How to decompose the non-response variance: A total survey error approach
Section 3. Unit-level error decomposition of variance components

This section describes the approach used to evaluate the contribution of a given nonresponding unit, λ s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4Saam4CamaaBaaaleaacaWGTbaabeaakiaacYcaaaa@3BAE@ to the estimated total variance for the estimation of a total for a given variable.

The unit-level error decomposition, δ λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGccaGGSaaaaa@39E5@ of the total variance for a given unit, λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai ilaaaa@380A@ is defined as the difference between the estimated total variance, and the projected total variance, i.e., δ λ ( V ^ TOT ( t ^ d ) ) V ^ TOT ( t ^ d ) V ^ TOT ( λ ) ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGubGaae4taiaabsfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH HjIUceWGwbGbaKaadaWgaaWcbaGaaeivaiaab+eacaqGubaabeaakm aabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0IabmOvayaajaWaa0baaSqaaiaabsfacaqGpbGaae ivaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaOWaaeWaaeaa ceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaca GGUaaaaa@575A@ The superscript ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH7oaBaiaawIcacaGLPaaaaaa@38E3@ is used to indicate projected quantities when unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ is converted to a respondent. So, δ λ ( V ^ TOT ( t ^ d ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGubGaae4taiaabsfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4210@ can be seen as the expected gain, in terms of total variance, of converting a nonrespondent unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ to a respondent.

In order to get δ λ ( V ^ TOT ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGubGaae4taiaabsfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaGG Saaaaa@42C0@ λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ is moved from s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaaaaa@37BC@ to s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaakiaacYcaaaa@387B@ generating the new partition P s ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGZbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaaa aa@3ADD@ of the sample from P s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGZbaabeaaaaa@379F@ where P s ( λ ) = { s r ( λ ) , s m ( λ ) } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGZbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpdaGadaqaaiaadohadaqhaaWcbaGaamOCaaqaamaabmaaba Gaeq4UdWgacaGLOaGaayzkaaaaaOGaaGzaVlaacYcacaaMe8Uaam4C amaaDaaaleaacaWGTbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPa aaaaaakiaawUhacaGL9baacaGGSaaaaa@4D56@ s r ( λ ) = s r { λ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGYbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpcaWGZbWaaSbaaSqaaiaadkhaaeqaaOGaeyOkIG8aaiWaae aacqaH7oaBaiaawUhacaGL9baaaaa@43B9@ and s m ( λ ) = s m \ { λ } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGTbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpcaWGZbWaaSbaaSqaaiaad2gaaeqaaOGaaiixamaacmaaba Gaeq4UdWgacaGL7bGaayzFaaGaaiilaaaa@439F@ as illustrated in Figure 3.1.

Figure 3.1 of article 54957 issue 2018002

Description for Figure 3.1

Figure illustrating the sample partitions. Partition P s ={ s r , s m }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGZbaabeaakiabg2da9maacmaabaGaam4CamaaBaaaleaa caWGYbaabeaakiaaygW7caGGSaGaaGjbVlaadohadaWgaaWcbaGaam yBaaqabaaakiaawUhacaGL9baacaGGSaaaaa@439C@  where { l=1,2,3,... } s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGSbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGa aiOlaiaac6cacaGGUaaacaGL7bGaayzFaaGaeyicI4Saam4CamaaBa aaleaacaWGYbaabeaaaaa@4408@  and { k=1,2,3,... } s m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGRbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGa aiOlaiaac6cacaGGUaaacaGL7bGaayzFaaGaeyicI4Saam4CamaaBa aaleaacaWGTbaabeaakiaac6caaaa@44BE@  Unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@  is moved from s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaaaaa@37BC@  to s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaakiaacYcaaaa@387B@  generating the new partition P s ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGZbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaaa aa@3ADD@  of the sample from P s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGZbaabeaaaaa@379F@  where P s ( λ ) ={ s r ( λ ) , s m ( λ ) }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGZbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpdaGadaqaaiaadohadaqhaaWcbaGaamOCaaqaamaabmaaba Gaeq4UdWgacaGLOaGaayzkaaaaaOGaaGzaVlaacYcacaaMe8Uaam4C amaaDaaaleaacaWGTbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPa aaaaaakiaawUhacaGL9baacaGGSaaaaa@4D56@   s r ( λ ) = s r { λ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGYbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpcaWGZbWaaSbaaSqaaiaadkhaaeqaaOGaeyOkIG8aaiWaae aacqaH7oaBaiaawUhacaGL9baaaaa@43B9@  and s m ( λ ) = s m \{ λ }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9vqpe0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGTbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaGc cqGH9aqpcaWGZbWaaSbaaSqaaiaad2gaaeqaaOGaaiixamaacmaaba Gaeq4UdWgacaGL7bGaayzFaaGaaiOlaaaa@43A1@

Some assumptions are necessary to decompose the variance components. It is recognized that these assumptions may not perfectly hold in reality. However, they can be used to generate accurate results, as shown in the simulation in Section 4. The required assumptions are:

  1. Projected reported value: let λ s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4Saam4CamaaBaaaleaacaWGTbaabeaaaaa@3AF4@ be converted to a response and let y λ ( λ ) = y λ * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacqaH7oaBaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaa kiabg2da9iaadMhadaqhaaWcbaGaeq4UdWgabaGaaiOkaaaakiaac6 caaaa@411B@
  2. Projected imputation parameters: k s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4AaiabgIGiolaadohadaWgaaWcbaGaamyBaaqabaGccaGGSaaaaa@3BBA@ μ ^ k ( λ ) = μ ^ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaeyypa0JafqiVd0MbaKaadaWgaaWcbaGaam4Aaaqabaaaaa@3FB8@ and σ ^ k ( λ ) = σ ^ k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaeyypa0Jafq4WdmNbaKaadaWgaaWcbaGaam4AaaqabaGcca GGUaaaaa@408E@
  3. Projected imputation relationship matrix: k s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4AaiabgIGiolaadohadaWgaaWcbaGaamyBaaqabaaaaa@3B00@ and l s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iBaiabgIGiolaadohadaWgaaWcbaGaamOCaaqabaGccaGGSaaaaa@3BC0@ φ l k ( λ ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaadYgacaWGRbaabaGaaiikaiabeU7aSjaacMcaaaGccqGH 9aqpcaaIWaaaaa@3E48@ if l = λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabg2 da9iabeU7aSbaa@3951@ or if k = λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iabeU7aSbaa@3950@ or φ l k ( λ ) = φ l k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaadYgacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpcqaHgpGAdaWgaaWcbaGaamiBaiaadUgaaeqaaa aa@4188@ otherwise. Similarly, φ 0 k ( λ ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaaicdacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpcaaIWaaaaa@3E41@ if k = λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iabeU7aSbaa@3950@ or φ 0 k ( λ ) = φ 0 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaaicdacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpcqaHgpGAdaWgaaWcbaGaaGimaiaadUgaaeqaaa aa@411A@ otherwise.

Assumption 1 implies that if a nonresponding unit, λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai ilaaaa@380A@ would have been converted to a respondent, its reported value is equal to its imputed value. This is not true generally, but the imputed value is our best estimate. The expectation is that this imputed value is close enough to the reported value to estimate the error on the variance components. This assumption will have an impact when the sampling variance is decomposed.

Assumption 2 states that the estimated parameters of the imputation model would remain unchanged if λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ were a respondent. In the case of a consistent imputation model parameter estimator, this assumption becomes more realistic when s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaaaaa@37C1@ is larger.

Finally, assumption 3 means that the imputation relationship between nonrespondents and respondents remains unchanged, except when unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ is involved. In other words, the converted unit, λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai ilaaaa@380A@ is no longer imputed from respondents, but will not be used to impute other nonresponding units. Figure 3.2 shows how assumption 3 is reflected in terms of the phi matrix.

Figure 3.2 of article 54957 issue 2018002

Description for Figure 3.2

Figure illustrating the initial and projected imputation relationship phi matrices. Columns of the initial relationship matrix φ lk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadYgacaWGRbaabeaaaaa@39B1@  are units k s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadohadaWgaaWcbaGaamyBaaqabaGccaGGSaaaaa@3B2B@  including unit λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai Olaaaa@384D@  Rows are units l s r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgI GiolaadohadaWgaaWcbaGaamOCaaqabaGccaGGUaaaaa@3B33@  Columns of the projected relationship matrix φ lk ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaadYgacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL Paaaaaaaaa@3CEF@  are units k s m ( λ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadohadaqhaaWcbaGaamyBaaqaamaabmaabaGaeq4UdWgacaGL OaGaayzkaaaaaOGaaiilaaaa@3E69@  excluding unit λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai Olaaaa@384D@  Rows are units l s r ( λ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgI GiolaadohadaqhaaWcbaGaamOCaaqaamaabmaabaGaeq4UdWgacaGL OaGaayzkaaaaaOGaaiilaaaa@3E6F@  including unit λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaai Olaaaa@384D@  The row associated with unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@379B@  is a row of 0. Other values in matrix φ lk ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaadYgacaWGRbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGL Paaaaaaaaa@3CEF@  are the same as the ones in matrix φ lk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadYgacaWGRbaabeaaaaa@39B1@ .

Therefore, the compensation weight, W d l ( λ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaWGKbGaamiBaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaaGzaVlaacYcaaaa@3E0A@ of a responding unit, l s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iBaiabgIGiolaadohadaWgaaWcbaGaamOCaaqabaGccaGGSaaaaa@3BC0@ is projected as

W d l ( λ ) = k s m ( λ ) w k d k φ l k ( λ ) = k s m w k d k φ l k w λ d λ φ l λ = W d l w λ d λ φ l λ . ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVipu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadEfadaqhaaWcbaGaamizaiaadYgaaeaadaqadaqaaiabeU7a SbGaayjkaiaawMcaaaaaaOqaaiabg2da9maaqafabaGaam4DamaaBa aaleaacaWGRbaabeaakiaadsgadaWgaaWcbaGaam4AaaqabaGccqaH gpGAdaqhaaWcbaGaamiBaiaadUgaaeaadaqadaqaaiabeU7aSbGaay jkaiaawMcaaaaaaeaacaWGRbGaeyicI4Saam4CamaaDaaameaacaWG TbaabaWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaaaleqaniabgg HiLdaakeaaaeaacqGH9aqpdaaeqbqaaiaadEhadaWgaaWcbaGaam4A aaqabaGccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aaSbaaS qaaiaadYgacaWGRbaabeaaaeaacaWGRbGaeyicI4Saam4CamaaBaaa meaacaWGTbaabeaaaSqab0GaeyyeIuoakiabgkHiTiaadEhadaWgaa WcbaGaeq4UdWgabeaakiaadsgadaWgaaWcbaGaeq4UdWgabeaakiab eA8aQnaaBaaaleaacaWGSbGaeq4UdWgabeaaaOqaaaqaaiabg2da9i aadEfadaWgaaWcbaGaamizaiaadYgaaeqaaOGaeyOeI0Iaam4Damaa BaaaleaacqaH7oaBaeqaaOGaamizamaaBaaaleaacqaH7oaBaeqaaO GaeqOXdO2aaSbaaSqaaiaadYgacqaH7oaBaeqaaOGaaiOlaiaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlai aaigdacaGGPaaaaaaa@89D0@

The marginal weight from the converted unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ is withdrawn from the original compensation weight, W d l , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGKbGaamiBaaqabaGccaGGSaaaaa@3942@ to obtain the new W d l ( λ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaWGKbGaamiBaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaaGzaVlaac6caaaa@3E0C@ Note that W d λ ( λ ) = k s m ( λ ) w k d k φ λ k ( λ ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaWGKbGaeq4UdWgabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpdaaeqaqaaiaadEhadaWgaaWcbaGaam4Aaaqaba GccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aa0baaSqaaiab eU7aSjaadUgaaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaaae aacaWGRbGaeyicI4Saam4CamaaDaaameaacaWGTbaabaWaaeWaaeaa cqaH7oaBaiaawIcacaGLPaaaaaaaleqaniabggHiLdGccqGH9aqpca aIWaaaaa@550B@ because φ λ k ( λ ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiabeU7aSjaadUgaaeaadaqadaqaaiabeU7aSbGaayjkaiaa wMcaaaaakiabg2da9iaaicdaaaa@3F3B@ under assumption 3. As mentioned above, it means that λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ isn’t used to impute nonrespondents.

In the next subsections, the unit-level error decomposition for unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ is computed for the four variance components, as described in Section 2.3.

3.1  Unit-level error decomposition of the naive sampling variance

The quantity V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ depends on the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaayk W7cqGHsislaaa@391C@ values, the final weights and the first-order and second-order selection probabilities. The unit-level error decomposition of the naive sampling variance component V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ is trivial since the assumption that unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ goes from s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaaaaa@37BC@ to s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaaaaa@37C1@ does not change weights and selection probabilities. Under assumption 1, the projected reported value y λ ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacqaH7oaBaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaa aaa@3BC2@ is set to y λ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacqaH7oaBaeaacaGGQaaaaaaa@3933@ so that V ^ ORD ( λ ) ( t ^ d ) = V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja Waa0baaSqaaiaab+eacaqGsbGaaeiraaqaamaabmaabaGaeq4UdWga caGLOaGaayzkaaaaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaam izaaqabaaakiaawIcacaGLPaaacqGH9aqpceWGwbGbaKaadaWgaaWc baGaae4taiaabkfacaqGebaabeaakmaabmaabaGabmiDayaajaWaaS baaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaaaa@486A@ when λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ is converted to a responding unit. Consequently, the decomposition of V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ is given by

δ λ ( V ^ ORD ( t ^ d ) ) V ^ ORD ( t ^ d ) V ^ ORD ( λ ) ( t ^ d ) = 0. ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGpbGaaeOuaiaabseaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH HjIUceWGwbGbaKaadaWgaaWcbaGaae4taiaabkfacaqGebaabeaakm aabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0IabmOvayaajaWaa0baaSqaaiaab+eacaqGsbGaae iraaqaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaOWaaeWaaeaa ceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacq GH9aqpcaaIWaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@642D@

This result is consistent with the idea that the naive sampling variance point estimate will likely change, but it is not expected to decrease with an extra responding unit.

3.2  Unit-level decomposition of the correction to the sampling variance component

The unit-level error decomposition for unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ of the correction to the sampling variance component, V ^ DIF ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D84@ is given by

δ λ ( V ^ DIF ( t ^ d ) ) V ^ DIF ( t ^ d ) V ^ DIF ( λ ) ( t ^ d ) = k s m ( 1 π k ) d k w k 2 σ ^ k 2 λ s m ( λ ) ( 1 π k ) d k w k 2 ( σ ^ k ( λ ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=epu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeiraiaabMeacaqGgbaabeaakmaabmaabaGabm iDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaabaGaeyyyIORabmOvayaajaWaaSbaaSqaaiaabseaca qGjbGaaeOraaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaacaWG KbaabeaaaOGaayjkaiaawMcaaiabgkHiTiqadAfagaqcamaaDaaale aacaqGebGaaeysaiaabAeaaeaadaqadaqaaiabeU7aSbGaayjkaiaa wMcaaaaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaa GccaGLOaGaayzkaaaabaaabaGaeyypa0Zaaabuaeaadaqadaqaaiaa igdacqGHsislcqaHapaCdaWgaaWcbaGaam4AaaqabaaakiaawIcaca GLPaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaam4DamaaDaaaleaa caWGRbaabaGaaGOmaaaakiqbeo8aZzaajaWaa0baaSqaaiaadUgaae aacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaad2ga aeqaaaWcbeqdcqGHris5aOGaeyOeI0Yaaabuaeaadaqadaqaaiaaig dacqGHsislcqaHapaCdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGL PaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaam4DamaaDaaaleaaca WGRbaabaGaaGOmaaaakmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGa am4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiabeU7aSjabgIGiolaa dohadaqhaaadbaGaamyBaaqaamaabmaabaGaeq4UdWgacaGLOaGaay zkaaaaaaWcbeqdcqGHris5aOGaaiOlaaaaaaa@8CB5@

Under assumption 2, σ ^ k ( λ ) = σ ^ k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaeyypa0Jafq4WdmNbaKaadaWgaaWcbaGaam4AaaqabaGcca GGSaaaaa@408C@ so that

δ λ ( V ^ DIF ( t ^ d ) ) = ( 1 π λ ) d λ w λ 2 σ ^ λ 2 . ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGebGaaeysaiaabAeaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH 9aqpdaqadaqaaiaaigdacqGHsislcqaHapaCdaWgaaWcbaGaeq4UdW gabeaaaOGaayjkaiaawMcaaiaadsgadaWgaaWcbaGaeq4UdWgabeaa kiaadEhadaqhaaWcbaGaeq4UdWgabaGaaGOmaaaakiqbeo8aZzaaja Waa0baaSqaaiabeU7aSbqaaiaaikdaaaGccaGGUaGaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIZaGaaiykaa aa@60B6@

The astute reader will notice that the actual sampling variance (not its estimation) should not be impacted by whether or not a unit is a respondent. However, we decided to include the impact of a unit on the sampling variance estimation in order to be coherent in the way we treat the three components V SAM ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGtbGaaeyqaiaab2eaaeqaaOWaaeWaaeaaceWG0bGbaKaa daWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@3D82@ V NR ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBaaa leaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3C0E@ and V MIX ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGnbGaaeysaiaabIfaaeqaaOWaaeWaaeaaceWG0bGbaKaa daWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacaGGUaaaaa@3D91@

3.3  Unit-level decomposition of the non-response variance component

The unit-level error decomposition for unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ of the non-response variance component V ^ NR ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaaaa@3C1E@ is given by

δ λ ( V ^ NR ( t ^ d ) ) V ^ NR ( t ^ d ) V ^ NR ( λ ) ( t ^ d ) = ( l s r W d l 2 σ ^ l 2 + k s m w k 2 d k σ ^ k 2 ) ( l s r ( λ ) ( W d l ( λ ) ) 2 ( σ ^ l ( λ ) ) 2 + k s m ( λ ) w k 2 d k ( σ ^ k ( λ ) ) 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=epu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeOtaiaabkfaaeqaaOWaaeWaaeaaceWG0bGbaK aadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGL PaaaaeaacqGHHjIUceWGwbGbaKaadaWgaaWcbaGaaeOtaiaabkfaae qaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaa wIcacaGLPaaacqGHsislceWGwbGbaKaadaqhaaWcbaGaaeOtaiaabk faaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaakmaabmaabaGa bmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaaba aabaGaeyypa0ZaaeWaaeaadaaeqbqaaiaadEfadaqhaaWcbaGaamiz aiaadYgaaeaacaaIYaaaaOGafq4WdmNbaKaadaqhaaWcbaGaamiBaa qaaiaaikdaaaaabaGaamiBaiabgIGiolaadohadaWgaaadbaGaamOC aaqabaaaleqaniabggHiLdGccqGHRaWkdaaeqbqaaiaadEhadaqhaa WcbaGaam4AaaqaaiaaikdaaaGccaWGKbWaaSbaaSqaaiaadUgaaeqa aOGafq4WdmNbaKaadaqhaaWcbaGaam4AaaqaaiaaikdaaaaabaGaam 4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqabaaaleqaniabggHi LdaakiaawIcacaGLPaaacqGHsislcaaMc8+aaeWaaeaadaaeqbqaam aabmaabaGaam4vamaaDaaaleaacaWGKbGaamiBaaqaamaabmaabaGa eq4UdWgacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOWaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWGSbaa baWaaeWaaeaacqaH7oaBaiaawIcacaGLPaaaaaaakiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaabaGaamiBaiabgIGiolaadohadaqh aaadbaGaamOCaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaa WcbeqdcqGHris5aOGaey4kaSYaaabuaeaacaWG3bWaa0baaSqaaiaa dUgaaeaacaaIYaaaaOGaamizamaaBaaaleaacaWGRbaabeaakmaabm aabaGafq4WdmNbaKaadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4U dWgacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaqaaiaadUgacqGHiiIZcaWGZbWaa0baaWqaaiaad2gaaeaa daqadaqaaiabeU7aSbGaayjkaiaawMcaaaaaaSqab0GaeyyeIuoaaO GaayjkaiaawMcaaiaac6caaaaaaa@AD68@

Under assumptions 2 and 3, σ ^ k ( λ ) = σ ^ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaam4AaaqaamaabmaabaGaeq4UdWgacaGLOaGaayzk aaaaaOGaeyypa0Jafq4WdmNbaKaadaWgaaWcbaGaam4Aaaqabaaaaa@3FD2@ and W d λ ( λ ) = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaWGKbGaeq4UdWgabaWaaeWaaeaacqaH7oaBaiaawIcacaGL PaaaaaGccqGH9aqpcaaIWaGaaiOlaaaa@3F05@ This can be rewritten as

δ λ ( V ^ NR ( t ^ d ) ) = ( l s r W d l 2 σ ^ l 2 l s r ( W d l ( λ ) ) 2 σ ^ l 2 ) + w λ 2 d λ σ ^ λ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaaca WGKbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9maa bmaabaWaaabuaeaacaWGxbWaa0baaSqaaiaadsgacaWGSbaabaGaaG Omaaaakiqbeo8aZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaaaaqa aiaadYgacqGHiiIZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcq GHris5aOGaeyOeI0YaaabuaeaadaqadaqaaiaadEfadaqhaaWcbaGa amizaiaadYgaaeaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiqbeo8aZzaajaWa a0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaadYgacqGHiiIZcaWGZb WaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aaGccaGLOaGaayzk aaGaey4kaSIaam4DamaaDaaaleaacqaH7oaBaeaacaaIYaaaaOGaam izamaaBaaaleaacqaH7oaBaeqaaOGafq4WdmNbaKaadaqhaaWcbaGa eq4UdWgabaGaaGOmaaaakiaac6caaaa@725A@

Using formula (3.1), this becomes

δ λ ( V ^ NR ( t ^ d ) ) = ( l s r W d l 2 σ ^ l 2 l s r ( W d l w λ d λ φ l λ ) 2 σ ^ l 2 ) + w λ 2 d λ σ ^ λ 2 = ( l s r W d l 2 σ ^ l 2 ( W d l 2 2 W d l w λ d λ φ l λ + w λ 2 d λ φ l λ 2 ) σ ^ l 2 ) + w λ 2 d λ σ ^ λ 2 = l s r ( 2 W d l w λ d λ φ l λ w λ 2 d λ φ l λ 2 ) σ ^ l 2 + w λ 2 d λ σ ^ λ 2 . ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeOtaiaabkfaaeqaaOWaaeWaaeaaceWG0bGbaK aadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGL PaaaaeaacqGH9aqpdaqadaqaamaaqafabaGaam4vamaaDaaaleaaca WGKbGaamiBaaqaaiaaikdaaaGccuaHdpWCgaqcamaaDaaaleaacaWG SbaabaGaaGOmaaaaaeaacaWGSbGaeyicI4Saam4CamaaBaaameaaca WGYbaabeaaaSqab0GaeyyeIuoakiabgkHiTmaaqafabaWaaeWaaeaa caWGxbWaaSbaaSqaaiaadsgacaWGSbaabeaakiabgkHiTiaadEhada WgaaWcbaGaeq4UdWgabeaakiaadsgadaWgaaWcbaGaeq4UdWgabeaa kiabeA8aQnaaBaaaleaacaWGSbGaeq4UdWgabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiqbeo8aZzaajaWaa0baaSqaaiaa dYgaaeaacaaIYaaaaaqaaiaadYgacqGHiiIZcaWGZbWaaSbaaWqaai aadkhaaeqaaaWcbeqdcqGHris5aaGccaGLOaGaayzkaaGaey4kaSIa am4DamaaDaaaleaacqaH7oaBaeaacaaIYaaaaOGaamizamaaBaaale aacqaH7oaBaeqaaOGafq4WdmNbaKaadaqhaaWcbaGaeq4UdWgabaGa aGOmaaaaaOqaaaqaaiabg2da9maabmaabaWaaabuaeaacaWGxbWaa0 baaSqaaiaadsgacaWGSbaabaGaaGOmaaaakiqbeo8aZzaajaWaa0ba aSqaaiaadYgaaeaacaaIYaaaaOGaeyOeI0YaaeWaaeaacaWGxbWaa0 baaSqaaiaadsgacaWGSbaabaGaaGOmaaaakiabgkHiTiaaikdacaWG xbWaaSbaaSqaaiaadsgacaWGSbaabeaakiaadEhadaWgaaWcbaGaeq 4UdWgabeaakiaadsgadaWgaaWcbaGaeq4UdWgabeaakiabeA8aQnaa BaaaleaacaWGSbGaeq4UdWgabeaakiabgUcaRiaadEhadaqhaaWcba Gaeq4UdWgabaGaaGOmaaaakiaadsgadaWgaaWcbaGaeq4UdWgabeaa kiabeA8aQnaaDaaaleaacaWGSbGaeq4UdWgabaGaaGOmaaaaaOGaay jkaiaawMcaaiqbeo8aZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaa aaqaaiaadYgacqGHiiIZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbe qdcqGHris5aaGccaGLOaGaayzkaaGaey4kaSIaam4DamaaDaaaleaa cqaH7oaBaeaacaaIYaaaaOGaamizamaaBaaaleaacqaH7oaBaeqaaO Gafq4WdmNbaKaadaqhaaWcbaGaeq4UdWgabaGaaGOmaaaaaOqaaaqa aiabg2da9maaqafabaWaaeWaaeaacaaIYaGaam4vamaaBaaaleaaca WGKbGaamiBaaqabaGccaWG3bWaaSbaaSqaaiabeU7aSbqabaGccaWG KbWaaSbaaSqaaiabeU7aSbqabaGccqaHgpGAdaWgaaWcbaGaamiBai abeU7aSbqabaGccqGHsislcaWG3bWaa0baaSqaaiabeU7aSbqaaiaa ikdaaaGccaWGKbWaaSbaaSqaaiabeU7aSbqabaGccqaHgpGAdaqhaa WcbaGaamiBaiabeU7aSbqaaiaaikdaaaaakiaawIcacaGLPaaacuaH dpWCgaqcamaaDaaaleaacaWGSbaabaGaaGOmaaaaaeaacaWGSbGaey icI4Saam4CamaaBaaameaacaWGYbaabeaaaSqab0GaeyyeIuoakiab gUcaRiaadEhadaqhaaWcbaGaeq4UdWgabaGaaGOmaaaakiaadsgada WgaaWcbaGaeq4UdWgabeaakiqbeo8aZzaajaWaa0baaSqaaiabeU7a SbqaaiaaikdaaaGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI0aGaaiyk aaaaaaa@FFC5@

3.4  Unit-level decomposition of the mixed variance component

Finally, the impact of unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ on the variance component term, V ^ MIX ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D9F@ is given by

δ λ ( V ^ MIX ( t ^ d ) ) V ^ MIX ( t ^ d ) V ^ MIX ( λ ) ( t ^ d ) = ( 2 l s r W d l ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 ) ( 2 l s r ( λ ) W d l ( λ ) ( w l 1 ) d l ( σ ^ l ( λ ) ) 2 2 k s m ( λ ) w k ( w k 1 ) d k ( σ ^ k ( λ ) ) 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaabaGabm iDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaabaGaeyyyIORabmOvayaajaWaaSbaaSqaaiaab2eaca qGjbGaaeiwaaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaacaWG KbaabeaaaOGaayjkaiaawMcaaiabgkHiTiqadAfagaqcamaaDaaale aacaqGnbGaaeysaiaabIfaaeaadaqadaqaaiabeU7aSbGaayjkaiaa wMcaaaaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaa GccaGLOaGaayzkaaaabaaabaGaeyypa0ZaaeWaaeaacaaIYaWaaabu aeaacaWGxbWaaSbaaSqaaiaadsgacaWGSbaabeaakmaabmaabaGaam 4DamaaBaaaleaacaWGSbaabeaakiabgkHiTiaaigdaaiaawIcacaGL PaaacaWGKbWaaSbaaSqaaiaadYgaaeqaaOGafq4WdmNbaKaadaqhaa WcbaGaamiBaaqaaiaaikdaaaaabaGaamiBaiabgIGiolaadohadaWg aaadbaGaamOCaaqabaaaleqaniabggHiLdGccqGHsislcaaIYaWaaa buaeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG3bWa aSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaai aadsgadaWgaaWcbaGaam4AaaqabaGccuaHdpWCgaqcamaaDaaaleaa caWGRbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4CamaaBaaame aacaWGTbaabeaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaaaqa aiaaysW7cqGHsisldaqadaqaaiaaikdadaaeqbqaaiaadEfadaqhaa WcbaGaamizaiaadYgaaeaadaqadaqaaiabeU7aSbGaayjkaiaawMca aaaakmaabmaabaGaam4DamaaBaaaleaacaWGSbaabeaakiabgkHiTi aaigdaaiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadYgaaeqaaOWa aeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWGSbaabaWaaeWaaeaacq aH7oaBaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaabaGaamiBaiabgIGiolaadohadaqhaaadbaGaamOCaa qaamaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaaWcbeqdcqGHris5 aOGaeyOeI0IaaGOmamaaqafabaGaam4DamaaBaaaleaacaWGRbaabe aakmaabmaabaGaam4DamaaBaaaleaacaWGRbaabeaakiabgkHiTiaa igdaaiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadUgaaeqaaOWaae WaaeaacuaHdpWCgaqcamaaDaaaleaacaWGRbaabaWaaeWaaeaacqaH 7oaBaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaabaGaam4AaiabgIGiolaadohadaqhaaadbaGaamyBaaqa amaabmaabaGaeq4UdWgacaGLOaGaayzkaaaaaaWcbeqdcqGHris5aa GccaGLOaGaayzkaaGaaiOlaaaaaaa@C7AE@

This equation can be rewritten as follows, under assumptions 2 and 3 and equation (3.1)

δ λ ( V ^ MIX ( t ^ d ) ) = ( 2 l s r W d l ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 ) ( 2 l s r ( W d l w λ d λ φ l λ ) ( w l 1 ) d l σ ^ l 2 2 k s m ( λ ) w k ( w k 1 ) d k σ ^ k 2 ) = 2 l s r w λ d λ φ l λ ( w l 1 ) d l σ ^ l 2 2 w λ ( w λ 1 ) d λ σ ^ λ 2 . ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGb aKaadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaabaGabm iDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaabaGaeyypa0ZaaeWaaeaacaaIYaWaaabuaeaacaWGxb WaaSbaaSqaaiaadsgacaWGSbaabeaakmaabmaabaGaam4DamaaBaaa leaacaWGSbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGKb WaaSbaaSqaaiaadYgaaeqaaOGafq4WdmNbaKaadaqhaaWcbaGaamiB aaqaaiaaikdaaaaabaGaamiBaiabgIGiolaadohadaWgaaadbaGaam OCaaqabaaaleqaniabggHiLdGccqGHsislcaaIYaWaaabuaeaacaWG 3bWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaai aadUgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadsgadaWg aaWcbaGaam4AaaqabaGccuaHdpWCgaqcamaaDaaaleaacaWGRbaaba GaaGOmaaaaaeaacaWGRbGaeyicI4Saam4CamaaBaaameaacaWGTbaa beaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaaaqaaiaaysW7ca aMe8UaeyOeI0YaaeWaaeaacaaIYaWaaabuaeaadaqadaqaaiaadEfa daWgaaWcbaGaamizaiaadYgaaeqaaOGaeyOeI0Iaam4DamaaBaaale aacqaH7oaBaeqaaOGaamizamaaBaaaleaacqaH7oaBaeqaaOGaeqOX dO2aaSbaaSqaaiaadYgacqaH7oaBaeqaaaGccaGLOaGaayzkaaWaae WaaeaacaWG3bWaaSbaaSqaaiaadYgaaeqaaOGaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadsgadaWgaaWcbaGaamiBaaqabaGccuaHdpWCga qcamaaDaaaleaacaWGSbaabaGaaGOmaaaaaeaacaWGSbGaeyicI4Sa am4CamaaBaaameaacaWGYbaabeaaaSqab0GaeyyeIuoakiabgkHiTi aaikdadaaeqbqaaiaadEhadaWgaaWcbaGaam4AaaqabaGcdaqadaqa aiaadEhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaaIXaaacaGLOa GaayzkaaGaamizamaaBaaaleaacaWGRbaabeaakiqbeo8aZzaajaWa a0baaSqaaiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZb Waa0baaWqaaiaad2gaaeaadaqadaqaaiabeU7aSbGaayjkaiaawMca aaaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaaaqaaiabg2da9i aaikdadaaeqbqaaiaadEhadaWgaaWcbaGaeq4UdWgabeaakiaadsga daWgaaWcbaGaeq4UdWgabeaakiabeA8aQnaaBaaaleaacaWGSbGaeq 4UdWgabeaakmaabmaabaGaam4DamaaBaaaleaacaWGSbaabeaakiab gkHiTiaaigdaaiaawIcacaGLPaaacaWGKbWaaSbaaSqaaiaadYgaae qaaOGafq4WdmNbaKaadaqhaaWcbaGaamiBaaqaaiaaikdaaaaabaGa amiBaiabgIGiolaadohadaWgaaadbaGaamOCaaqabaaaleqaniabgg HiLdGccqGHsislcaaIYaGaam4DamaaBaaaleaacqaH7oaBaeqaaOWa aeWaaeaacaWG3bWaaSbaaSqaaiabeU7aSbqabaGccqGHsislcaaIXa aacaGLOaGaayzkaaGaamizamaaBaaaleaacqaH7oaBaeqaaOGafq4W dmNbaKaadaqhaaWcbaGaeq4UdWgabaGaaGOmaaaakiaac6cacaaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIca caaIZaGaaiOlaiaaiwdacaGGPaaaaaaa@F0D2@

In Section 2.3, the estimation of the total variance, V ^ TOT ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3DA8@ has been defined as V ^ TOT ( t ^ d ) = V ^ ORD ( t ^ d ) + V ^ DIF ( t ^ d ) + V ^ NR ( t ^ d ) + V ^ MIX ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9i qadAfagaqcamaaBaaaleaacaqGpbGaaeOuaiaabseaaeqaaOWaaeWa aeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPa aacqGHRaWkceWGwbGbaKaadaWgaaWcbaGaaeiraiaabMeacaqGgbaa beaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGcca GLOaGaayzkaaGaey4kaSIabmOvayaajaWaaSbaaSqaaiaab6eacaqG sbaabeaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaa GccaGLOaGaayzkaaGaey4kaSIabmOvayaajaWaaSbaaSqaaiaab2ea caqGjbGaaeiwaaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaaca WGKbaabeaaaOGaayjkaiaawMcaaiaac6caaaa@5D85@ Similarly, the impact of unit λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@375A@ on V ^ TOT ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CF8@ is defined as

δ λ ( V ^ TOT ( t ^ d ) ) = δ λ ( V ^ ORD ( t ^ d ) ) + δ λ ( V ^ DIFF ( t ^ d ) ) + δ λ ( V ^ NR ( t ^ d ) ) + δ λ ( V ^ MIX ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGubGaae4taiaabsfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH 9aqpcqaH0oazdaWgaaWcbaGaeq4UdWgabeaakmaabmaabaGabmOvay aajaWaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqa dshagaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaGaay jkaiaawMcaaiabgUcaRiabes7aKnaaBaaaleaacqaH7oaBaeqaaOWa aeWaaeaaceWGwbGbaKaadaWgaaWcbaGaaeiraiaabMeacaqGgbGaae OraaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaacaWGKbaabeaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiabes7aKnaaBa aaleaacqaH7oaBaeqaaOWaaeWaaeaaceWGwbGbaKaadaWgaaWcbaGa aeOtaiaabkfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaam izaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRaWkcqaH 0oazdaWgaaWcbaGaeq4UdWgabeaakmaabmaabaGabmOvayaajaWaaS baaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadshagaqc amaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawM caaiaacYcaaaa@77C3@

where δ λ ( V ^ ORD ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGpbGaaeOuaiaabseaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaGG Saaaaa@42AE@ δ λ ( V ^ DIF ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGebGaaeysaiaabAeaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaGG Saaaaa@429C@ δ λ ( V ^ NR ( t ^ d ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBaaaleaaca WGKbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaacYcaaaa@41E6@ and δ λ ( V ^ MIX ( t ^ d ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiabeU7aSbqabaGcdaqadaqaaiqadAfagaqcamaaBaaaleaa caqGnbGaaeysaiaabIfaaeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4207@ are respectively given by equations (3.2), (3.3), (3.4) and (3.5).

It can be observed (proofs are given in the appendix) that V ^ DIF ( t ^ d ) = k s m δ k ( V ^ DIF ( t ^ d ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9m aaqababaGaeqiTdq2aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaaceWG wbGbaKaadaWgaaWcbaGaaeiraiaabMeacaqGgbaabeaakmaabmaaba GabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaa caGLOaGaayzkaaaaleaacaWGRbGaeyicI4Saam4CamaaBaaameaaca WGTbaabeaaaSqab0GaeyyeIuoaaaa@4FD5@ and V ^ MIX ( t ^ d ) = k s m δ k ( V ^ MIX ( t ^ d ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9m aaqababaGaeqiTdq2aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaaceWG wbGbaKaadaWgaaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaaba GabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaaa caGLOaGaayzkaaaaleaacaWGRbGaeyicI4Saam4CamaaBaaameaaca WGTbaabeaaaSqab0GaeyyeIuoakiaac6caaaa@50C7@ However, this linear relation doesn’t hold for V ^ NR ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@3CD0@ This property is important to consider because, for V ^ DIF ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CD4@ and V ^ MIX ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D9F@ the sum of the unit-level errors on all nonresponding units, k s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadohadaWgaaWcbaGaamyBaaqabaGccaGGSaaaaa@3AEA@ is equal to the corresponding estimated variance component. In the case of non-response variance component, the sum of the errors is different than V ^ NR ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@3CD0@ The difference is given by

k s m δ k ( V ^ NR ( t ^ d ) ) V ^ NR ( t ^ d ) = l s r ( ( k s m w k d k φ l k ) 2 k s m w k 2 d k φ l k 2 ) σ ^ l 2 . ( 3.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeaacq aH0oazdaWgaaWcbaGaam4AaaqabaGcdaqadaqaaiqadAfagaqcamaa BaaaleaacaqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBa aaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaWc baGaam4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqabaaaleqani abggHiLdGccqGHsislceWGwbGbaKaadaWgaaWcbaGaaeOtaiaabkfa aeqaaOWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaaki aawIcacaGLPaaacqGH9aqpcaaMc8+aaabuaeaadaqadaqaamaabmaa baWaaabuaeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaamizamaaBa aaleaacaWGRbaabeaakiabeA8aQnaaBaaaleaacaWGSbGaam4Aaaqa baaabaGaam4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqabaaale qaniabggHiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc cqGHsisldaaeqbqaaiaadEhadaqhaaWcbaGaam4Aaaqaaiaaikdaaa GccaWGKbWaaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aa0baaSqaaiaa dYgacaWGRbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam4CamaaBa aameaacaWGTbaabeaaaSqab0GaeyyeIuoaaOGaayjkaiaawMcaaiqb eo8aZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaadYgacq GHiiIZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aOGa aiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaiodaca GGUaGaaGOnaiaacMcaaaa@8B67@

This difference can be relatively small, especially in business surveys characterized with asymmetric data. This is the case when max k s m ( w k d k φ l k ) k s m w k d k φ l k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacg gacaGG4bWaaSbaaSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaa d2gaaeqaaaWcbeaakmaabmaabaGaam4DamaaBaaaleaacaWGRbaabe aakiaadsgadaWgaaWcbaGaam4AaaqabaGccqaHgpGAdaWgaaWcbaGa amiBaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeyyrIa0aaabeaeaaca WG3bWaaSbaaSqaaiaadUgaaeqaaOGaamizamaaBaaaleaacaWGRbaa beaakiabeA8aQnaaBaaaleaacaWGSbGaam4AaaqabaaabaGaam4Aai abgIGiolaadohadaWgaaadbaGaamyBaaqabaaaleqaniabggHiLdGc caGGUaaaaa@572C@ This is in line with the results shown by Mills et al. (2013).

Overall, the total variance can be considered as approximately linear in terms of the unit-level errors, especially in the case of sample surveys where V ^ ORD ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D96@ V ^ DIF ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D84@ and V ^ MIX ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CEF@ are significant contributors to the total variance.


Date modified: