqWIMaYscaGGSaGaaGjbVlaadMhadaWgaaWcbaGaamOtaaqabaaa aa@4A2D@ de la variable d’intérêt Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzb aaaa@3839@ sont les réalisations d’un vecteur aléatoire ( Y 1 , , Y k , , Y N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGjbVlablAci ljaacYcacaaMe8UaamywamaaBaaaleaacaWGRbaabeaakiaacYcaca aMe8UaeSOjGSKaaiilaiaaysW7caWGzbWaaSbaaSqaaiaad6eaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaaaaaa@4CED@ dont la distribution de probabilités conjointes est donnée par le modèle de Superpopulation ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+o aEaaa@391E@ définit par :

Y k = x k β + ε k ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaCiEamaaDaaaleaacaWG RbaabaqcLbwacWaGyBOmGikaaOGaaCOSdiabgUcaRiabew7aLnaaBa aaleaacaWGRbaabeaakiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaikdacaGGUaGaaGOmaiaacMcaaaa@5071@

avec

E ξ ( ε k ) = 0 ,     V a r ξ ( ε k ) = σ k 2    et   Cov ξ ( ε k , ε l ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfb WaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiabew7aLnaaBaaaleaa caWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaae iiaiaabccacaqGGaGaaiOvaiaacggacaGGYbWaaSbaaSqaaiabe67a 4bqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGRbaabeaaaOGaay jkaiaawMcaaiabg2da9iabeo8aZnaaDaaaleaacaWGRbaabaGaaGOm aaaakiaabccacaqGGaGaaeiiaiaabwgacaqG0bGaaeiiaiaabccaca qGGaGaae4qaiaab+gacaqG2bWaaSbaaSqaaiabe67a4bqabaGcdaqa daqaaiabew7aLnaaBaaaleaacaWGRbaabeaakiaacYcacaaMe8Uaeq yTdu2aaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaayzkaaGaeyypa0Ja aGimaaaa@65F8@

β = ( β 1 , , β p ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYo Gaeyypa0ZaaeWaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaGccaGG SaGaaGjbVlablAciljaacYcacaaMe8UaeqOSdi2aaSbaaSqaaiaadc haaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaaGa aGzaVlaacYcaaaa@4B73@ σ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdp WCdaqhaaWcbaGaam4Aaaqaaiaaikdaaaaaaa@3AF7@ ( k U ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaiaadUgacqGHiiIZcaWGvbaacaGLOaGaayzkaaaaaa@3C32@ sont des paramètres inconnus. E ξ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfb WaaSbaaSqaaiabe67a4bqabaGccaGGSaaaaa@3ACE@ Var ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGwb GaaeyyaiaabkhadaWgaaWcbaGaeqOVdGhabeaaaaa@3BFC@ et Cov ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGdb Gaae4BaiaabAhadaWgaaWcbaGaeqOVdGhabeaaaaa@3BFB@ représentent respectivement l’espérance, la variance et la covariance sous le modèle. L’estimateur du vecteur β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYo aaaa@3899@ des coefficients de régression est donné par

β ^ = ( X S Π S 1 V S 1 X S ) 1 X S Π S 1 V S 1 Y S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWHYo GbaKaacqGH9aqpdaqadaqaaiaahIfadaqhaaWcbaGaam4uaaqaaKqz GfGamai2gkdiIcaakiaahc6adaqhaaWcbaGaam4uaaqaaiabgkHiTi aaigdaaaGccaWHwbWaa0baaSqaaiaadofaaeaacqGHsislcaaIXaaa aOGaaCiwamaaBaaaleaacaWGtbaabeaaaOGaayjkaiaawMcaamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGaam4uaaqa aKqzGfGamai2gkdiIcaakiaahc6adaqhaaWcbaGaam4uaaqaaiabgk HiTiaaigdaaaGccaWHwbWaa0baaSqaaiaadofaaeaacqGHsislcaaI XaaaaOGaaCywamaaBaaaleaacaWGtbaabeaaaaa@5B1B@

X S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHyb Waa0baaSqaaiaadofaaeaajugybiadaITHYaIOaaaaaa@3CF0@ est la matrice des valeurs des x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4b Waa0baaSqaaiaadUgaaeaajugybiadaITHYaIOaaaaaa@3D28@ pour k S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRb GaeyicI4Saam4uaiaacYcaaaa@3B57@ Π S = diag ( π k ) k S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHGo WaaSbaaSqaaiaadofaaeqaaOGaeyypa0JaaeizaiaabMgacaqGHbGa ae4zamaabmaabaGaeqiWda3aaSbaaSqaaiaadUgaaeqaaaGccaGLOa GaayzkaaWaaSbaaSqaaiaadUgacqGHiiIZcaWGtbaabeaaaaa@4620@ et V S = diag ( σ k 2 ) k S . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHwb WaaSbaaSqaaiaadofaaeqaaOGaeyypa0JaaeizaiaabMgacaqGHbGa ae4zamaabmaabaGaeq4Wdm3aa0baaSqaaiaadUgaaeaacaaIYaaaaa GccaGLOaGaayzkaaWaaSbaaSqaaiaadUgacqGHiiIZcaWGtbaabeaa kiaaygW7caGGUaaaaa@48DC@ Sous l’approche basée sur le plan et le modèle, le critère utilisé pour mesurer la précision d’un estimateur linéaire du total est

EQM p ξ ( t ^ y w ) = E p E ξ ( t ^ y w t y ) 2 ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGfb Gaaeyuaiaab2eadaWgaaWcbaGaamiCaiabe67a4bqabaGcdaqadaqa aiqadshagaqcamaaBaaaleaacaWG5bGaam4DaaqabaaakiaawIcaca GLPaaacqGH9aqpcaWGfbWaaSbaaSqaaiaadchaaeqaaOGaamyramaa BaaaleaacqaH+oaEaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcba GaamyEaiaadEhaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWG5baa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaywW7ca aMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG4maiaa cMcaaaa@5B4D@

qui correspond à l’Écart Quadratique Moyen sous le plan et le modèle, appelé aussi l’EQM anticipée. Cette formulation suppose que le plan de sondage n’est pas informatif. Ainsi, on peut montrer que l’EQM anticipée d’un estimateur linéaire t ^ y w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadEhaaeqaaaaa@3A8A@ est donné par (Nedyalkova et Tillé, 2008):

EQM p ξ ( t ^ y w ) = E p ( k s w k S x k β k U x k β ) 2 + k U σ k 2 [ var p ( w k S I k ) + ( R k S 1 ) 2 ] ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGfb Gaaeyuaiaab2eadaWgaaWcbaGaamiCaiabe67a4bqabaGcdaqadaqa aiqadshagaqcamaaBaaaleaacaWG5bGaam4DaaqabaaakiaawIcaca GLPaaacqGH9aqpcaWGfbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaa daaeqbqaaiaadEhadaWgaaWcbaGaam4AaiaadofaaeqaaOGaaCiEam aaDaaaleaacaWGRbaabaqcLbwacWaGyBOmGikaaOGaaCOSdaWcbaGa am4AaiabgIGiolaadohaaeqaniabggHiLdGccqGHsisldaaeqbqaai aahIhadaqhaaWcbaGaam4AaaqaaKqzGfGamai2gkdiIcaakiaahk7a aSqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHris5aaGccaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaabuaeaacqaHdpWC daqhaaWcbaGaam4AaaqaaiaaikdaaaGcdaWadaqaaiGacAhacaGGHb GaaiOCamaaBaaaleaacaWGWbaabeaakmaabmaabaGaam4DamaaBaaa leaacaWGRbGaam4uaaqabaGccaWGjbWaaSbaaSqaaiaadUgaaeqaaa GccaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaWGsbWaaSbaaSqaaiaa dUgacaWGtbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaaakiaawUfacaGLDbaaaSqaaiaadUgacqGHiiIZ caWGvbaabeqdcqGHris5aOGaaGzbVlaaywW7caGGOaGaaGOmaiaac6 cacaaI0aGaaiykaaaa@88FC@

R k S = E ( w k S | I k = 1 ) d k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsb WaaSbaaSqaaiaadUgacaWGtbaabeaakiabg2da9maalaaabaGaamyr amaabmaabaWaaqGaaeaacaWG3bWaaSbaaSqaaiaadUgacaWGtbaabe aakiaaykW7aiaawIa7aiaaykW7caWGjbWaaSbaaSqaaiaadUgaaeqa aOGaeyypa0JaaGymaaGaayjkaiaawMcaaaqaaiaadsgadaWgaaWcba Gaam4Aaaqabaaaaaaa@4AF8@

avec d k = 1 / π k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGa eqiWda3aaSbaaSqaaiaadUgaaeqaaaaaaaa@3E1A@ (poids de sondage) et I k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaGymaaaa@3B10@ pour k S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRb GaeyicI4Saam4uaaaa@3AA7@ et I k = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaGimaaaa@3B0F@ sinon. On note que le ratio R k S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsb WaaSbaaSqaaiaadUgacaWGtbaabeaaaaa@3A26@ vaut 1 quand l’estimateur linéaire t ^ y w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadEhaaeqaaaaa@3A8A@ est sans biais sous le plan.

2.2  EQM anticipé de l’estimateur par calage

Pour l’estimateur par calage, le fait de vérifier l’équation de calage le rend sans biais sous le modèle :

E ξ ( t ^ y C t y ) = k S w k S , C x k β k U x k β = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfb WaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiqadshagaqcamaaBaaa leaacaWG5bGaam4qaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadM haaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaabuaeaacaWG3bWaaSba aSqaaiaadUgacaWGtbGaaGzaVlaacYcacaaMc8Uaam4qaaqabaGcca WH4bWaa0baaSqaaiaadUgaaeaajugybiadaITHYaIOaaGccaWHYoaa leaacaWGRbGaeyicI4Saam4uaaqab0GaeyyeIuoakiabgkHiTmaaqa fabaGaaCiEamaaDaaaleaacaWGRbaabaqcLbwacWaGyBOmGikaaOGa aCOSdaWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHiLdGccqGH9a qpcaaIWaGaaiOlaaaa@66CF@

Par conséquent, l’expression de son EQM anticipée est donnée par

EQM p ξ ( t ^ y C ) = k U σ k 2 [ var p ( w k S , C I k ) + ( R k 1 ) 2 ] = k U σ k 2 [ V k d k + R k 2 ( d k 1 ) + ( R k 1 ) 2 ] ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaae GacaaabaGaaeyraiaabgfacaqGnbWaaSbaaSqaaiaadchacqaH+oaE aeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamyEaiaadoeaae qaaaGccaGLOaGaayzkaaaabaGaeyypa0JaaGjbVpaaqafabaGaeq4W dm3aa0baaSqaaiaadUgaaeaacaaIYaaaaOWaamWaaeaaciGG2bGaai yyaiaackhadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaadEhadaWg aaWcbaGaam4AaiaadofacaaMb8UaaiilaiaaykW7caWGdbaabeaaki aadMeadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacqGHRaWk daqadaqaaiaadkfadaWgaaWcbaGaam4AaaqabaGccqGHsislcaaIXa aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzx aaaaleaacaWGRbGaeyicI4Saamyvaaqab0GaeyyeIuoaaOqaaaqaai aab2dacaaMe8+aaabuaeaacqaHdpWCdaqhaaWcbaGaam4Aaaqaaiaa ikdaaaGcdaWadaqaamaalaaabaGaamOvamaaBaaaleaacaWGRbaabe aaaOqaaiaadsgadaWgaaWcbaGaam4AaaqabaaaaOGaey4kaSIaamOu amaaDaaaleaacaWGRbaabaGaaGOmaaaakmaabmaabaGaamizamaaBa aaleaacaWGRbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH RaWkdaqadaqaaiaadkfadaWgaaWcbaGaam4AaaqabaGccqGHsislca aIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGa ayzxaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmai aac6cacaaI1aGaaiykaaWcbaGaam4AaiabgIGiolaadwfaaeqaniab ggHiLdaaaaaa@91A1@

avec V k = var p ( w k S , C | I k = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaciODaiaacggacaGGYbWa aSbaaSqaaiaadchaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadU gacaWGtbGaaGzaVlaacYcacaaMc8Uaam4qaaqabaGccaaMc8+aaqqa aeaacaaMc8UaamysamaaBaaaleaacaWGRbaabeaakiabg2da9iaaig daaiaawEa7aaGaayjkaiaawMcaaaaa@4FD3@ et R k = E p ( w k S , C | I k = 1 ) / d k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaWGfbWaaSba aSqaaiaadchaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadUgaca WGtbGaaGzaVlaacYcacaaMc8Uaam4qaaqabaGccaaMc8+aaqqaaeaa caaMc8UaamysamaaBaaaleaacaWGRbaabeaakiabg2da9iaaigdaai aawEa7aaGaayjkaiaawMcaaaqaaiaadsgadaWgaaWcbaGaam4Aaaqa baaaaOGaaGzaVlaac6caaaa@5223@

En effet, on a

var p ( w k S , C I k ) = E p [ var p ( w k S , C I k | I k ) ] + var p [ E p ( w k S , C I k | I k ) ] = π k var p ( w k S , C | I k = 1 ) + π k [ E p ( w k S , C | I k = 1 ) ] 2 [ E p ( w k S , C I k ) ] 2 = V k d k + R k 2 ( d k 1 ) . ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaae WacaaabaGaciODaiaacggacaGGYbWaaSbaaSqaaiaadchaaeqaaOWa aeWaaeaacaWG3bWaaSbaaSqaaiaadUgacaWGtbGaaGzaVlaacYcaca aMc8Uaam4qaaqabaGccaWGjbWaaSbaaSqaaiaadUgaaeqaaaGccaGL OaGaayzkaaaabaGaeyypa0JaamyramaaBaaaleaacaWGWbaabeaakm aadmaabaGaciODaiaacggacaGGYbWaaSbaaSqaaiaadchaaeqaaOWa aeWaaeaacaWG3bWaaSbaaSqaaiaadUgacaWGtbGaaGzaVlaacYcaca aMc8Uaam4qaaqabaGccaWGjbWaaSbaaSqaaiaadUgaaeqaaOGaaGPa VpaaeeaabaGaaGPaVlaadMeadaWgaaWcbaGaam4AaaqabaaakiaawE a7aaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgUcaRiGacAhacaGG HbGaaiOCamaaBaaaleaacaWGWbaabeaakmaadmaabaGaamyramaaBa aaleaacaWGWbaabeaakmaabmaabaGaam4DamaaBaaaleaacaWGRbGa am4uaiaaygW7caGGSaGaaGPaVlaadoeaaeqaaOGaamysamaaBaaale aacaWGRbaabeaakiaaykW7daabbaqaaiaaykW7caWGjbWaaSbaaSqa aiaadUgaaeqaaaGccaGLhWoaaiaawIcacaGLPaaaaiaawUfacaGLDb aaaeaaaeaacqGH9aqpcqaHapaCdaWgaaWcbaGaam4AaaqabaGcciGG 2bGaaiyyaiaackhadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaadE hadaWgaaWcbaGaam4AaiaadofacaaMb8UaaiilaiaaykW7caWGdbaa beaakiaaykW7daabbaqaaiaaykW7caWGjbWaaSbaaSqaaiaadUgaae qaaOGaeyypa0JaaGymaaGaay5bSdaacaGLOaGaayzkaaGaey4kaSIa eqiWda3aaSbaaSqaaiaadUgaaeqaaOWaamWaaeaacaWGfbWaaSbaaS qaaiaadchaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadUgacaWG tbGaaGzaVlaacYcacaaMc8Uaam4qaaqabaGccaaMc8+aaqqaaeaaca aMc8UaamysamaaBaaaleaacaWGRbaabeaaaOGaay5bSdGaeyypa0Ja aGymaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaG OmaaaakiabgkHiTmaadmaabaGaamyramaaBaaaleaacaWGWbaabeaa kmaabmaabaGaam4DamaaBaaaleaacaWGRbGaam4uaiaaygW7caGGSa GaaGPaVlaadoeaaeqaaOGaamysamaaBaaaleaacaWGRbaabeaaaOGa ayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaO qaaaqaaiabg2da9maalaaabaGaamOvamaaBaaaleaacaWGRbaabeaa aOqaaiaadsgadaWgaaWcbaGaam4AaaqabaaaaOGaey4kaSIaamOuam aaDaaaleaacaWGRbaabaGaaGOmaaaakmaabmaabaGaamizamaaBaaa leaacaWGRbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGUa GaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmai aac6cacaaI2aGaaiykaaaaaaa@E7A2@

Notons que l’expression (2.5) de EQM p ξ ( t ^ y C ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGfb Gaaeyuaiaab2eadaWgaaWcbaGaamiCaiabe67a4bqabaGcdaqadaqa aiqadshagaqcamaaBaaaleaacaWG5bGaam4qaaqabaaakiaawIcaca GLPaaaaaa@4143@ permet de mettre en évidence les deux critères dont dépend la précision de l’estimateur par calage t ^ y C . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadoeaaeqaaOGaaiOlaaaa@3B12@ Le premier est celui correspondant au modèle de Superpopulation ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+o aEaaa@391E@ à travers sa variance résiduelle σ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdp WCdaqhaaWcbaGaam4Aaaqaaiaaikdaaaaaaa@3AF7@ qui diminue quand la variable d’intérêt et les variables de calage sont corrélées entre elles (réduction de la variance de t ^ y C ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadoeaaeqaaOGaaiykaiaac6caaaa@3BBF@ Le second critère est représenté par les rapports de poids R k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsb WaaSbaaSqaaiaadUgaaeqaaaaa@394E@ qui deviennent importants quand les poids de calage sont très différents de ceux de sondage (augmentation du biais de t ^ y C ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadoeaaeqaaOGaaiykaiaac6caaaa@3BBF@

2.3  EQM anticipée de l’estimateur de HT

Pour élaborer notre critère de choix entre les pondérations de calage et de sondage, nous avons besoin de déterminer l’expression de l’EQM anticipée de l’estimateur HT. Comme ce dernier est sans biais sous le plan ( R k S = 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaiaadkfadaWgaaWcbaGaam4AaiaadofaaeqaaOGaeyypa0JaaGym aaGaayjkaiaawMcaaiaacYcaaaa@3E2A@ son EQM anticipée est donné par

EQM p ξ ( t ^ y π ) = var p ( k s d k x k β ) + k U σ k 2 d k ( 1 π k ) = k U l U ( π k l π k π l ) d k x k β d l x l β + k U σ k 2 d k ( 1 π k ) . ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaae GacaaabaGaaeyraiaabgfacaqGnbWaaSbaaSqaaiaadchacqaH+oaE aeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamyEaiabec8aWb qabaaakiaawIcacaGLPaaaaeaacqGH9aqpciGG2bGaaiyyaiaackha daWgaaWcbaGaamiCaaqabaGcdaqadaqaamaaqafabaGaamizamaaBa aaleaacaWGRbaabeaakiaahIhadaqhaaWcbaGaam4AaaqaaKqzGfGa mai2gkdiIcaakiaahk7aaSqaaiaadUgacqGHiiIZcaWGZbaabeqdcq GHris5aaGccaGLOaGaayzkaaGaey4kaSYaaabuaeaacqaHdpWCdaqh aaWcbaGaam4AaaqaaiaaikdaaaGccaWGKbWaaSbaaSqaaiaadUgaae qaaOWaaeWaaeaacaaIXaGaeyOeI0IaeqiWda3aaSbaaSqaaiaadUga aeqaaaGccaGLOaGaayzkaaaaleaacaWGRbGaeyicI4Saamyvaaqab0 GaeyyeIuoaaOqaaaqaaiabg2da9maaqafabaWaaabuaeaadaqadaqa aiabec8aWnaaBaaaleaacaWGRbGaamiBaaqabaGccqGHsislcqaHap aCdaWgaaWcbaGaam4AaaqabaGccqaHapaCdaWgaaWcbaGaamiBaaqa baaakiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaaC iEamaaDaaaleaacaWGRbaabaqcLbwacWaGyBOmGikaaOGaaCOSdiaa dsgadaWgaaWcbaGaamiBaaqabaGccaWH4bWaa0baaSqaaiaadYgaae aajugybiadaITHYaIOaaGccaWHYoaaleaacaWGSbGaeyicI4Saamyv aaqab0GaeyyeIuoaaSqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHri s5aOGaey4kaSYaaabuaeaacqaHdpWCdaqhaaWcbaGaam4Aaaqaaiaa ikdaaaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaaIXa GaeyOeI0IaeqiWda3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzk aaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6 cacaaI3aGaaiykaaWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHi Ldaaaaaa@B096@

On note que l’expression de l’EQM anticipée de t ^ y π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiabec8aWbqabaaaaa@3B4B@ dépend des probabilités π k l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@3B25@ qui sont généralement inconnues et difficiles à calculer pour des plans de sondage à probabilités inégales. Plusieurs approximations de ces probabilités ont été proposées dans la littérature permettant d’obtenir plusieurs estimateurs possibles de la variance de l’estimateur de HT. Cependant, Matei et Tillé (2005) montrent à travers une série de simulations que ces estimateurs sont presque équivalents et permettent de bien estimer l’expression exacte de la variance sous le plan de t ^ y π . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiabec8aWbqabaGccaGGUaaaaa@3C07@

En effet, une approximation de var p ( k s d k x k β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGG2b GaaiyyaiaackhadaWgaaWcbaGaamiCaaqabaGcdaqadaqaamaaqaba baGaamizamaaBaaaleaacaWGRbaabeaakiaahIhadaqhaaWcbaGaam 4AaaqaaKqzGfGamai2gkdiIcaakiaahk7aaSqaaiaadUgacqGHiiIZ caWGZbaabeqdcqGHris5aaGccaGLOaGaayzkaaaaaa@4B63@ peut être obtenue en considérant celle proposée par Hájek (1981) pour la variance de l’estimateur HT et qui est donnée par

V Approx = k U c k ( d k x k β ) 2 1 h ( k U c k d k x k β ) 2 ( 2.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwb WaaSbaaSqaaiaabgeacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaaqa baGccqGH9aqpdaaeqbqaaiaadogadaWgaaWcbaGaam4AaaqabaGcda qadaqaaiaadsgadaWgaaWcbaGaam4AaaqabaGccaWH4bWaa0baaSqa aiaadUgaaeaajugybiadaITHYaIOaaGccaWHYoaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGvbaabeqd cqGHris5aOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamiAaaaadaqada qaamaaqafabaGaam4yamaaBaaaleaacaWGRbaabeaakiaadsgadaWg aaWcbaGaam4AaaqabaGccaWH4bWaa0baaSqaaiaadUgaaeaajugybi adaITHYaIOaaGccaWHYoaaleaacaWGRbGaeyicI4Saamyvaaqab0Ga eyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGio aiaacMcaaaa@732E@

h = k U c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGOb Gaeyypa0ZaaabeaeaacaWGJbWaaSbaaSqaaiaadUgaaeqaaaqaaiaa dUgacqGHiiIZcaWGvbaabeqdcqGHris5aaaa@4078@ et c k = N π k ( 1 π k ) / ( N 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaWGobGaeqiW da3aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0Iaeq iWda3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaabaWaaeWa aeaacaWGobGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaacaGGUaaaaa@4905@ Cette dernière est obtenue à partir de l’approximation suivante des probabilités π k l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@3B25@ (voir Deville et Tillé, 2005; Tirari, 2003) :

π k l π k π l { c k c k 2 h si k = l c k c l h si k l . ( 2.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4AaiaadYgaaeqaaOGaeyOeI0IaeqiWda3aaSba aSqaaiaadUgaaeqaaOGaeqiWda3aaSbaaSqaaiaadYgaaeqaaOGaey isIS7aaiqaaeaafaqaaeGacaaabaGaam4yamaaBaaaleaacaWGRbaa beaakiabgkHiTmaalaaabaGaam4yamaaDaaaleaacaWGRbaabaGaaG OmaaaaaOqaaiaadIgaaaaabaGaae4CaiaabMgacaaMe8UaaGPaVlaa dUgacqGH9aqpcaWGSbaabaGaeyOeI0YaaSaaaeaacaWGJbWaaSbaaS qaaiaadUgaaeqaaOGaam4yamaaBaaaleaacaWGSbaabeaaaOqaaiaa dIgaaaaabaGaae4CaiaabMgacaaMe8UaaGPaVlaadUgacqGHGjsUca WGSbGaaiOlaaaaaiaawUhaaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaaikdacaGGUaGaaGyoaiaacMcaaaa@6E0B@

Par conséquent, l’EQM anticipée de t ^ y π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiabec8aWbqabaaaaa@3B4B@ peut être approximée par

EQM ˜ p ξ ( t ^ y π ) = V Approx + k U σ k 2 d k ( 1 π k ) . ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaa qaaiaabweacaqGrbGaaeytaaGaay5adaWaaSbaaSqaaiaadchacqaH +oaEaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamyEaiabec 8aWbqabaaakiaawIcacaGLPaaacqGH9aqpcaWGwbWaaSbaaSqaaiaa bgeacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaaqabaGccqGHRaWkda aeqbqaaiabeo8aZnaaDaaaleaacaWGRbaabaGaaGOmaaaakiaadsga daWgaaWcbaGaam4AaaqabaGcdaqadaqaaiaaigdacqGHsislcqaHap aCdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaGGUaaaleaa caWGRbGaeyicI4Saamyvaaqab0GaeyyeIuoakiaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaicdacaGG Paaaaa@6976@

Notons que pour des plans de sondage simples tels que le plan de Poisson ou le plan stratifié aléatoire simple, les probabilités conjointes peuvent être calculées exactement sans avoir recours à une approximation. Dans ce qui suit, nous allons nous baser sur l’EQM anticipée des estimateurs par calage et HT pour élaborer une nouvelle mesure de l’effet de l’utilisation des poids de calage.


Date de modification :