Comment décomposer la variance due à la non-réponse : une méthode fondée sur l’erreur d’enquête totale
Section 3. Décomposition au niveau de l’unité de l’erreur provenant des composantes de la variance

Cette section décrit la méthode utilisée pour évaluer la contribution d’une unité non répondante donnée, λ s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4Saam4CamaaBaaaleaacaWGTbaabeaakiaacYcaaaa@3BAE@ à la variance totale estimée pour l’estimation du total pour une variable donnée.

La décomposition de l’erreur au niveau de l’unité, δ λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGccaGGSaaaaa@39E5@ de la variance totale pour une unité donnée, λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai ilaaaa@380A@ est définie comme la différence entre la variance totale estimée et la variance totale projetée, c’est-à-dire δ λ ( V ^ TOT ( t ^ d ) ) V ^ TOT ( t ^ d ) V ^ TOT ( λ ) ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGubGaae4taiaabsfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH HjIUceWGwbGbaKaadaWgaaWcbaGaaeivaiaab+eacaqGubaabeaakm aabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0IabmOvayaajaWaa0baaSqaaiaabsfacaqGpbGaae ivaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaOWaaeWaaeaa ceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaca GGUaaaaa@575A@ L’exposant ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH7oaBaiaawIcacaGLPaaaaaa@38E3@ indique les quantités projetées lorsque l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ est convertie en unité répondante. Donc, on peut considérer δ λ ( V ^ TOT ( t ^ d ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGubGaae4taiaabsfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4210@ comme le gain attendu, pour ce qui est de la variance totale, de la conversion d’une unité non répondante λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ en unité répondante.

Pour obtenir δ λ ( V ^ TOT ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGubGaae4taiaabsfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaGG Saaaaa@42C0@ λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ est déplacée de s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaaaaa@37BC@ à s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaakiaacYcaaaa@387B@ ce qui génère la nouvelle partition P s ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGZbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaaa aa@3ADD@ de l’échantillon de P s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGZbaabeaaaaa@379F@ P s ( λ ) = { s r ( λ ) , s m ( λ ) } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGZbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpdaGadaqaaiaadohadaqhaaWcbaGaamOCaaqaamaabmaaba Gaeq4UdWgacaGLOaGaayzkaaaaaOGaaGzaVlaacYcacaaMe8Uaam4C amaaDaaaleaacaWGTbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPa aaaaaakiaawUhacaGL9baacaGGSaaaaa@4D56@ s r ( λ ) = s r { λ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGYbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpcaWGZbWaaSbaaSqaaiaadkhaaeqaaOGaeyOkIG8aaiWaae aacqaH7oaBaiaawUhacaGL9baaaaa@43B9@ et s m ( λ ) = s m \ { λ } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGTbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpcaWGZbWaaSbaaSqaaiaad2gaaeqaaOGaaiixamaacmaaba Gaeq4UdWgacaGL7bGaayzFaaGaaiilaaaa@439F@ comme l’illustre la figure 3.1.

Figure 3.1 de l'article 54957 issue 2018002

Description de la figure 3.1

Figure présentant les partitions d’échantillon. La partition P s ={ s r , s m }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGZbaabeaakiabg2da9maacmaabaGaam4CamaaBaaaleaa caWGYbaabeaakiaaygW7caGGSaGaaGjbVlaadohadaWgaaWcbaGaam yBaaqabaaakiaawUhacaGL9baacaGGSaaaaa@439C@  où { l=1,2,3,... } s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGSbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGa aiOlaiaac6cacaGGUaaacaGL7bGaayzFaaGaeyicI4Saam4CamaaBa aaleaacaWGYbaabeaaaaa@4408@  et { k=1,2,3,... } s m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGRbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGa aiOlaiaac6cacaGGUaaacaGL7bGaayzFaaGaeyicI4Saam4CamaaBa aaleaacaWGTbaabeaakiaac6caaaa@44BE@  L’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@  est déplacée de s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaaaaa@37BC@  à s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaakiaacYcaaaa@387B@  ce qui génère la nouvelle partition P s ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGZbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaaa aa@3ADD@  de l’échantillon de P s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGZbaabeaaaaa@379F@  où P s ( λ ) ={ s r ( λ ) , s m ( λ ) }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGZbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpdaGadaqaaiaadohadaqhaaWcbaGaamOCaaqaamaabmaaba Gaeq4UdWgacaGLOaGaayzkaaaaaOGaaGzaVlaacYcacaaMe8Uaam4C amaaDaaaleaacaWGTbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPa aaaaaakiaawUhacaGL9baacaGGSaaaaa@4D56@   s r ( λ ) = s r { λ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGYbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpcaWGZbWaaSbaaSqaaiaadkhaaeqaaOGaeyOkIG8aaiWaae aacqaH7oaBaiaawUhacaGL9baaaaa@43B9@  et s m ( λ ) = s m \{ λ }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGTbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpcaWGZbWaaSbaaSqaaiaad2gaaeqaaOGaaiixamaacmaaba Gaeq4UdWgacaGL7bGaayzFaaGaaiOlaaaa@43A1@

Certaines hypothèses sont nécessaires pour décomposer les composantes de la variance. On sait que ces hypothèses ne sont pas nécessairement exactes. Elles peuvent cependant servir à produire de bons résultats, comme le montre la simulation de la section 4. Les hypothèses requises sont :

  1. Valeur déclarée projetée : soit λ s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4Saam4CamaaBaaaleaacaWGTbaabeaaaaa@3AF4@ converti en réponse et soit y λ ( λ ) = y λ * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacqaH7oaBaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaa kiabg2da9iaadMhadaqhaaWcbaGaeq4UdWgabaGaaiOkaaaakiaac6 caaaa@411B@
  2. Paramètres d’imputation projetés : k s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4AaiabgIGiolaadohadaWgaaWcbaGaamyBaaqabaGccaGGSaaaaa@3BBA@ μ ^ k ( λ ) = μ ^ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaeyypa0JafqiVd0MbaKaadaWgaaWcbaGaam4Aaaqabaaaaa@3FB8@ et σ ^ k ( λ ) = σ ^ k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaeyypa0Jafq4WdmNbaKaadaWgaaWcbaGaam4AaaqabaGcca GGUaaaaa@408E@
  3. Matrice des relations d’imputation projetées : k s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4AaiabgIGiolaadohadaWgaaWcbaGaamyBaaqabaaaaa@3B00@ et l s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iBaiabgIGiolaadohadaWgaaWcbaGaamOCaaqabaGccaGGSaaaaa@3BC0@ φ l k ( λ ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaadYgacaWGRbaabaGaaiikaiabeU7aSjaacMcaaaGccqGH 9aqpcaaIWaaaaa@3E48@ si l = λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabg2 da9iabeU7aSbaa@3951@ ou si k = λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iabeU7aSbaa@3950@ ou φ l k ( λ ) = φ l k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaadYgacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpcqaHgpGAdaWgaaWcbaGaamiBaiaadUgaaeqaaa aa@4188@ sinon. De même, φ 0 k ( λ ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaaicdacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpcaaIWaaaaa@3E41@ si k = λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iabeU7aSbaa@3950@ ou φ 0 k ( λ ) = φ 0 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaaicdacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpcqaHgpGAdaWgaaWcbaGaaGimaiaadUgaaeqaaa aa@411A@ sinon.

L’hypothèse 1 suppose que si une unité non répondante, λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai ilaaaa@380A@ est convertie en unité répondante, sa valeur déclarée est égale à sa valeur imputée. Cela n’est pas vrai de façon générale, mais la valeur imputée est la meilleure estimation que nous obtenons. Cette valeur imputée devrait se rapprocher suffisamment de la valeur déclarée pour permettre d’estimer l’erreur sur les composantes de la variance. Cette hypothèse aura une incidence au moment de la décomposition de la variance d’échantillonnage.

L’hypothèse 2 suppose que les paramètres estimés du modèle d’imputation demeurent inchangés si λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ est répondante. Dans le cas d’un estimateur convergent de paramètre de modèle d’imputation, cette hypothèse est plus réaliste lorsque s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaaaaa@37C1@ est plus grand.

Enfin, l’hypothèse 3 signifie que la relation d’imputation entre les non-répondants et les répondants demeure inchangée, sauf quand l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ est impliquée. En d’autres termes, l’unité convertie, λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai ilaaaa@380A@ n’est plus imputée à partir des répondants, mais elle ne servira pas à imputer d’autres unités non répondantes. La figure 3.2 montre comment l’hypothèse 3 est représentée dans la matrice phi.

Figure 3.2 de l'article 54957 issue 2018002

Description de la figure 3.2

Figure présentant les matrices phi des relations d’imputation initiales et projetées. Les colonnes de la matrice des relations initiales φ lk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadYgacaWGRbaabeaaaaa@39B1@  sont les unités k s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadohadaWgaaWcbaGaamyBaaqabaGccaGGSaaaaa@3B2B@  incluant l’unité λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai Olaaaa@384D@  Les lignes sont les unités l s r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgI GiolaadohadaWgaaWcbaGaamOCaaqabaGccaGGUaaaaa@3B33@  Les colonnes de la matrice des relations projetées φ lk ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaadYgacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL Paaaaaaaaa@3CEF@  sont les unités k s m ( λ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadohadaqhaaWcbaGaamyBaaqaamaabmaabaGaeq4UdWgacaGL OaGaayzkaaaaaOGaaiilaaaa@3E69@  excluant l’unité λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai Olaaaa@384D@  Les lignes sont les unités l s r ( λ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgI GiolaadohadaqhaaWcbaGaamOCaaqaamaabmaabaGaeq4UdWgacaGL OaGaayzkaaaaaOGaaiilaaaa@3E6F@  incluant l’unité λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai Olaaaa@384D@  La ligne correspondant à l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@379B@  est une ligne de 0. Les autres valeurs de la matrice φ lk ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaadYgacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL Paaaaaaaaa@3CEF@  sont les mêmes que celles de la matrice φ lk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadYgacaWGRbaabeaaaaa@39B1@ .

Par conséquent, le facteur de pondération de compensation, W d l ( λ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaWGKbGaamiBaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaaGzaVlaacYcaaaa@3E0A@ d’une unité répondante, l s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iBaiabgIGiolaadohadaWgaaWcbaGaamOCaaqabaGccaGGSaaaaa@3BC0@ est projeté comme étant

W d l ( λ ) = k s m ( λ ) w k d k φ l k ( λ ) = k s m w k d k φ l k w λ d λ φ l λ = W d l w λ d λ φ l λ . ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=fpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadEfadaqhaaWcbaGaamizaiaadYgaaeaadaqadaqaaiabeU7a SbGaayjkaiaawMcaaaaaaOqaaiabg2da9maaqafabaGaam4DamaaBa aaleaacaWGRbaabeaakiaadsgadaWgaaWcbaGaam4AaaqabaGccqaH gpGAdaqhaaWcbaGaamiBaiaadUgaaeaadaqadaqaaiabeU7aSbGaay jkaiaawMcaaaaaaeaacaWGRbGaeyicI4Saam4CamaaDaaameaacaWG TbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaaaleqaniabgg HiLdaakeaaaeaacqGH9aqpdaaeqbqaaiaadEhadaWgaaWcbaGaam4A aaqabaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aaSbaaS qaaiaadYgacaWGRbaabeaaaeaacaWGRbGaeyicI4Saam4CamaaBaaa meaacaWGTbaabeaaaSqab0GaeyyeIuoakiabgkHiTiaadEhadaWgaa WcbaGaeq4UdWgabeaakiaadsgadaWgaaWcbaGaeq4UdWgabeaakiab eA8aQnaaBaaaleaacaWGSbGaeq4UdWgabeaaaOqaaaqaaiabg2da9i aadEfadaWgaaWcbaGaamizaiaadYgaaeqaaOGaeyOeI0Iaam4Damaa BaaaleaacqaH7oaBaeqaaOGaamizamaaBaaaleaacqaH7oaBaeqaaO GaeqOXdO2aaSbaaSqaaiaadYgacqaH7oaBaeqaaOGaaiOlaiaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlai aaigdacaGGPaaaaaaa@89C5@

On retire le poids marginal de l’unité convertie λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ du poids initial de compensation, W d l , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGKbGaamiBaaqabaGccaGGSaaaaa@3942@ pour obtenir le nouveau W d l ( λ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaWGKbGaamiBaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaaGzaVlaac6caaaa@3E0C@ Notez que W d λ ( λ ) = k s m ( λ ) w k d k φ λ k ( λ ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaWGKbGaeq4UdWgabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpdaaeqaqaaiaadEhadaWgaaWcbaGaam4Aaaqaba GccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aa0baaSqaaiab eU7aSjaadUgaaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaaae aacaWGRbGaeyicI4Saam4CamaaDaaameaacaWGTbaabaWaaeWaaeaa cqaH7oaBaiaawIcacaGLPaaaaaaaleqaniabggHiLdGccqGH9aqpca aIWaaaaa@550B@ parce que φ λ k ( λ ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiabeU7aSjaadUgaaeaadaqadaqaaiabeU7aSbGaayjkaiaa wMcaaaaakiabg2da9iaaicdaaaa@3F3B@ dans l’hypothèse 3. Comme mentionné précédemment, cela signifie que λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ n’est pas utilisé pour imputer les non-répondants.

Dans les sous-sections suivantes, la décomposition de l’erreur au niveau de l’unité pour l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ est calculée pour les quatre composantes de la variance, conformément à ce qui est décrit dans la section 2.3.

3.1  Décomposition au niveau de l’unité de l’erreur de la variance naïve d’échantillonnage

La quantité V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ dépend des valeurs y, des poids finaux et des probabilités de sélection d’ordre un et d’ordre deux. La décomposition de l’erreur au niveau de l’unité de la composante de variance d’échantillonnage naïf V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ est triviale puisque l’hypothèse selon laquelle l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ passe de s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaaaaa@37BC@ à s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaaaaa@37C1@ ne change ni les poids ni les probabilités de sélection. Dans l’hypothèse 1, la valeur déclarée prévue y λ ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacqaH7oaBaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaa aaa@3BC2@ est établie à y λ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacqaH7oaBaeaacaGGQaaaaaaa@3933@ de sorte que V ^ ORD ( λ ) ( t ^ d ) = V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja Waa0baaSqaaiaab+eacaqGsbGaaeiraaqaamaabmaabaGaeq4UdWga caGLOaGaayzkaaaaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaam izaaqabaaakiaawIcacaGLPaaacqGH9aqpceWGwbGbaKaadaWgaaWc baGaae4taiaabkfacaqGebaabeaakmaabmaabaGabmiDayaajaWaaS baaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaaaa@486A@ lorsque λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ est convertie en unité répondante. Par conséquent, la décomposition de V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ est obtenue au moyen de

δ λ ( V ^ ORD ( t ^ d ) ) V ^ ORD ( t ^ d ) V ^ ORD ( λ ) ( t ^ d ) = 0. ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGpbGaaeOuaiaabseaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH HjIUceWGwbGbaKaadaWgaaWcbaGaae4taiaabkfacaqGebaabeaakm aabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0IabmOvayaajaWaa0baaSqaaiaab+eacaqGsbGaae iraaqaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaOWaaeWaaeaa ceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacq GH9aqpcaaIWaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@642D@

Ce résultat est cohérent avec l’idée que l’estimation ponctuelle de la variance d’échantillonnage naïf changera probablement, mais elle ne devrait pas diminuer avec l’ajout d’une unité répondante.

3.2  Décomposition au niveau de l’unité de la correction de la composante de la variance d’échantillonnage

La décomposition de l’erreur au niveau de l’unité pour l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ de la correction de la composante de la variance d’échantillonnage, V ^ DIF ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D84@ est obtenue au moyen de

δ λ ( V ^ DIF ( t ^ d ) ) V ^ DIF ( t ^ d ) V ^ DIF ( λ ) ( t ^ d ) = k s m ( 1 π k ) d k w k 2 σ ^ k 2 λ s m ( λ ) ( 1 π k ) d k w k 2 ( σ ^ k ( λ ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVipC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeiraiaabMeacaqGgbaabeaakmaabmaabaGabm iDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaabaGaeyyyIORabmOvayaajaWaaSbaaSqaaiaabseaca qGjbGaaeOraaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaacaWG KbaabeaaaOGaayjkaiaawMcaaiabgkHiTiqadAfagaqcamaaDaaale aacaqGebGaaeysaiaabAeaaeaadaqadaqaaiabeU7aSbGaayjkaiaa wMcaaaaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaa GccaGLOaGaayzkaaaabaaabaGaeyypa0Zaaabuaeaadaqadaqaaiaa igdacqGHsislcqaHapaCdaWgaaWcbaGaam4AaaqabaaakiaawIcaca GLPaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaam4DamaaDaaaleaa caWGRbaabaGaaGOmaaaakiqbeo8aZzaajaWaa0baaSqaaiaadUgaae aacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaad2ga aeqaaaWcbeqdcqGHris5aOGaeyOeI0Yaaabuaeaadaqadaqaaiaaig dacqGHsislcqaHapaCdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGL PaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaam4DamaaDaaaleaaca WGRbaabaGaaGOmaaaakmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGa am4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiabeU7aSjabgIGiolaa dohadaqhaaadbaGaamyBaaqaamaabmaabaGaeq4UdWgacaGLOaGaay zkaaaaaaWcbeqdcqGHris5aOGaaiOlaaaaaaa@8CC4@

Dans l’hypothèse 2, σ ^ k ( λ ) = σ ^ k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaeyypa0Jafq4WdmNbaKaadaWgaaWcbaGaam4AaaqabaGcca GGSaaaaa@408C@ de sorte que

δ λ ( V ^ DIF ( t ^ d ) ) = ( 1 π λ ) d λ w λ 2 σ ^ λ 2 . ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGebGaaeysaiaabAeaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH 9aqpdaqadaqaaiaaigdacqGHsislcqaHapaCdaWgaaWcbaGaeq4UdW gabeaaaOGaayjkaiaawMcaaiaadsgadaWgaaWcbaGaeq4UdWgabeaa kiaadEhadaqhaaWcbaGaeq4UdWgabaGaaGOmaaaakiqbeo8aZzaaja Waa0baaSqaaiabeU7aSbqaaiaaikdaaaGccaGGUaGaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIZaGaaiykaa aa@60B6@

Le lecteur averti remarquera qu’il ne devrait pas y avoir d’incidence sur la variance d’échantillonnage réel (et non son estimation) qu’une unité soit répondante ou non. Cependant, nous avons décidé d’inclure l’incidence qu’une unité a sur l’estimation de la variance d’échantillonnage afin de traiter de façon cohérente les trois composantes V SAM ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGtbGaaeyqaiaab2eaaeqaaOWaaeWaaeaaceWG0bGbaKaa daWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@3D82@ V NR ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBaaa leaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3C0E@ et V MIX ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGnbGaaeysaiaabIfaaeqaaOWaaeWaaeaaceWG0bGbaKaa daWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacaGGUaaaaa@3D91@

3.3  Décomposition au niveau de l’unité de la composante de la variance de non-réponse

La décomposition de l’erreur au niveau de l’unité pour l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ de la composante de la variance de non-réponse V ^ NR ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaaaa@3C1E@ est obtenue au moyen de

δ λ ( V ^ NR ( t ^ d ) ) V ^ NR ( t ^ d ) V ^ NR ( λ ) ( t ^ d ) = ( l s r W d l 2 σ ^ l 2 + k s m w k 2 d k σ ^ k 2 ) ( l s r ( λ ) ( W d l ( λ ) ) 2 ( σ ^ l ( λ ) ) 2 + k s m ( λ ) w k 2 d k ( σ ^ k ( λ ) ) 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVipC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeOtaiaabkfaaeqaaOWaaeWaaeaaceWG0bGbaK aadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGL PaaaaeaacqGHHjIUceWGwbGbaKaadaWgaaWcbaGaaeOtaiaabkfaae qaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaa wIcacaGLPaaacqGHsislceWGwbGbaKaadaqhaaWcbaGaaeOtaiaabk faaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaakmaabmaabaGa bmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaaba aabaGaeyypa0ZaaeWaaeaadaaeqbqaaiaadEfadaqhaaWcbaGaamiz aiaadYgaaeaacaaIYaaaaOGafq4WdmNbaKaadaqhaaWcbaGaamiBaa qaaiaaikdaaaaabaGaamiBaiabgIGiolaadohadaWgaaadbaGaamOC aaqabaaaleqaniabggHiLdGccqGHRaWkdaaeqbqaaiaadEhadaqhaa WcbaGaam4AaaqaaiaaikdaaaGccaWGKbWaaSbaaSqaaiaadUgaaeqa aOGafq4WdmNbaKaadaqhaaWcbaGaam4AaaqaaiaaikdaaaaabaGaam 4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqabaaaleqaniabggHi LdaakiaawIcacaGLPaaacqGHsislcaaMc8+aaeWaaeaadaaeqbqaam aabmaabaGaam4vamaaDaaaleaacaWGKbGaamiBaaqaamaabmaabaGa eq4UdWgacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWGSbaa baWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaaakiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaabaGaamiBaiabgIGiolaadohadaqh aaadbaGaamOCaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaa WcbeqdcqGHris5aOGaey4kaSYaaabuaeaacaWG3bWaa0baaSqaaiaa dUgaaeaacaaIYaaaaOGaamizamaaBaaaleaacaWGRbaabeaakmaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4U dWgacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaqaaiaadUgacqGHiiIZcaWGZbWaa0baaWqaaiaad2gaaeaa daqadaqaaiabeU7aSbGaayjkaiaawMcaaaaaaSqab0GaeyyeIuoaaO GaayjkaiaawMcaaiaac6caaaaaaa@AD77@

Dans les hypothèses 2 et 3, σ ^ k ( λ ) = σ ^ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaeyypa0Jafq4WdmNbaKaadaWgaaWcbaGaam4Aaaqabaaaaa@3FD2@ et W d λ ( λ ) = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaWGKbGaeq4UdWgabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpcaaIWaGaaiOlaaaa@3F05@ On peut réécrire l’expression précédente comme suit :

δ λ ( V ^ NR ( t ^ d ) ) = ( l s r W d l 2 σ ^ l 2 l s r ( W d l ( λ ) ) 2 σ ^ l 2 ) + w λ 2 d λ σ ^ λ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaaca WGKbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9maa bmaabaWaaabuaeaacaWGxbWaa0baaSqaaiaadsgacaWGSbaabaGaaG Omaaaakiqbeo8aZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaaaaqa aiaadYgacqGHiiIZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcq GHris5aOGaeyOeI0YaaabuaeaadaqadaqaaiaadEfadaqhaaWcbaGa amizaiaadYgaaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiqbeo8aZzaajaWa a0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaadYgacqGHiiIZcaWGZb WaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aaGccaGLOaGaayzk aaGaey4kaSIaam4DamaaDaaaleaacqaH7oaBaeaacaaIYaaaaOGaam izamaaBaaaleaacqaH7oaBaeqaaOGafq4WdmNbaKaadaqhaaWcbaGa eq4UdWgabaGaaGOmaaaakiaac6caaaa@725A@

Au moyen de la formule (3.1), ceci devient

δ λ ( V ^ NR ( t ^ d ) ) = ( l s r W d l 2 σ ^ l 2 l s r ( W d l w λ d λ φ l λ ) 2 σ ^ l 2 ) + w λ 2 d λ σ ^ λ 2 = ( l s r W d l 2 σ ^ l 2 ( W d l 2 2 W d l w λ d λ φ l λ + w λ 2 d λ φ l λ 2 ) σ ^ l 2 ) + w λ 2 d λ σ ^ λ 2 = l s r ( 2 W d l w λ d λ φ l λ w λ 2 d λ φ l λ 2 ) σ ^ l 2 + w λ 2 d λ σ ^ λ 2 . ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVipC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeOtaiaabkfaaeqaaOWaaeWaaeaaceWG0bGbaK aadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGL PaaaaeaacqGH9aqpdaqadaqaamaaqafabaGaam4vamaaDaaaleaaca WGKbGaamiBaaqaaiaaikdaaaGccuaHdpWCgaqcamaaDaaaleaacaWG SbaabaGaaGOmaaaaaeaacaWGSbGaeyicI4Saam4CamaaBaaameaaca WGYbaabeaaaSqab0GaeyyeIuoakiabgkHiTmaaqafabaWaaeWaaeaa caWGxbWaaSbaaSqaaiaadsgacaWGSbaabeaakiabgkHiTiaadEhada WgaaWcbaGaeq4UdWgabeaakiaadsgadaWgaaWcbaGaeq4UdWgabeaa kiabeA8aQnaaBaaaleaacaWGSbGaeq4UdWgabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiqbeo8aZzaajaWaa0baaSqaaiaa dYgaaeaacaaIYaaaaaqaaiaadYgacqGHiiIZcaWGZbWaaSbaaWqaai aadkhaaeqaaaWcbeqdcqGHris5aaGccaGLOaGaayzkaaGaey4kaSIa am4DamaaDaaaleaacqaH7oaBaeaacaaIYaaaaOGaamizamaaBaaale aacqaH7oaBaeqaaOGafq4WdmNbaKaadaqhaaWcbaGaeq4UdWgabaGa aGOmaaaaaOqaaaqaaiabg2da9maabmaabaWaaabuaeaacaWGxbWaa0 baaSqaaiaadsgacaWGSbaabaGaaGOmaaaakiqbeo8aZzaajaWaa0ba aSqaaiaadYgaaeaacaaIYaaaaOGaeyOeI0YaaeWaaeaacaWGxbWaa0 baaSqaaiaadsgacaWGSbaabaGaaGOmaaaakiabgkHiTiaaikdacaWG xbWaaSbaaSqaaiaadsgacaWGSbaabeaakiaadEhadaWgaaWcbaGaeq 4UdWgabeaakiaadsgadaWgaaWcbaGaeq4UdWgabeaakiabeA8aQnaa BaaaleaacaWGSbGaeq4UdWgabeaakiabgUcaRiaadEhadaqhaaWcba Gaeq4UdWgabaGaaGOmaaaakiaadsgadaWgaaWcbaGaeq4UdWgabeaa kiabeA8aQnaaDaaaleaacaWGSbGaeq4UdWgabaGaaGOmaaaaaOGaay jkaiaawMcaaiqbeo8aZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaa aaqaaiaadYgacqGHiiIZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbe qdcqGHris5aaGccaGLOaGaayzkaaGaey4kaSIaam4DamaaDaaaleaa cqaH7oaBaeaacaaIYaaaaOGaamizamaaBaaaleaacqaH7oaBaeqaaO Gafq4WdmNbaKaadaqhaaWcbaGaeq4UdWgabaGaaGOmaaaaaOqaaaqa aiabg2da9maaqafabaWaaeWaaeaacaaIYaGaam4vamaaBaaaleaaca WGKbGaamiBaaqabaGccaWG3bWaaSbaaSqaaiabeU7aSbqabaGccaWG KbWaaSbaaSqaaiabeU7aSbqabaGccqaHgpGAdaWgaaWcbaGaamiBai abeU7aSbqabaGccqGHsislcaWG3bWaa0baaSqaaiabeU7aSbqaaiaa ikdaaaGccaWGKbWaaSbaaSqaaiabeU7aSbqabaGccqaHgpGAdaqhaa WcbaGaamiBaiabeU7aSbqaaiaaikdaaaaakiaawIcacaGLPaaacuaH dpWCgaqcamaaDaaaleaacaWGSbaabaGaaGOmaaaaaeaacaWGSbGaey icI4Saam4CamaaBaaameaacaWGYbaabeaaaSqab0GaeyyeIuoakiab gUcaRiaadEhadaqhaaWcbaGaeq4UdWgabaGaaGOmaaaakiaadsgada WgaaWcbaGaeq4UdWgabeaakiqbeo8aZzaajaWaa0baaSqaaiabeU7a SbqaaiaaikdaaaGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI0aGaaiyk aaaaaaa@FFC7@

3.4  Décomposition au niveau de l’unité de la composante de variance mixte

Enfin, l’incidence de l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ sur le terme de la composante de variance, V ^ MIX ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D9F@ est obtenue au moyen de

δ λ ( V ^ MIX ( t ^ d ) ) V ^ MIX ( t ^ d ) V ^ MIX ( λ ) ( t ^ d ) = ( 2 l s r W d l ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 ) ( 2 l s r ( λ ) W d l ( λ ) ( w l 1 ) d l ( σ ^ l ( λ ) ) 2 2 k s m ( λ ) w k ( w k 1 ) d k ( σ ^ k ( λ ) ) 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVipC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaabaGabm iDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaabaGaeyyyIORabmOvayaajaWaaSbaaSqaaiaab2eaca qGjbGaaeiwaaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaacaWG KbaabeaaaOGaayjkaiaawMcaaiabgkHiTiqadAfagaqcamaaDaaale aacaqGnbGaaeysaiaabIfaaeaadaqadaqaaiabeU7aSbGaayjkaiaa wMcaaaaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaa GccaGLOaGaayzkaaaabaaabaGaeyypa0ZaaeWaaeaacaaIYaWaaabu aeaacaWGxbWaaSbaaSqaaiaadsgacaWGSbaabeaakmaabmaabaGaam 4DamaaBaaaleaacaWGSbaabeaakiabgkHiTiaaigdaaiaawIcacaGL PaaacaWGKbWaaSbaaSqaaiaadYgaaeqaaOGafq4WdmNbaKaadaqhaa WcbaGaamiBaaqaaiaaikdaaaaabaGaamiBaiabgIGiolaadohadaWg aaadbaGaamOCaaqabaaaleqaniabggHiLdGccqGHsislcaaIYaWaaa buaeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG3bWa aSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaai aadsgadaWgaaWcbaGaam4AaaqabaGccuaHdpWCgaqcamaaDaaaleaa caWGRbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4CamaaBaaame aacaWGTbaabeaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaaaqa aiaaysW7cqGHsisldaqadaqaaiaaikdadaaeqbqaaiaadEfadaqhaa WcbaGaamizaiaadYgaaeaadaqadaqaaiabeU7aSbGaayjkaiaawMca aaaakmaabmaabaGaam4DamaaBaaaleaacaWGSbaabeaakiabgkHiTi aaigdaaiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadYgaaeqaaOWa aeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWGSbaabaWaaeWaaeaacq aH7oaBaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaabaGaamiBaiabgIGiolaadohadaqhaaadbaGaamOCaa qaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaaWcbeqdcqGHris5 aOGaeyOeI0IaaGOmamaaqafabaGaam4DamaaBaaaleaacaWGRbaabe aakmaabmaabaGaam4DamaaBaaaleaacaWGRbaabeaakiabgkHiTiaa igdaaiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOWaae WaaeaacuaHdpWCgaqcamaaDaaaleaacaWGRbaabaWaaeWaaeaacqaH 7oaBaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaabaGaam4AaiabgIGiolaadohadaqhaaadbaGaamyBaaqa amaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaaWcbeqdcqGHris5aa GccaGLOaGaayzkaaGaaiOlaaaaaaa@C7B0@

Cette équation peut être réécrite comme suit, dans les hypothèses 2 et 3 et l’équation (3.1)

δ λ ( V ^ MIX ( t ^ d ) ) = ( 2 l s r W d l ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 ) ( 2 l s r ( W d l w λ d λ φ l λ ) ( w l 1 ) d l σ ^ l 2 2 k s m ( λ ) w k ( w k 1 ) d k σ ^ k 2 ) = 2 l s r w λ d λ φ l λ ( w l 1 ) d l σ ^ l 2 2 w λ ( w λ 1 ) d λ σ ^ λ 2 . ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaabaGabm iDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaabaGaeyypa0ZaaeWaaeaacaaIYaWaaabuaeaacaWGxb WaaSbaaSqaaiaadsgacaWGSbaabeaakmaabmaabaGaam4DamaaBaaa leaacaWGSbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGKb WaaSbaaSqaaiaadYgaaeqaaOGafq4WdmNbaKaadaqhaaWcbaGaamiB aaqaaiaaikdaaaaabaGaamiBaiabgIGiolaadohadaWgaaadbaGaam OCaaqabaaaleqaniabggHiLdGccqGHsislcaaIYaWaaabuaeaacaWG 3bWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaai aadUgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadsgadaWg aaWcbaGaam4AaaqabaGccuaHdpWCgaqcamaaDaaaleaacaWGRbaaba GaaGOmaaaaaeaacaWGRbGaeyicI4Saam4CamaaBaaameaacaWGTbaa beaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaaaqaaiaaysW7ca aMe8UaeyOeI0YaaeWaaeaacaaIYaWaaabuaeaadaqadaqaaiaadEfa daWgaaWcbaGaamizaiaadYgaaeqaaOGaeyOeI0Iaam4DamaaBaaale aacqaH7oaBaeqaaOGaamizamaaBaaaleaacqaH7oaBaeqaaOGaeqOX dO2aaSbaaSqaaiaadYgacqaH7oaBaeqaaaGccaGLOaGaayzkaaWaae WaaeaacaWG3bWaaSbaaSqaaiaadYgaaeqaaOGaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadsgadaWgaaWcbaGaamiBaaqabaGccuaHdpWCga qcamaaDaaaleaacaWGSbaabaGaaGOmaaaaaeaacaWGSbGaeyicI4Sa am4CamaaBaaameaacaWGYbaabeaaaSqab0GaeyyeIuoakiabgkHiTi aaikdadaaeqbqaaiaadEhadaWgaaWcbaGaam4AaaqabaGcdaqadaqa aiaadEhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaaIXaaacaGLOa GaayzkaaGaamizamaaBaaaleaacaWGRbaabeaakiqbeo8aZzaajaWa a0baaSqaaiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZb Waa0baaWqaaiaad2gaaeaadaqadaqaaiabeU7aSbGaayjkaiaawMca aaaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaaaqaaiabg2da9i aaikdadaaeqbqaaiaadEhadaWgaaWcbaGaeq4UdWgabeaakiaadsga daWgaaWcbaGaeq4UdWgabeaakiabeA8aQnaaBaaaleaacaWGSbGaeq 4UdWgabeaakmaabmaabaGaam4DamaaBaaaleaacaWGSbaabeaakiab gkHiTiaaigdaaiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadYgaae qaaOGafq4WdmNbaKaadaqhaaWcbaGaamiBaaqaaiaaikdaaaaabaGa amiBaiabgIGiolaadohadaWgaaadbaGaamOCaaqabaaaleqaniabgg HiLdGccqGHsislcaaIYaGaam4DamaaBaaaleaacqaH7oaBaeqaaOWa aeWaaeaacaWG3bWaaSbaaSqaaiabeU7aSbqabaGccqGHsislcaaIXa aacaGLOaGaayzkaaGaamizamaaBaaaleaacqaH7oaBaeqaaOGafq4W dmNbaKaadaqhaaWcbaGaeq4UdWgabaGaaGOmaaaakiaac6cacaaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIca caaIZaGaaiOlaiaaiwdacaGGPaaaaaaa@F0CA@

Dans la section 2.3, l’estimation de la variance totale, V ^ TOT ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3DA8@ a été définie comme étant V ^ TOT ( t ^ d ) = V ^ ORD ( t ^ d ) + V ^ DIF ( t ^ d ) + V ^ NR ( t ^ d ) + V ^ MIX ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9i qadAfagaqcamaaBaaaleaacaqGpbGaaeOuaiaabseaaeqaaOWaaeWa aeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPa aacqGHRaWkceWGwbGbaKaadaWgaaWcbaGaaeiraiaabMeacaqGgbaa beaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGcca GLOaGaayzkaaGaey4kaSIabmOvayaajaWaaSbaaSqaaiaab6eacaqG sbaabeaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaa GccaGLOaGaayzkaaGaey4kaSIabmOvayaajaWaaSbaaSqaaiaab2ea caqGjbGaaeiwaaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaaca WGKbaabeaaaOGaayjkaiaawMcaaiaac6caaaa@5D85@ De la même manière, l’incidence de l’unité λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ sur V ^ TOT ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CF8@ est définie comme suit :

δ λ ( V ^ TOT ( t ^ d ) ) = δ λ ( V ^ ORD ( t ^ d ) ) + δ λ ( V ^ DIFF ( t ^ d ) ) + δ λ ( V ^ NR ( t ^ d ) ) + δ λ ( V ^ MIX ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGubGaae4taiaabsfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH 9aqpcqaH0oazdaWgaaWcbaGaeq4UdWgabeaakmaabmaabaGabmOvay aajaWaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqa dshagaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaGaay jkaiaawMcaaiabgUcaRiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWa aeWaaeaaceWGwbGbaKaadaWgaaWcbaGaaeiraiaabMeacaqGgbGaae OraaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaacaWGKbaabeaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiabes7aKnaaBa aaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGbaKaadaWgaaWcbaGa aeOtaiaabkfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaam izaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkcqaH 0oazdaWgaaWcbaGaeq4UdWgabeaakmaabmaabaGabmOvayaajaWaaS baaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadshagaqc amaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawM caaiaacYcaaaa@77C3@

δ λ ( V ^ ORD ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGpbGaaeOuaiaabseaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaGG Saaaaa@42AE@ δ λ ( V ^ DIF ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGebGaaeysaiaabAeaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaGG Saaaaa@429C@ δ λ ( V ^ NR ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaaca WGKbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaacYcaaaa@41E6@ et δ λ ( V ^ MIX ( t ^ d ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGnbGaaeysaiaabIfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4207@ sont respectivement obtenus par les équations (3.2), (3.3), (3.4) et (3.5).

On peut observer (voir les preuves en annexe) que V ^ DIF ( t ^ d ) = k s m δ k ( V ^ DIF ( t ^ d ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9m aaqababaGaeqiTdq2aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaaceWG wbGbaKaadaWgaaWcbaGaaeiraiaabMeacaqGgbaabeaakmaabmaaba GabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaa caGLOaGaayzkaaaaleaacaWGRbGaeyicI4Saam4CamaaBaaameaaca WGTbaabeaaaSqab0GaeyyeIuoaaaa@4FD5@ et V ^ MIX ( t ^ d ) = k s m δ k ( V ^ MIX ( t ^ d ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9m aaqababaGaeqiTdq2aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaaceWG wbGbaKaadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaaba GabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaa caGLOaGaayzkaaaaleaacaWGRbGaeyicI4Saam4CamaaBaaameaaca WGTbaabeaaaSqab0GaeyyeIuoakiaac6caaaa@50C7@ Cependant, cette relation linéaire ne s’avère pas pour V ^ NR ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@3CD0@ Il est important de tenir compte de cette propriété parce que, pour V ^ DIF ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CD4@ et V ^ MIX ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D9F@ la somme des erreurs au niveau de l’unité de toutes les unités non répondantes, k s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadohadaWgaaWcbaGaamyBaaqabaGccaGGSaaaaa@3AEA@ est égale à la composante de variance estimée correspondante. Dans le cas de la composante de la variance de la non-réponse, la somme des erreurs est différente de V ^ NR ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@3CD0@ La différence est obtenue au moyen de

k s m δ k ( V ^ NR ( t ^ d ) ) V ^ NR ( t ^ d ) = l s r ( ( k s m w k d k φ l k ) 2 k s m w k 2 d k φ l k 2 ) σ ^ l 2 . ( 3.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeaacq aH0oazdaWgaaWcbaGaam4AaaqabaGcdaqadaqaaiqadAfagaqcamaa BaaaleaacaqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBa aaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaWc baGaam4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqabaaaleqani abggHiLdGccqGHsislceWGwbGbaKaadaWgaaWcbaGaaeOtaiaabkfa aeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaaki aawIcacaGLPaaacqGH9aqpcaaMc8+aaabuaeaadaqadaqaamaabmaa baWaaabuaeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaamizamaaBa aaleaacaWGRbaabeaakiabeA8aQnaaBaaaleaacaWGSbGaam4Aaaqa baaabaGaam4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqabaaale qaniabggHiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc cqGHsisldaaeqbqaaiaadEhadaqhaaWcbaGaam4Aaaqaaiaaikdaaa GccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aa0baaSqaaiaa dYgacaWGRbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4CamaaBa aameaacaWGTbaabeaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaiqb eo8aZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaadYgacq GHiiIZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aOGa aiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaiodaca GGUaGaaGOnaiaacMcaaaa@8B67@

Cette différence peut être relativement faible, surtout dans les enquêtes auprès des entreprises caractérisées par des données asymétriques. C’est le cas quand max k s m ( w k d k φ l k ) k s m w k d k φ l k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacg gacaGG4bWaaSbaaSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaa d2gaaeqaaaWcbeaakmaabmaabaGaam4DamaaBaaaleaacaWGRbaabe aakiaadsgadaWgaaWcbaGaam4AaaqabaGccqaHgpGAdaWgaaWcbaGa amiBaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeyyrIa0aaabeaeaaca WG3bWaaSbaaSqaaiaadUgaaeqaaOGaamizamaaBaaaleaacaWGRbaa beaakiabeA8aQnaaBaaaleaacaWGSbGaam4AaaqabaaabaGaam4Aai abgIGiolaadohadaWgaaadbaGaamyBaaqabaaaleqaniabggHiLdGc caGGUaaaaa@572C@ Cela correspond aux résultats présentés par Mills et coll. 2013.

Dans l’ensemble, on peut considérer la variance totale comme approximativement linéaire pour ce qui est des erreurs au niveau de l’unité, surtout dans le cas des enquêtes par sondage où V ^ ORD ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D96@ V ^ DIF ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CD4@ et V ^ MIX ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CEF@ sont des facteurs importants de la variance totale.


Date de modification :