Criteria for choosing between calibration weighting and survey weighting
Section 2. Estimator of a variable of interest total

U = { 1 , , N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGvb Gaeyypa0ZaaiWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGa aGjbVlaad6eaaiaawUhacaGL9baaaaa@4296@ for a population size N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGob aaaa@382E@ from which sample s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGZb aaaa@3853@ of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUb aaaa@384E@ is selected based on survey design p ( s ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWb WaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaaiOlaaaa@3B83@ S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtb aaaa@3833@ designates a random variable such as p ( s ) = P ( S = s ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWb WaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0Jaamiuamaabmaa baGaam4uaiabg2da9iaadohaaiaawIcacaGLPaaacaGGSaaaaa@41BB@ and π k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4Aaaqabaaaaa@3A34@ and π k l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@3B25@ respectively designate the first and second probabilities of inclusion in survey design p ( s ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWb WaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaaiOlaaaa@3B83@ We are interested in a variable of interest Y = ( y 1 , , y k , , y N ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzb Gaeyypa0ZaaeWaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiil aiaaysW7cqWIMaYscaGGSaGaaGjbVlaadMhadaWgaaWcbaGaam4Aaa qabaGccaGGSaGaaGjbVlablAciljaacYcacaaMe8UaamyEamaaBaaa leaacaWGobaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGccWaGyB OmGikaaiaacYcaaaa@4FE1@ with the objective of estimating its total t y = k U y k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0b WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0ZaaabeaeaacaWG5bWaaSba aSqaaiaadUgaaeqaaaqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHri s5aOGaaiOlaaaa@428A@ To do that, we consider the category of linear estimators t ^ y w = k S w k S y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadEhaaeqaaOGaeyypa0Zaaabeaeaa caWG3bWaaSbaaSqaaiaadUgacaWGtbaabeaakiaadMhadaWgaaWcba Gaam4AaaqabaaabaGaam4AaiabgIGiolaadofaaeqaniabggHiLdaa aa@45D2@ where w k S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3b WaaSbaaSqaaiaadUgacaWGtbaabeaaaaa@3A4B@ are the weights that can depend on sample S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtb aaaa@3833@ and the auxiliary variables available. The basic weights used are the sampling weights generated by d k = 1 / π k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGa eqiWda3aaSbaaSqaaiaadUgaaeqaaaaakiaac6caaaa@3ED6@ They correspond to the Horvitz-Thompson estimator t ^ y π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiabec8aWbqabaaaaa@3B4B@ (1952).

It is assumed that we have p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWb aaaa@3850@ auxiliary variables X 1 , , X p , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGyb WaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaaysW7cqWIMaYscaGGSaGa aGjbVlaadIfadaWgaaWcbaGaamiCaaqabaGccaGGSaaaaa@417D@ for which the values may be represented by vectors x k = ( x k 1 , , x k p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4b WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaeWaaeaacaWG4bWaaSba aSqaaiaadUgacaaIXaaabeaakiaacYcacaaMe8UaeSOjGSKaaiilai aaysW7caWG4bWaaSbaaSqaaiaadUgacaWGWbaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGccWaGyBOmGikaaaaa@4ABA@ and for which the vector of their totals t x = k U x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0b WaaSbaaSqaaiaahIhaaeqaaOGaeyypa0ZaaabeaeaacaWH4bWaaSba aSqaaiaadUgaaeqaaaqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHri s5aaaa@41D4@ is known. The category of calibration estimators is defined by t ^ y C = k S w k S , C y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadoeaaeqaaOGaeyypa0Zaaabeaeaa caWG3bWaaSbaaSqaaiaadUgacaWGtbGaaGzaVlaacYcacaaMc8Uaam 4qaaqabaGccaWG5bWaaSbaaSqaaiaadUgaaeqaaaqaaiaadUgacqGH iiIZcaWGtbaabeqdcqGHris5aaaa@4A2B@ where w k S , C , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG3b WaaSbaaSqaaiaadUgacaWGtbGaaGzaVlaacYcacaaMc8Uaam4qaaqa baGccaGGSaaaaa@3F92@ referred to as calibration weights, verify the calibration equation given by

k S w k S , C x k = k U x k . ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqa qaaiaadEhadaWgaaWcbaGaam4AaiaadofacaaMb8UaaiilaiaaykW7 caWGdbaabeaakiaahIhadaWgaaWcbaGaam4AaaqabaaabaGaam4Aai abgIGiolaadofaaeqaniabggHiLdGccqGH9aqpdaaeqaqaaiaahIha daWgaaWcbaGaam4AaaqabaaabaGaam4AaiabgIGiolaadwfaaeqani abggHiLdGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGG OaGaaGOmaiaac6cacaaIXaGaaiykaaaa@5A79@

Calibration helps to reduce the variance of a total estimator, particularly for variables of interest that are linked to the auxiliary variables used in calibration. However, calibration results in an estimator with a bias other than zero. That is why the calibration weights are determined so that they are as close as possible to the sampling weights in order to manage bias.

2.1  Precision of a linear total estimator

In order to measure the precision of a linear total estimator, we will consider the design and model-based approach. In addition to the design distribution, this approach consists of assuming that values y 1 , , y k , , y N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5b WaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaaysW7cqWIMaYscaGGSaGa aGjbVlaadMhadaWgaaWcbaGaam4AaaqabaGccaaMb8Uaaiilaiaays W7cqWIMaYscaGGSaGaaGjbVlaadMhadaWgaaWcbaGaamOtaaqabaaa aa@4A2D@ for the variable of interest Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzb aaaa@3839@ are the product of a random vector ( Y 1 , , Y k , , Y N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGjbVlablAci ljaacYcacaaMe8UaamywamaaBaaaleaacaWGRbaabeaakiaacYcaca aMe8UaeSOjGSKaaiilaiaaysW7caWGzbWaaSbaaSqaaiaad6eaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaaaaaa@4CED@ whose joint probability distribution is given by the Superpopulation model ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+o aEaaa@391E@ defined by:

Y k = x k β + ε k ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaCiEamaaDaaaleaacaWG RbaabaqcLbwacWaGyBOmGikaaOGaaCOSdiabgUcaRiabew7aLnaaBa aaleaacaWGRbaabeaakiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaikdacaGGUaGaaGOmaiaacMcaaaa@5071@

with

E ξ ( ε k ) = 0 ,     V a r ξ ( ε k ) = σ k 2    and   Cov ξ ( ε k , ε l ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfb WaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiabew7aLnaaBaaaleaa caWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaae iiaiaabccacaqGGaGaaiOvaiaacggacaGGYbWaaSbaaSqaaiabe67a 4bqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGRbaabeaaaOGaay jkaiaawMcaaiabg2da9iabeo8aZnaaDaaaleaacaWGRbaabaGaaGOm aaaakiaabccacaqGGaGaaeiiaiaabggacaqGUbGaaeizaiaabccaca qGGaGaaeiiaiaaboeacaqGVbGaaeODamaaBaaaleaacqaH+oaEaeqa aOWaaeWaaeaacqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaGGSaGaaG jbVlabew7aLnaaBaaaleaacaWGSbaabeaaaOGaayjkaiaawMcaaiab g2da9iaaicdaaaa@66D5@

where β = ( β 1 , , β p ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYo Gaeyypa0ZaaeWaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaGccaGG SaGaaGjbVlablAciljaacYcacaaMe8UaeqOSdi2aaSbaaSqaaiaadc haaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaaGa aGzaVlaacYcaaaa@4B73@ σ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdp WCdaqhaaWcbaGaam4Aaaqaaiaaikdaaaaaaa@3AF7@ ( k U ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaiaadUgacqGHiiIZcaWGvbaacaGLOaGaayzkaaaaaa@3C32@ are unknown parameters. E ξ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfb WaaSbaaSqaaiabe67a4bqabaGccaGGSaaaaa@3ACE@ Var ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGwb GaaeyyaiaabkhadaWgaaWcbaGaeqOVdGhabeaaaaa@3BFC@ and Cov ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGdb Gaae4BaiaabAhadaWgaaWcbaGaeqOVdGhabeaaaaa@3BFB@ represent respectively the expectation, variance and covariance for the model. Vector estimator β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHYo aaaa@3899@ for the regression coefficients is produced by

β ^ = ( X S Π S 1 V S 1 X S ) 1 X S Π S 1 V S 1 Y S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWHYo GbaKaacqGH9aqpdaqadaqaaiaahIfadaqhaaWcbaGaam4uaaqaaKqz GfGamai2gkdiIcaakiaahc6adaqhaaWcbaGaam4uaaqaaiabgkHiTi aaigdaaaGccaWHwbWaa0baaSqaaiaadofaaeaacqGHsislcaaIXaaa aOGaaCiwamaaBaaaleaacaWGtbaabeaaaOGaayjkaiaawMcaamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGaam4uaaqa aKqzGfGamai2gkdiIcaakiaahc6adaqhaaWcbaGaam4uaaqaaiabgk HiTiaaigdaaaGccaWHwbWaa0baaSqaaiaadofaaeaacqGHsislcaaI XaaaaOGaaCywamaaBaaaleaacaWGtbaabeaaaaa@5B1B@

where X S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHyb Waa0baaSqaaiaadofaaeaajugybiadaITHYaIOaaaaaa@3CF0@ is the matrix of x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH4b Waa0baaSqaaiaadUgaaeaajugybiadaITHYaIOaaaaaa@3D28@ values for k S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRb GaeyicI4Saam4uaiaacYcaaaa@3B57@ Π S = diag ( π k ) k S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHGo WaaSbaaSqaaiaadofaaeqaaOGaeyypa0JaaeizaiaabMgacaqGHbGa ae4zamaabmaabaGaeqiWda3aaSbaaSqaaiaadUgaaeqaaaGccaGLOa GaayzkaaWaaSbaaSqaaiaadUgacqGHiiIZcaWGtbaabeaaaaa@4620@ and V S = diag ( σ k 2 ) k S . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHwb WaaSbaaSqaaiaadofaaeqaaOGaeyypa0JaaeizaiaabMgacaqGHbGa ae4zamaabmaabaGaeq4Wdm3aa0baaSqaaiaadUgaaeaacaaIYaaaaa GccaGLOaGaayzkaaWaaSbaaSqaaiaadUgacqGHiiIZcaWGtbaabeaa kiaaygW7caGGUaaaaa@48DC@ Under the the design and model-based approach, the criterion used to measure the precision of a linear total estimator is

MSE p ξ ( t ^ y w ) = E p E ξ ( t ^ y w t y ) 2 ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaamiCaiabe67a4bqabaGcdaqadaqa aiqadshagaqcamaaBaaaleaacaWG5bGaam4DaaqabaaakiaawIcaca GLPaaacqGH9aqpcaWGfbWaaSbaaSqaaiaadchaaeqaaOGaamyramaa BaaaleaacqaH+oaEaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcba GaamyEaiaadEhaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWG5baa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaywW7ca aMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG4maiaa cMcaaaa@5B4F@

which corresponds to the mean square error (MSE) for the design and model, also referred to as the anticipated mean square error (AMSE). This is based on the assumption that the design is not informative. We can then show that the AMSE for linear estimator t ^ y w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadEhaaeqaaaaa@3A8A@ is (Nedyalkova and Tillé, 2008):

MSE p ξ ( t ^ y w ) = E p ( k s w k S x k β k U x k β ) 2 + k U σ k 2 [ var p ( w k S I k ) + ( R k S 1 ) 2 ] ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaamiCaiabe67a4bqabaGcdaqadaqa aiqadshagaqcamaaBaaaleaacaWG5bGaam4DaaqabaaakiaawIcaca GLPaaacqGH9aqpcaWGfbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaa daaeqbqaaiaadEhadaWgaaWcbaGaam4AaiaadofaaeqaaOGaaCiEam aaDaaaleaacaWGRbaabaqcLbwacWaGyBOmGikaaOGaaCOSdaWcbaGa am4AaiabgIGiolaadohaaeqaniabggHiLdGccqGHsisldaaeqbqaai aahIhadaqhaaWcbaGaam4AaaqaaKqzGfGamai2gkdiIcaakiaahk7a aSqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHris5aaGccaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaabuaeaacqaHdpWC daqhaaWcbaGaam4AaaqaaiaaikdaaaGcdaWadaqaaiGacAhacaGGHb GaaiOCamaaBaaaleaacaWGWbaabeaakmaabmaabaGaam4DamaaBaaa leaacaWGRbGaam4uaaqabaGccaWGjbWaaSbaaSqaaiaadUgaaeqaaa GccaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaWGsbWaaSbaaSqaaiaa dUgacaWGtbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaaakiaawUfacaGLDbaaaSqaaiaadUgacqGHiiIZ caWGvbaabeqdcqGHris5aOGaaGzbVlaaywW7caGGOaGaaGOmaiaac6 cacaaI0aGaaiykaaaa@88FE@

where

R k S = E ( w k S | I k = 1 ) d k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsb WaaSbaaSqaaiaadUgacaWGtbaabeaakiabg2da9maalaaabaGaamyr amaabmaabaWaaqGaaeaacaWG3bWaaSbaaSqaaiaadUgacaWGtbaabe aakiaaykW7aiaawIa7aiaaykW7caWGjbWaaSbaaSqaaiaadUgaaeqa aOGaeyypa0JaaGymaaGaayjkaiaawMcaaaqaaiaadsgadaWgaaWcba Gaam4Aaaqabaaaaaaa@4AF8@

with d k = 1 / π k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGa eqiWda3aaSbaaSqaaiaadUgaaeqaaaaaaaa@3E1A@ (sampling weight) and I k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaGymaaaa@3B10@ for k S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRb GaeyicI4Saam4uaaaa@3AA7@ and I k = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaGimaaaa@3B0F@ otherwise. Ratio R k S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsb WaaSbaaSqaaiaadUgacaWGtbaabeaaaaa@3A26@ equals 1 when linear estimator t ^ y w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadEhaaeqaaaaa@3A8A@ is unbiased according to the design.

2.2  AMSE for the calibration estimator

For the calibration estimator, verifying the calibration equation renders it unbiased under the model:

E ξ ( t ^ y C t y ) = k S w k S , C x k β k U x k β = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfb WaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiqadshagaqcamaaBaaa leaacaWG5bGaam4qaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadM haaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaabuaeaacaWG3bWaaSba aSqaaiaadUgacaWGtbGaaGzaVlaacYcacaaMc8Uaam4qaaqabaGcca WH4bWaa0baaSqaaiaadUgaaeaajugybiadaITHYaIOaaGccaWHYoaa leaacaWGRbGaeyicI4Saam4uaaqab0GaeyyeIuoakiabgkHiTmaaqa fabaGaaCiEamaaDaaaleaacaWGRbaabaqcLbwacWaGyBOmGikaaOGa aCOSdaWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHiLdGccqGH9a qpcaaIWaGaaiOlaaaa@66CF@

Consequently, the AMSE is expressed as:

MSE p ξ ( t ^ y C ) = k U σ k 2 [ var p ( w k S , C I k ) + ( R k 1 ) 2 ] = k U σ k 2 [ V k d k + R k 2 ( d k 1 ) + ( R k 1 ) 2 ] ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaae GacaaabaGaaeytaiaabofacaqGfbWaaSbaaSqaaiaadchacqaH+oaE aeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamyEaiaadoeaae qaaaGccaGLOaGaayzkaaaabaGaeyypa0JaaGjbVpaaqafabaGaeq4W dm3aa0baaSqaaiaadUgaaeaacaaIYaaaaOWaamWaaeaaciGG2bGaai yyaiaackhadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaadEhadaWg aaWcbaGaam4AaiaadofacaaMb8UaaiilaiaaykW7caWGdbaabeaaki aadMeadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacqGHRaWk daqadaqaaiaadkfadaWgaaWcbaGaam4AaaqabaGccqGHsislcaaIXa aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzx aaaaleaacaWGRbGaeyicI4Saamyvaaqab0GaeyyeIuoaaOqaaaqaai aab2dacaaMe8+aaabuaeaacqaHdpWCdaqhaaWcbaGaam4Aaaqaaiaa ikdaaaGcdaWadaqaamaalaaabaGaamOvamaaBaaaleaacaWGRbaabe aaaOqaaiaadsgadaWgaaWcbaGaam4AaaqabaaaaOGaey4kaSIaamOu amaaDaaaleaacaWGRbaabaGaaGOmaaaakmaabmaabaGaamizamaaBa aaleaacaWGRbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH RaWkdaqadaqaaiaadkfadaWgaaWcbaGaam4AaaqabaGccqGHsislca aIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGa ayzxaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmai aac6cacaaI1aGaaiykaaWcbaGaam4AaiabgIGiolaadwfaaeqaniab ggHiLdaaaaaa@91A3@

where V k = var p ( w k S , C | I k = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaciODaiaacggacaGGYbWa aSbaaSqaaiaadchaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadU gacaWGtbGaaGzaVlaacYcacaaMc8Uaam4qaaqabaGccaaMc8+aaqqa aeaacaaMc8UaamysamaaBaaaleaacaWGRbaabeaakiabg2da9iaaig daaiaawEa7aaGaayjkaiaawMcaaaaa@4FD3@ and R k = E p ( w k S , C | I k = 1 ) / d k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaWGfbWaaSba aSqaaiaadchaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadUgaca WGtbGaaGzaVlaacYcacaaMc8Uaam4qaaqabaGccaaMc8+aaqqaaeaa caaMc8UaamysamaaBaaaleaacaWGRbaabeaakiabg2da9iaaigdaai aawEa7aaGaayjkaiaawMcaaaqaaiaadsgadaWgaaWcbaGaam4Aaaqa baaaaOGaaGzaVlaac6caaaa@5223@

Giving

var p ( w k S , C I k ) = E p [ var p ( w k S , C I k | I k ) ] + var p [ E p ( w k S , C I k | I k ) ] = π k var p ( w k S , C | I k = 1 ) + π k [ E p ( w k S , C | I k = 1 ) ] 2 [ E p ( w k S , C I k ) ] 2 = V k d k + R k 2 ( d k 1 ) . ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaae WacaaabaGaciODaiaacggacaGGYbWaaSbaaSqaaiaadchaaeqaaOWa aeWaaeaacaWG3bWaaSbaaSqaaiaadUgacaWGtbGaaGzaVlaacYcaca aMc8Uaam4qaaqabaGccaWGjbWaaSbaaSqaaiaadUgaaeqaaaGccaGL OaGaayzkaaaabaGaeyypa0JaamyramaaBaaaleaacaWGWbaabeaakm aadmaabaGaciODaiaacggacaGGYbWaaSbaaSqaaiaadchaaeqaaOWa aeWaaeaacaWG3bWaaSbaaSqaaiaadUgacaWGtbGaaGzaVlaacYcaca aMc8Uaam4qaaqabaGccaWGjbWaaSbaaSqaaiaadUgaaeqaaOGaaGPa VpaaeeaabaGaaGPaVlaadMeadaWgaaWcbaGaam4AaaqabaaakiaawE a7aaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgUcaRiGacAhacaGG HbGaaiOCamaaBaaaleaacaWGWbaabeaakmaadmaabaGaamyramaaBa aaleaacaWGWbaabeaakmaabmaabaGaam4DamaaBaaaleaacaWGRbGa am4uaiaaygW7caGGSaGaaGPaVlaadoeaaeqaaOGaamysamaaBaaale aacaWGRbaabeaakiaaykW7daabbaqaaiaaykW7caWGjbWaaSbaaSqa aiaadUgaaeqaaaGccaGLhWoaaiaawIcacaGLPaaaaiaawUfacaGLDb aaaeaaaeaacqGH9aqpcqaHapaCdaWgaaWcbaGaam4AaaqabaGcciGG 2bGaaiyyaiaackhadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaadE hadaWgaaWcbaGaam4AaiaadofacaaMb8UaaiilaiaaykW7caWGdbaa beaakiaaykW7daabbaqaaiaaykW7caWGjbWaaSbaaSqaaiaadUgaae qaaOGaeyypa0JaaGymaaGaay5bSdaacaGLOaGaayzkaaGaey4kaSIa eqiWda3aaSbaaSqaaiaadUgaaeqaaOWaamWaaeaacaWGfbWaaSbaaS qaaiaadchaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadUgacaWG tbGaaGzaVlaacYcacaaMc8Uaam4qaaqabaGccaaMc8+aaqqaaeaaca aMc8UaamysamaaBaaaleaacaWGRbaabeaaaOGaay5bSdGaeyypa0Ja aGymaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaG OmaaaakiabgkHiTmaadmaabaGaamyramaaBaaaleaacaWGWbaabeaa kmaabmaabaGaam4DamaaBaaaleaacaWGRbGaam4uaiaaygW7caGGSa GaaGPaVlaadoeaaeqaaOGaamysamaaBaaaleaacaWGRbaabeaaaOGa ayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaO qaaaqaaiabg2da9maalaaabaGaamOvamaaBaaaleaacaWGRbaabeaa aOqaaiaadsgadaWgaaWcbaGaam4AaaqabaaaaOGaey4kaSIaamOuam aaDaaaleaacaWGRbaabaGaaGOmaaaakmaabmaabaGaamizamaaBaaa leaacaWGRbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGUa GaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmai aac6cacaaI2aGaaiykaaaaaaa@E7A2@

Note that the expression (2.5) of MSE p ξ ( t ^ y C ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGnb Gaae4uaiaabweadaWgaaWcbaGaamiCaiabe67a4bqabaGcdaqadaqa aiqadshagaqcamaaBaaaleaacaWG5bGaam4qaaqabaaakiaawIcaca GLPaaaaaa@4145@ makes it possible to underscore the two criteria that determine the accuracy of calibration estimator t ^ y C . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadoeaaeqaaOGaaiOlaaaa@3B12@ The first corresponds to Superpopulation model ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+o aEaaa@391E@ through its residual variance σ k 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdp WCdaqhaaWcbaGaam4AaaqaaiaaikdaaaGccaGGSaaaaa@3BB1@ which decreases when the variable of interest and the calibration variables are correlated (variance reduction t ^ y C ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadoeaaeqaaOGaaiykaiaac6caaaa@3BBF@ The second criterion is represented by weight ratios R k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsb WaaSbaaSqaaiaadUgaaeqaaOGaaiilaaaa@3A08@ which become important when the calibration weights are very different from the sampling weights (bias increase t ^ y C ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiaadoeaaeqaaOGaaiykaiaac6caaaa@3BBF@

2.3  AMSE for the HT estimator

In order to develop our criterion for choosing between calibration weighting and sample weighting, we need to determine the expression of the AMSE for the HT estimator. Since the latter is unbiased under the design ( R k S = 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaiaadkfadaWgaaWcbaGaam4AaiaadofaaeqaaOGaeyypa0JaaGym aaGaayjkaiaawMcaaiaacYcaaaa@3E2A@ its AMSE is given by:

MSE p ξ ( t ^ y π ) = var p ( k s d k x k β ) + k U σ k 2 d k ( 1 π k ) = k U l U ( π k l π k π l ) d k x k β d l x l β + k U σ k 2 d k ( 1 π k ) . ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaae GacaaabaGaaeytaiaabofacaqGfbWaaSbaaSqaaiaadchacqaH+oaE aeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamyEaiabec8aWb qabaaakiaawIcacaGLPaaaaeaacqGH9aqpciGG2bGaaiyyaiaackha daWgaaWcbaGaamiCaaqabaGcdaqadaqaamaaqafabaGaamizamaaBa aaleaacaWGRbaabeaakiaahIhadaqhaaWcbaGaam4AaaqaaKqzGfGa mai2gkdiIcaakiaahk7aaSqaaiaadUgacqGHiiIZcaWGZbaabeqdcq GHris5aaGccaGLOaGaayzkaaGaey4kaSYaaabuaeaacqaHdpWCdaqh aaWcbaGaam4AaaqaaiaaikdaaaGccaWGKbWaaSbaaSqaaiaadUgaae qaaOWaaeWaaeaacaaIXaGaeyOeI0IaeqiWda3aaSbaaSqaaiaadUga aeqaaaGccaGLOaGaayzkaaaaleaacaWGRbGaeyicI4Saamyvaaqab0 GaeyyeIuoaaOqaaaqaaiabg2da9maaqafabaWaaabuaeaadaqadaqa aiabec8aWnaaBaaaleaacaWGRbGaamiBaaqabaGccqGHsislcqaHap aCdaWgaaWcbaGaam4AaaqabaGccqaHapaCdaWgaaWcbaGaamiBaaqa baaakiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaaC iEamaaDaaaleaacaWGRbaabaqcLbwacWaGyBOmGikaaOGaaCOSdiaa dsgadaWgaaWcbaGaamiBaaqabaGccaWH4bWaa0baaSqaaiaadYgaae aajugybiadaITHYaIOaaGccaWHYoaaleaacaWGSbGaeyicI4Saamyv aaqab0GaeyyeIuoaaSqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHri s5aOGaey4kaSYaaabuaeaacqaHdpWCdaqhaaWcbaGaam4Aaaqaaiaa ikdaaaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaaIXa GaeyOeI0IaeqiWda3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzk aaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6 cacaaI3aGaaiykaaWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHi Ldaaaaaa@B098@

It should be noted that the expression of the AMSE for t ^ y π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiabec8aWbqabaaaaa@3B4B@ depends on probabilities π k l , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4AaiaadYgaaeqaaOGaaiilaaaa@3BDF@ which are generally unknown and difficult to calculate for unequal probability sampling designs. Several approximations for these probabilities have been proposed in literature, enabling us to obtain several possible estimators for the variance of the HT estimator. However, Matei and Tillé (2005) showed, through a series of simulations, that these estimators are almost equivalent and allow us to effectively estimate the exact expression of the variance under design t ^ y π . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiabec8aWbqabaGccaGGUaaaaa@3C07@

An approximation of var p ( k s d k x k β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGG2b GaaiyyaiaackhadaWgaaWcbaGaamiCaaqabaGcdaqadaqaamaaqaba baGaamizamaaBaaaleaacaWGRbaabeaakiaahIhadaqhaaWcbaGaam 4AaaqaaKqzGfGamai2gkdiIcaakiaahk7aaSqaaiaadUgacqGHiiIZ caWGZbaabeqdcqGHris5aaGccaGLOaGaayzkaaaaaa@4B63@ can be obtained by considering the one proposed by Hájek (1981) for the variance of the HT estimator, produced by:

V Approx = k U c k ( d k x k β ) 2 1 h ( k U c k d k x k β ) 2 ( 2.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwb WaaSbaaSqaaiaabgeacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaaqa baGccqGH9aqpdaaeqbqaaiaadogadaWgaaWcbaGaam4AaaqabaGcda qadaqaaiaadsgadaWgaaWcbaGaam4AaaqabaGccaWH4bWaa0baaSqa aiaadUgaaeaajugybiadaITHYaIOaaGccaWHYoaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGvbaabeqd cqGHris5aOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamiAaaaadaqada qaamaaqafabaGaam4yamaaBaaaleaacaWGRbaabeaakiaadsgadaWg aaWcbaGaam4AaaqabaGccaWH4bWaa0baaSqaaiaadUgaaeaajugybi adaITHYaIOaaGccaWHYoaaleaacaWGRbGaeyicI4Saamyvaaqab0Ga eyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGio aiaacMcaaaa@732E@

where h = k U c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGOb Gaeyypa0ZaaabeaeaacaWGJbWaaSbaaSqaaiaadUgaaeqaaaqaaiaa dUgacqGHiiIZcaWGvbaabeqdcqGHris5aaaa@4078@ and c k = N π k ( 1 π k ) / ( N 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJb WaaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSGbaeaacaWGobGaeqiW da3aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0Iaeq iWda3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaabaWaaeWa aeaacaWGobGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaacaGGUaaaaa@4905@ The latter is obtained from the following approximation of probabilities π k l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@3B25@ (see Deville and Tillé, 2005; Tirari, 2003):

π k l π k π l { c k c k 2 h if k = l c k c l h if k l . ( 2.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHap aCdaWgaaWcbaGaam4AaiaadYgaaeqaaOGaeyOeI0IaeqiWda3aaSba aSqaaiaadUgaaeqaaOGaeqiWda3aaSbaaSqaaiaadYgaaeqaaOGaey isIS7aaiqaaeaafaqaaeGacaaabaGaam4yamaaBaaaleaacaWGRbaa beaakiabgkHiTmaalaaabaGaam4yamaaDaaaleaacaWGRbaabaGaaG OmaaaaaOqaaiaadIgaaaaabaGaaeyAaiaabAgacaaMe8UaaGPaVlaa dUgacqGH9aqpcaWGSbaabaGaeyOeI0YaaSaaaeaacaWGJbWaaSbaaS qaaiaadUgaaeqaaOGaam4yamaaBaaaleaacaWGSbaabeaaaOqaaiaa dIgaaaaabaGaaeyAaiaabAgacaaMe8UaaGPaVlaadUgacqGHGjsUca WGSbGaaiOlaaaaaiaawUhaaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaaikdacaGGUaGaaGyoaiaacMcaaaa@6DF1@

Consequently, the AMSE for t ^ y π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG0b GbaKaadaWgaaWcbaGaamyEaiabec8aWbqabaaaaa@3B4B@ can be approximated by:

MSE ˜ p ξ ( t ^ y π ) = V Approx + k U σ k 2 d k ( 1 π k ) . ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8rrps0lbbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9 qqFj0db9qqvqFr0dXdHiVc=bYP0xH8peeu0xXdcrpe0db9Wqpepec9 ar=xfr=xfr=tmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaa qaaiaab2eacaqGtbGaaeyraaGaay5adaWaaSbaaSqaaiaadchacqaH +oaEaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamyEaiabec 8aWbqabaaakiaawIcacaGLPaaacqGH9aqpcaWGwbWaaSbaaSqaaiaa bgeacaqGWbGaaeiCaiaabkhacaqGVbGaaeiEaaqabaGccqGHRaWkda aeqbqaaiabeo8aZnaaDaaaleaacaWGRbaabaGaaGOmaaaakiaadsga daWgaaWcbaGaam4AaaqabaGcdaqadaqaaiaaigdacqGHsislcqaHap aCdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaGGUaaaleaa caWGRbGaeyicI4Saamyvaaqab0GaeyyeIuoakiaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaicdacaGG Paaaaa@6978@

It should be noted that for simple designs, such as Poisson design or simple stratified random design, joint probability can be calculated precisely without the need for an approximation. In the next section, we will be basing calibration and HT estimators on the AMSE to develop a new measurement of the impact of using calibration weights.


Date modified: