How to decompose the non-response variance: A total survey error approach
Section 5. Conclusion

The proposed unit-level score is a good approximation of the unit impact on the variance due to non-response. It is applicable for different survey designs, compliant with calibration estimators for domain totals and works with many common imputation methods. The assumptions on which the decomposition relies are generally valid in common surveys using unbiased imputation methods and consistent estimators of imputation model parameters. The simulation results show that this approach becomes more accurate with larger sample sizes. The decomposition of the non-response variance is biased due to its non-linearity. However, the bias is smaller in asymmetric populations and when focusing on a small number of nonresponding units. The fact that the ordering of units using the estimated contribution to variance due to non-response is similar to the real order is an important aspect when the priority is to identify the largest contributors, not necessarily their actual contributions, to the total error.

This paper presented the method in a univariate context but it can be easily extended to a multivariate framework, using a distance function to combine the item contributions into a unit contribution. The idea remains to focus our attention in terms of collection treatments or manual verification on cases where the unit scores are the highest. In this case the non-response follow-up treatment might be different for unit non-response compared to partial non-response. For example, a telephone follow-up could be used to collect all the items for the total nonresponding units with the larger score; and the partial nonrespondents with a large score could be sent to an analyst for review, depending on the budget for follow-up. Moreover, if this score can be computed several times during the collection period, then non-response follow-ups will be more efficient because the unit score will be more accurate and the quality might become satisfactory for some estimates. Simulation results show that the proposed score is a good approximation to the contribution of a unit to the variance due to non-response. Subsequently, this score could be used to determine how many and which nonresponding units should be followed in order to reach a given estimated coefficient of variation. 

This work was initially done for non-response prioritization under the Rolling Estimate iterative adaptive design process for IBSP. Following the original plan, key item estimates would be computed with their associated quality indicators at several specific times during the collection period. After each specific time, the units with the largest contributions according to our method would be prioritized for follow-up.

Acknowledgements

The authors want to thank the reviewers (Cynthia Bocci and Jessica Andrews), the associate editor, the referees and the assistant editor for their valuable feedback.

Appendix

Proof 1

k s m δ k ( V ^ DIF ( t ^ d ) ) = k s m ( 1 π k ) w k 2 d k σ ^ k 2 = V ^ DIF ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeaacq aH0oazdaWgaaWcbaGaam4AaaqabaGcdaqadaqaaiqadAfagaqcamaa BaaaleaacaqGebGaaeysaiaabAeaaeqaaOWaaeWaaeaaceWG0bGbaK aadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGL PaaaaSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaad2gaaeqaaa WcbeqdcqGHris5aOGaeyypa0ZaaabuaeaadaqadaqaaiaaigdacqGH sislcqaHapaCdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaca WG3bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaamizamaaBaaaleaa caWGRbaabeaakiqbeo8aZzaajaWaa0baaSqaaiaadUgaaeaacaaIYa aaaaqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaad2gaaeqaaaWc beqdcqGHris5aOGaeyypa0JabmOvayaajaWaaSbaaSqaaiaabseaca qGjbGaaeOraaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaacaWG KbaabeaaaOGaayjkaiaawMcaaiaac6caaaa@673C@

Proof 2

k s m δ k ( V ^ MIX ( t ^ d ) ) = k s m ( 2 l s r w k d k φ l k ( w l 1 ) d l σ ^ l 2 2 w k ( w k 1 ) d k σ ^ k 2 ) = 2 k s m l s r w k d k φ l k ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 = 2 l s r k s m w k d k φ l k ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 = 2 l s r ( k s m w k d k φ l k ) ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 = 2 l s r W d l ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 = V ^ MIX ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaa aabaWaaabuaeaacqaH0oazdaWgaaWcbaGaam4AaaqabaGcdaqadaqa aiqadAfagaqcamaaBaaaleaacaqGnbGaaeysaiaabIfaaeqaaOWaae WaaeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGL PaaaaiaawIcacaGLPaaaaSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaW qaaiaad2gaaeqaaaWcbeqdcqGHris5aaGcbaGaeyypa0Zaaabuaeaa daqadaqaaiaaikdadaaeqbqaaiaadEhadaWgaaWcbaGaam4Aaaqaba GccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aaSbaaSqaaiaa dYgacaWGRbaabeaakmaabmaabaGaam4DamaaBaaaleaacaWGSbaabe aakiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaa dYgaaeqaaOGafq4WdmNbaKaadaqhaaWcbaGaamiBaaqaaiaaikdaaa aabaGaamiBaiabgIGiolaadohadaWgaaadbaGaamOCaaqabaaaleqa niabggHiLdGccqGHsislcaaIYaGaam4DamaaBaaaleaacaWGRbaabe aakmaabmaabaGaam4DamaaBaaaleaacaWGRbaabeaakiabgkHiTiaa igdaaiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGafq 4WdmNbaKaadaqhaaWcbaGaam4AaaqaaiaaikdaaaaakiaawIcacaGL PaaaaSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaad2gaaeqaaa WcbeqdcqGHris5aaGcbaaabaGaeyypa0JaaGOmamaaqafabaWaaabu aeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaamizamaaBaaaleaaca WGRbaabeaakiabeA8aQnaaBaaaleaacaWGSbGaam4AaaqabaGcdaqa daqaaiaadEhadaWgaaWcbaGaamiBaaqabaGccqGHsislcaaIXaaaca GLOaGaayzkaaGaamizamaaBaaaleaacaWGSbaabeaakiqbeo8aZzaa jaWaa0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaadYgacqGHiiIZca WGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aaWcbaGaam4A aiabgIGiolaadohadaWgaaadbaGaamyBaaqabaaaleqaniabggHiLd GccqGHsislcaaIYaWaaabuaeaacaWG3bWaaSbaaSqaaiaadUgaaeqa aOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaaG ymaaGaayjkaiaawMcaaiaadsgadaWgaaWcbaGaam4AaaqabaGccuaH dpWCgaqcamaaDaaaleaacaWGRbaabaGaaGOmaaaaaeaacaWGRbGaey icI4Saam4CamaaBaaameaacaWGTbaabeaaaSqab0GaeyyeIuoaaOqa aaqaaiabg2da9iaaikdadaaeqbqaamaaqafabaGaam4DamaaBaaale aacaWGRbaabeaakiaadsgadaWgaaWcbaGaam4AaaqabaGccqaHgpGA daWgaaWcbaGaamiBaiaadUgaaeqaaOWaaeWaaeaacaWG3bWaaSbaaS qaaiaadYgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadsga daWgaaWcbaGaamiBaaqabaGccuaHdpWCgaqcamaaDaaaleaacaWGSb aabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4CamaaBaaameaacaWG TbaabeaaaSqab0GaeyyeIuoaaSqaaiaadYgacqGHiiIZcaWGZbWaaS baaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aOGaeyOeI0IaaGOmamaa qafabaGaam4DamaaBaaaleaacaWGRbaabeaakmaabmaabaGaam4Dam aaBaaaleaacaWGRbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaa caWGKbWaaSbaaSqaaiaadUgaaeqaaOGafq4WdmNbaKaadaqhaaWcba Gaam4AaaqaaiaaikdaaaaabaGaam4AaiabgIGiolaadohadaWgaaad baGaamyBaaqabaaaleqaniabggHiLdaakeaaaeaacqGH9aqpcaaIYa WaaabuaeaadaqadaqaamaaqafabaGaam4DamaaBaaaleaacaWGRbaa beaakiaadsgadaWgaaWcbaGaam4AaaqabaGccqaHgpGAdaWgaaWcba GaamiBaiaadUgaaeqaaaqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqa aiaad2gaaeqaaaWcbeqdcqGHris5aaGccaGLOaGaayzkaaWaaeWaae aacaWG3bWaaSbaaSqaaiaadYgaaeqaaOGaeyOeI0IaaGymaaGaayjk aiaawMcaaiaadsgadaWgaaWcbaGaamiBaaqabaGccuaHdpWCgaqcam aaDaaaleaacaWGSbaabaGaaGOmaaaaaeaacaWGSbGaeyicI4Saam4C amaaBaaameaacaWGYbaabeaaaSqab0GaeyyeIuoakiabgkHiTiaaik dadaaeqbqaaiaadEhadaWgaaWcbaGaam4AaaqabaGcdaqadaqaaiaa dEhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaaIXaaacaGLOaGaay zkaaGaamizamaaBaaaleaacaWGRbaabeaakiqbeo8aZzaajaWaa0ba aSqaaiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbWaaS baaWqaaiaad2gaaeqaaaWcbeqdcqGHris5aaGcbaaabaGaeyypa0Ja aGOmamaaqafabaGaam4vamaaBaaaleaacaWGKbGaamiBaaqabaGcda qadaqaaiaadEhadaWgaaWcbaGaamiBaaqabaGccqGHsislcaaIXaaa caGLOaGaayzkaaGaamizamaaBaaaleaacaWGSbaabeaakiqbeo8aZz aajaWaa0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaadYgacqGHiiIZ caWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aOGaeyOeI0 IaaGOmamaaqafabaGaam4DamaaBaaaleaacaWGRbaabeaakmaabmaa baGaam4DamaaBaaaleaacaWGRbaabeaakiabgkHiTiaaigdaaiaawI cacaGLPaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGafq4WdmNbaKaa daqhaaWcbaGaam4AaaqaaiaaikdaaaaabaGaam4AaiabgIGiolaado hadaWgaaadbaGaamyBaaqabaaaleqaniabggHiLdaakeaaaeaacqGH 9aqpceWGwbGbaKaadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakm aabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGa ayzkaaGaaiOlaaaaaaa@5912@

Proof 3

k s m δ k ( V ^ NR ( t ^ d ) ) = k s m ( l s r ( 2 W d l w k d k φ l k w k 2 d k φ l k 2 ) σ ^ l 2 + w k 2 d k σ ^ k 2 ) = k s m ( l s r ( 2 W d l w k d k φ l k w k 2 d k φ l k 2 ) σ ^ l 2 ) + k s m w k 2 d k σ ^ k 2 = l s r ( k s m ( 2 W d l w k d k φ l k w k 2 d k φ l k 2 ) σ ^ l 2 ) + k s m w k 2 d k σ ^ k 2 = l s r ( 2 W d l k s m w k d k φ l k σ ^ l 2 k s m w k 2 d k φ l k 2 σ ^ l 2 ) + k s m w k 2 d k σ ^ k 2 = l s r ( 2 W d l 2 σ ^ l 2 k s m w k 2 d k φ l k 2 σ ^ l 2 ) + k s m w k 2 d k σ ^ k 2 = l s r 2 W d l 2 σ ^ l 2 l s r k s m w k 2 d k φ l k 2 σ ^ l 2 + k s m w k 2 d k σ ^ k 2 = V ^ NR ( t ^ d ) + l s r W d l 2 σ ^ l 2 l s r k s m w k 2 d k φ l k 2 σ ^ l 2 = V ^ NR ( t ^ d ) + l s r ( W d l 2 k s m w k 2 d k φ l k 2 ) σ ^ l 2 = V ^ NR ( t ^ d ) + l s r ( ( k s m w k d k φ l k ) 2 k s m w k 2 d k φ l k 2 ) σ ^ l 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabKGaaa aaaeaadaaeqbqaaiabes7aKnaaBaaaleaacaWGRbaabeaakmaabmaa baGabmOvayaajaWaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaaba GabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaa caGLOaGaayzkaaaaleaacaWGRbGaeyicI4Saam4CamaaBaaameaaca WGTbaabeaaaSqab0GaeyyeIuoaaOqaaiabg2da9maaqafabaWaaeWa aeaadaaeqbqaamaabmaabaGaaGOmaiaadEfadaWgaaWcbaGaamizai aadYgaaeqaaOGaam4DamaaBaaaleaacaWGRbaabeaakiaadsgadaWg aaWcbaGaam4AaaqabaGccqaHgpGAdaWgaaWcbaGaamiBaiaadUgaae qaaOGaeyOeI0Iaam4DamaaDaaaleaacaWGRbaabaGaaGOmaaaakiaa dsgadaWgaaWcbaGaam4AaaqabaGccqaHgpGAdaqhaaWcbaGaamiBai aadUgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGafq4WdmNbaKaadaqh aaWcbaGaamiBaaqaaiaaikdaaaaabaGaamiBaiabgIGiolaadohada WgaaadbaGaamOCaaqabaaaleqaniabggHiLdGccqGHRaWkcaWG3bWa a0baaSqaaiaadUgaaeaacaaIYaaaaOGaamizamaaBaaaleaacaWGRb aabeaakiqbeo8aZzaajaWaa0baaSqaaiaadUgaaeaacaaIYaaaaaGc caGLOaGaayzkaaaaleaacaWGRbGaeyicI4Saam4CamaaBaaameaaca WGTbaabeaaaSqab0GaeyyeIuoaaOqaaaqaaiabg2da9maaqafabaWa aeWaaeaadaaeqbqaamaabmaabaGaaGOmaiaadEfadaWgaaWcbaGaam izaiaadYgaaeqaaOGaam4DamaaBaaaleaacaWGRbaabeaakiaadsga daWgaaWcbaGaam4AaaqabaGccqaHgpGAdaWgaaWcbaGaamiBaiaadU gaaeqaaOGaeyOeI0Iaam4DamaaDaaaleaacaWGRbaabaGaaGOmaaaa kiaadsgadaWgaaWcbaGaam4AaaqabaGccqaHgpGAdaqhaaWcbaGaam iBaiaadUgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGafq4WdmNbaKaa daqhaaWcbaGaamiBaaqaaiaaikdaaaaabaGaamiBaiabgIGiolaado hadaWgaaadbaGaamOCaaqabaaaleqaniabggHiLdaakiaawIcacaGL PaaaaSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaad2gaaeqaaa WcbeqdcqGHris5aOGaey4kaSYaaabuaeaacaWG3bWaa0baaSqaaiaa dUgaaeaacaaIYaaaaOGaamizamaaBaaaleaacaWGRbaabeaakiqbeo 8aZzaajaWaa0baaSqaaiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGH iiIZcaWGZbWaaSbaaWqaaiaad2gaaeqaaaWcbeqdcqGHris5aaGcba aabaGaeyypa0ZaaabuaeaadaqadaqaamaaqafabaWaaeWaaeaacaaI YaGaam4vamaaBaaaleaacaWGKbGaamiBaaqabaGccaWG3bWaaSbaaS qaaiaadUgaaeqaaOGaamizamaaBaaaleaacaWGRbaabeaakiabeA8a QnaaBaaaleaacaWGSbGaam4AaaqabaGccqGHsislcaWG3bWaa0baaS qaaiaadUgaaeaacaaIYaaaaOGaamizamaaBaaaleaacaWGRbaabeaa kiabeA8aQnaaDaaaleaacaWGSbGaam4AaaqaaiaaikdaaaaakiaawI cacaGLPaaacuaHdpWCgaqcamaaDaaaleaacaWGSbaabaGaaGOmaaaa aeaacaWGRbGaeyicI4Saam4CamaaBaaameaacaWGTbaabeaaaSqab0 GaeyyeIuoaaOGaayjkaiaawMcaaaWcbaGaamiBaiabgIGiolaadoha daWgaaadbaGaamOCaaqabaaaleqaniabggHiLdGccqGHRaWkdaaeqb qaaiaadEhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGccaWGKbWaaSba aSqaaiaadUgaaeqaaOGafq4WdmNbaKaadaqhaaWcbaGaam4Aaaqaai aaikdaaaaabaGaam4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqa baaaleqaniabggHiLdaakeaaaeaacqGH9aqpdaaeqbqaamaabmaaba GaaGOmaiaadEfadaWgaaWcbaGaamizaiaadYgaaeqaaOWaaabuaeaa caWG3bWaaSbaaSqaaiaadUgaaeqaaOGaamizamaaBaaaleaacaWGRb aabeaakiabeA8aQnaaBaaaleaacaWGSbGaam4AaaqabaGccuaHdpWC gaqcamaaDaaaleaacaWGSbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4 Saam4CamaaBaaameaacaWGTbaabeaaaSqab0GaeyyeIuoakiabgkHi TmaaqafabaGaam4DamaaDaaaleaacaWGRbaabaGaaGOmaaaakiaads gadaWgaaWcbaGaam4AaaqabaGccqaHgpGAdaqhaaWcbaGaamiBaiaa dUgaaeaacaaIYaaaaOGafq4WdmNbaKaadaqhaaWcbaGaamiBaaqaai aaikdaaaaabaGaam4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqa baaaleqaniabggHiLdaakiaawIcacaGLPaaaaSqaaiaadYgacqGHii IZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aOGaey4k aSYaaabuaeaacaWG3bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaam izamaaBaaaleaacaWGRbaabeaakiqbeo8aZzaajaWaa0baaSqaaiaa dUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaai aad2gaaeqaaaWcbeqdcqGHris5aaGcbaaabaGaeyypa0Zaaabuaeaa daqadaqaaiaaikdacaWGxbWaa0baaSqaaiaadsgacaWGSbaabaGaaG Omaaaakiqbeo8aZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaaaOGa eyOeI0YaaabuaeaacaWG3bWaa0baaSqaaiaadUgaaeaacaaIYaaaaO GaamizamaaBaaaleaacaWGRbaabeaakiabeA8aQnaaDaaaleaacaWG SbGaam4AaaqaaiaaikdaaaGccuaHdpWCgaqcamaaDaaaleaacaWGSb aabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4CamaaBaaameaacaWG TbaabeaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaaWcbaGaamiBai abgIGiolaadohadaWgaaadbaGaamOCaaqabaaaleqaniabggHiLdGc cqGHRaWkdaaeqbqaaiaadEhadaqhaaWcbaGaam4Aaaqaaiaaikdaaa GccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGafq4WdmNbaKaadaqhaaWc baGaam4AaaqaaiaaikdaaaaabaGaam4AaiabgIGiolaadohadaWgaa adbaGaamyBaaqabaaaleqaniabggHiLdaakeaaaeaacqGH9aqpdaae qbqaaiaaikdacaWGxbWaa0baaSqaaiaadsgacaWGSbaabaGaaGOmaa aakiqbeo8aZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaa dYgacqGHiiIZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHri s5aOGaeyOeI0YaaabuaeaadaaeqbqaaiaadEhadaqhaaWcbaGaam4A aaqaaiaaikdaaaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO 2aa0baaSqaaiaadYgacaWGRbaabaGaaGOmaaaakiqbeo8aZzaajaWa a0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZb WaaSbaaWqaaiaad2gaaeqaaaWcbeqdcqGHris5aaWcbaGaamiBaiab gIGiolaadohadaWgaaadbaGaamOCaaqabaaaleqaniabggHiLdGccq GHRaWkdaaeqbqaaiaadEhadaqhaaWcbaGaam4AaaqaaiaaikdaaaGc caWGKbWaaSbaaSqaaiaadUgaaeqaaOGafq4WdmNbaKaadaqhaaWcba Gaam4AaaqaaiaaikdaaaaabaGaam4AaiabgIGiolaadohadaWgaaad baGaamyBaaqabaaaleqaniabggHiLdaakeaaaeaacqGH9aqpceWGwb GbaKaadaWgaaWcbaGaaeOtaiaabkfaaeqaaOWaaeWaaeaaceWG0bGb aKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacqGHRaWkda aeqbqaaiaadEfadaqhaaWcbaGaamizaiaadYgaaeaacaaIYaaaaOGa fq4WdmNbaKaadaqhaaWcbaGaamiBaaqaaiaaikdaaaaabaGaamiBai abgIGiolaadohadaWgaaadbaGaamOCaaqabaaaleqaniabggHiLdGc cqGHsisldaaeqbqaamaaqafabaGaam4DamaaDaaaleaacaWGRbaaba GaaGOmaaaakiaadsgadaWgaaWcbaGaam4AaaqabaGccqaHgpGAdaqh aaWcbaGaamiBaiaadUgaaeaacaaIYaaaaOGafq4WdmNbaKaadaqhaa WcbaGaamiBaaqaaiaaikdaaaaabaGaam4AaiabgIGiolaadohadaWg aaadbaGaamyBaaqabaaaleqaniabggHiLdaaleaacaWGSbGaeyicI4 Saam4CamaaBaaameaacaWGYbaabeaaaSqab0GaeyyeIuoaaOqaaaqa aiabg2da9iqadAfagaqcamaaBaaaleaacaqGobGaaeOuaaqabaGcda qadaqaaiqadshagaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaa wMcaaiabgUcaRmaaqafabaWaaeWaaeaacaWGxbWaa0baaSqaaiaads gacaWGSbaabaGaaGOmaaaakiabgkHiTmaaqafabaGaam4DamaaDaaa leaacaWGRbaabaGaaGOmaaaakiaadsgadaWgaaWcbaGaam4Aaaqaba GccqaHgpGAdaqhaaWcbaGaamiBaiaadUgaaeaacaaIYaaaaaqaaiaa dUgacqGHiiIZcaWGZbWaaSbaaWqaaiaad2gaaeqaaaWcbeqdcqGHri s5aaGccaGLOaGaayzkaaGafq4WdmNbaKaadaqhaaWcbaGaamiBaaqa aiaaikdaaaaabaGaamiBaiabgIGiolaadohadaWgaaadbaGaamOCaa qabaaaleqaniabggHiLdaakeaaaeaacqGH9aqpceWGwbGbaKaadaWg aaWcbaGaaeOtaiaabkfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaacqGHRaWkdaaeqbqaamaa bmaabaWaaeWaaeaadaaeqbqaaiaadEhadaWgaaWcbaGaam4Aaaqaba GccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aaSbaaSqaaiaa dYgacaWGRbaabeaaaeaacaWGRbGaeyicI4Saam4CamaaBaaameaaca WGTbaabeaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTmaaqafabaGaam4DamaaDaaaleaacaWGRb aabaGaaGOmaaaakiaadsgadaWgaaWcbaGaam4AaaqabaGccqaHgpGA daqhaaWcbaGaamiBaiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGHii IZcaWGZbWaaSbaaWqaaiaad2gaaeqaaaWcbeqdcqGHris5aaGccaGL OaGaayzkaaGafq4WdmNbaKaadaqhaaWcbaGaamiBaaqaaiaaikdaaa aabaGaamiBaiabgIGiolaadohadaWgaaadbaGaamOCaaqabaaaleqa niabggHiLdGccaGGUaaaaaaa@3C4F@

References

Beaumont, J.-F., and Bissonnette, J. (2011). Variance estimation under composite imputation: The methodology behind SEVANI. Survey Methodology, 37, 2, 171-179. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2011002/article/11605-eng.pdf.

Beaumont, J.-F., and Bocci, C. (2009). Variance estimation when donor imputation is used to fill in missing values. Canadian Journal of Statistics, 37, 400-416.

Beaumont, J.-F., Bocci, C. and Haziza, D. (2014). An adaptive data collection procedure for call prioritization. Journal of Official Statistics, 30, 607-621.

Beaumont, J.-F., Haziza, D. and Bocci, C. (2011). On variance estimation under auxiliary value imputation in sample surveys. Statistica Sinica, 21, 515-537.

Biemer, P.P. (2010). Total survey error: Design, implementation, and evaluation. Public Opinion Quarterly, 74, 5, 817-848.

Bosa, K., and Godbout, S. (2014). IBSP Quality Measures MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Jc9qqqrpepC0xbbL8F4rqqrFfFv0dg9Wqpe0dar pepeuf0xe9q8qiYRWFGCk9vi=dbvc9s8vr0db9Ff0dbbG8Fq0Jfr=x fr=xfbpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@3694@  Methodology Guide. Business Survey Methods Division. Internal document.

Godbout, S., Beaucage, Y. and Turmelle, C. (2011). Achieving quality and efficiency using a top-down approach in the Canadian integrated business statistics Program. Proceedings of the Conference of European Statisticians. United Nations Statistical Commission and Economic Commission for Europe. Work Session on Statistical Data Editing. Ljubljana, Slovenia, 9-11 May 2011.

Groves, R.M., and Heeringa, S.G. (2006). Responsive design for household surveys: Tools for actively controlling survey errors and costs. Journal of the Royal Statistical Society, Series A, 169, No. 3, 439-457.

Mills, F., Godbout, S., Bosa, K. and Turmelle, C. (2013). Multivariate selective editing in the integrated business statistics program. Proceedings of the Joint Statistical Meeting 2013 - Survey Research Methods Section. August 2013. Montréal, Canada.

Särndal, C.-E. (1992). Methods for estimating the precision of survey estimates when imputation has been used. Survey Methodology, 18, 2, 241-252. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/1992002/article/14483-eng.pdf.

Schouten, B., Calinescu, M. and Luiten, A. (2013). Optimizing quality of response through adaptive survey designs. Survey Methodology, 39, 1, 29-58. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2013001/article/11824-eng.pdf.

Statistics Canada (2015). Integrated Business Statistics Program Overview. Statistics Canada Catalogue no. 68-515-X. Ottawa.

Turmelle, C., Godbout, S. and Bosa, K. (2012). Methodological challenges in the development of Statistics Canada’s new integrated business statistics program. Proceedings of the International Conference on Establishment Surveys IV. Montréal, Canada.


Date modified: