How to decompose the non-response variance: A total survey error approach
Section 2. Inference framework

Assume a sample s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@369E@ of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@3699@ is drawn from a population U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@3680@ of size N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaac6 caaaa@372B@ Define the population total by

t d = k U d k y k ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGKbaabeaakiabg2da9maaqababaGaamizamaaBaaaleaa caWGRbaabeaakiaadMhadaWgaaWcbaGaam4AaaqabaaabaGaam4Aai abgIGiolaadwfaaeqaniabggHiLdGccaaMf8UaaGzbVlaaywW7caaM f8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaGGPaaaaa@4D64@

for a variable, y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacY caaaa@3754@ and a domain indicator, d k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiaacYcaaaa@3865@ which takes the value d k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiabg2da9iaaigdaaaa@3976@ if unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@3696@ belongs to the domain d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacY caaaa@373F@ and d k = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiabg2da9iaaicdaaaa@3975@ otherwise. In the context of full response, t d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGKbaabeaaaaa@37B4@ is estimated by t ^ d 0 = k s d k w k y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadsgaaeaacaaIWaaaaOGaeyypa0ZaaabeaeaacaWG KbWaaSbaaSqaaiaadUgaaeqaaOGaam4DamaaBaaaleaacaWGRbaabe aakiaadMhadaWgaaWcbaGaam4AaaqabaaabaGaam4AaiabgIGiolaa dohaaeqaniabggHiLdaaaa@451E@ where w k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGRbaabeaaaaa@37BE@ could be the sampling weight or a calibrated weight if calibration is performed. Because surveys are generally subject to non-response, both unit or item, a sample unit is classified into either a responding or a nonresponding unit with regard to the variable y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36A4@ at any given point during data collection. The subset s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaaaaa@37C1@ contains item-responding units whereas s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaaaaa@37BC@ contains item-nonresponding units. Note that s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaaaaa@37C1@ and s m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaakiaacYcaaaa@3876@ respectively of size n r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGYbaabeaaaaa@37BC@ and n m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGTbaabeaakiaacYcaaaa@3871@ form a partition of the sample s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacY caaaa@374E@ P s = { s r , s m } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGZbaabeaakiabg2da9maacmaabaGaam4CamaaBaaaleaa caWGYbaabeaakiaacYcacaaMe8Uaam4CamaaBaaaleaacaWGTbaabe aaaOGaay5Eaiaaw2haaiaacYcaaaa@4212@ with s r s m = s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaakiabgQIiilaadohadaWgaaWcbaGaamyBaaqa baGccqGH9aqpcaWGZbaaaa@3D89@ and s r s m = . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaakiabgMIihlaadohadaWgaaWcbaGaamyBaaqa baGccqGH9aqpcqGHfiIXcaGGUaaaaa@3EBA@

The approach proposed in this paper assumes that imputation is used in case of non-response, which is the common approach in business surveys. Moreover, this approach can be considered for both item and unit non-response as long as imputation is used. However, since only one variable of interest y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36A4@ is considered here for simplicity, then no distinction is made if the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36A4@ variable is imputed because of item or unit non-response. Also, the set s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaaaaa@37C1@ and s m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaaaaa@37BC@ are not indexed by an item number for simplicity without loss of generality. However, the action following the calculation of a unit score might be different depending on whether the unit is responding or not.

2.1 Estimation under imputation

The framework requires linear imputation methods. In other words, the imputed value, y k * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaaiOkaaaakiaacYcaaaa@3929@ can be written as a linear combination of the values reported by the other units. This linear combination is given by y k * = φ 0 k + l s r φ l k y l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqaicaWG5b Waa0baaSqaaiaadUgaaeaacaGGQaaaaOGaeyypa0JaeqOXdO2aaSba aSqaaiaaicdacaWGRbaabeaakiabgUcaRmaaqababaGaeqOXdO2aaS baaSqaaiaadYgacaWGRbaabeaakiaadMhadaWgaaWcbaGaamiBaaqa baaabaGaamiBaiabgIGiolaadohadaWgaaadbaGaamOCaaqabaaale qaniabggHiLdGccaGGUaaaaa@4B44@ The quantities, φ 0 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaaicdacaWGRbaabeaaaaa@3939@ and φ l k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadYgacaWGRbaabeaaaaa@3970@ do not depend on the values of variable of interest, y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacY caaaa@3754@ but they may depend on s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacY caaaa@374E@ s r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGYbaabeaaaaa@37C1@ and auxiliary data from the nonrespondents available on the frame, registers or elsewhere. Linear imputation methods cover most methods used in practice like auxiliary value imputation (Beaumont, Haziza and Bocci, 2011) and linear regression imputation, as well as donor imputation, which is often used to impute categorical variables. 

It is common practice to use several imputation methods, referred to as composite imputation, applied sequentially to the same variable. More than one linear imputation method can be used to impute nonresponding units. Section 2 of Beaumont and Bissonnette (2011) defines composite imputation in detail. Briefly, suppose that the set of nonrespondents is broken down into two or more groups and that a different imputation method is used within each group. For example, let x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGRbaabeaaaaa@37C3@ be the complete vector of auxiliary variables for unit k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaacY caaaa@3746@ and suppose regression imputation is used to impute the variable of interest. However, if, for some cases, x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGRbaabeaaaaa@37C3@ were incomplete, another imputation method, based on the available subset of x k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaBa aaleaacaWGRbaabeaakiaacYcaaaa@387D@ would be used. The approach presented in our paper can be generalized to include composite imputation as long as linear imputation methods are used. For simplicity of notation, the case of a single linear imputation method is presented.

The estimator of the domain total after imputation is given by

t ^ d = l s r w l d l y l + k s m w k d k y k * ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja WaaSbaaSqaaiaadsgaaeqaaOGaeyypa0ZaaabeaeaacaWG3bWaaSba aSqaaiaadYgaaeqaaOGaamizamaaBaaaleaacaWGSbaabeaakiaadM hadaWgaaWcbaGaamiBaaqabaaabaGaamiBaiabgIGiolaadohadaWg aaadbaGaamOCaaqabaaaleqaniabggHiLdGccqGHRaWkdaaeqaqaai aadEhadaWgaaWcbaGaam4AaaqabaGccaWGKbWaaSbaaSqaaiaadUga aeqaaOGaamyEamaaDaaaleaacaWGRbaabaGaaiOkaaaaaeaacaWGRb GaeyicI4Saam4CamaaBaaameaacaWGTbaabeaaaSqab0GaeyyeIuoa kiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUa GaaGOmaiaacMcaaaa@5F3C@

where w k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGRbaabeaaaaa@37BE@ is the sampling weight or a calibrated weight. The estimator presented in equation (2.2) can be rewritten as

t ^ d = l s r w l d l y l + k s m w k d k y k * = l s r w l d l y l + k s m w k d k ( φ 0 k + l s r φ l k y l ) = l s r w l d l y l + k s m w k d k φ 0 k + l s r y l k s m w k d k φ l k = W 0 d + l s r w l d l y l + l s r y l W d l = W 0 d + l s r y l ( w l d l + W d l ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpfFv0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGcbaGaeyypa0Za aabeaeaacaWG3bWaaSbaaSqaaiaadYgaaeqaaOGaamizamaaBaaale aacaWGSbaabeaakiaadMhadaWgaaWcbaGaamiBaaqabaaabaGaamiB aiabgIGiolaadohadaWgaaadbaGaamOCaaqabaaaleqaniabggHiLd GccqGHRaWkdaaeqaqaaiaadEhadaWgaaWcbaGaam4AaaqabaGccaWG KbWaaSbaaSqaaiaadUgaaeqaaOGaamyEamaaDaaaleaacaWGRbaaba GaaiOkaaaaaeaacaWGRbGaeyicI4Saam4CamaaBaaameaacaWGTbaa beaaaSqab0GaeyyeIuoaaOqaaaqaaiabg2da9maaqababaGaam4Dam aaBaaaleaacaWGSbaabeaakiaadsgadaWgaaWcbaGaamiBaaqabaGc caWG5bWaaSbaaSqaaiaadYgaaeqaaaqaaiaadYgacqGHiiIZcaWGZb WaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aOGaey4kaSYaaabe aeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaamizamaaBaaaleaaca WGRbaabeaakmaabmaabaGaeqOXdO2aaSbaaSqaaiaaicdacaWGRbaa beaakiabgUcaRmaaqafabaGaeqOXdO2aaSbaaSqaaiaadYgacaWGRb aabeaakiaadMhadaWgaaWcbaGaamiBaaqabaaabaGaamiBaiabgIGi olaadohadaWgaaadbaGaamOCaaqabaaaleqaniabggHiLdaakiaawI cacaGLPaaaaSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaaiaad2ga aeqaaaWcbeqdcqGHris5aaGcbaaabaGaeyypa0ZaaabeaeaacaWG3b WaaSbaaSqaaiaadYgaaeqaaOGaamizamaaBaaaleaacaWGSbaabeaa kiaadMhadaWgaaWcbaGaamiBaaqabaaabaGaamiBaiabgIGiolaado hadaWgaaadbaGaamOCaaqabaaaleqaniabggHiLdGccqGHRaWkdaae qaqaaiaadEhadaWgaaWcbaGaam4AaaqabaGccaWGKbWaaSbaaSqaai aadUgaaeqaaOGaeqOXdO2aaSbaaSqaaiaaicdacaWGRbaabeaakiab gUcaRmaaqababaGaamyEamaaBaaaleaacaWGSbaabeaakmaaqababa Gaam4DamaaBaaaleaacaWGRbaabeaakiaadsgadaWgaaWcbaGaam4A aaqabaGccqaHgpGAdaWgaaWcbaGaamiBaiaadUgaaeqaaaqaaiaadU gacqGHiiIZcaWGZbWaaSbaaWqaaiaad2gaaeqaaaWcbeqdcqGHris5 aaWcbaGaamiBaiabgIGiolaadohadaWgaaadbaGaamOCaaqabaaale qaniabggHiLdaaleaacaWGRbGaeyicI4Saam4CamaaBaaameaacaWG TbaabeaaaSqab0GaeyyeIuoaaOqaaaqaaiabg2da9iaadEfadaWgaa WcbaGaaGimaiaadsgaaeqaaOGaey4kaSYaaabeaeaacaWG3bWaaSba aSqaaiaadYgaaeqaaOGaamizamaaBaaaleaacaWGSbaabeaakiaadM hadaWgaaWcbaGaamiBaaqabaaabaGaamiBaiabgIGiolaadohadaWg aaadbaGaamOCaaqabaaaleqaniabggHiLdGccqGHRaWkdaaeqaqaai aadMhadaWgaaWcbaGaamiBaaqabaaabaGaamiBaiabgIGiolaadoha daWgaaadbaGaamOCaaqabaaaleqaniabggHiLdGccaWGxbWaaSbaaS qaaiaadsgacaWGSbaabeaaaOqaaaqaaiabg2da9iaadEfadaWgaaWc baGaaGimaiaadsgaaeqaaOGaey4kaSYaaabeaeaacaWG5bWaaSbaaS qaaiaadYgaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaadYgaaeqa aOGaamizamaaBaaaleaacaWGSbaabeaakiabgUcaRiaadEfadaWgaa WcbaGaamizaiaadYgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGSbGa eyicI4Saam4CamaaBaaameaacaWGYbaabeaaaSqab0GaeyyeIuoaki aac6caaaaaaa@EABF@

The quantities W d l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGKbGaamiBaaqabaaaaa@3888@ and W 0 d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIWaGaamizaaqabaaaaa@3851@ denote the compensatory weights (or adjustment weights) defined as

W d l = k s m w k d k φ l k W 0 d = k s m w k d k φ 0 k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrVfpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadEfadaWgaaWcbaGaamizaiaadYgaaeqaaaGcbaGaeyypa0Za aabuaeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaamizamaaBaaale aacaWGRbaabeaakiabeA8aQnaaBaaaleaacaWGSbGaam4Aaaqabaaa baGaam4AaiabgIGiolaadohadaWgaaadbaGaamyBaaqabaaaleqani abggHiLdaakeaacaWGxbWaaSbaaSqaaiaaicdacaWGKbaabeaaaOqa aiabg2da9maaqafabaGaam4DamaaBaaaleaacaWGRbaabeaakiaads gadaWgaaWcbaGaam4AaaqabaGccqaHgpGAdaWgaaWcbaGaaGimaiaa dUgaaeqaaOGaaiOlaaWcbaGaam4AaiabgIGiolaadohadaWgaaadba GaamyBaaqabaaaleqaniabggHiLdaaaaaa@5B4B@

They represent the effect of the non-response in the domain, d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacY caaaa@373F@ carried by the respondent unit, l s r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgI GiolaadohadaWgaaWcbaGaamOCaaqabaGccaGGSaaaaa@3AF0@ with a reported value, y l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGSbaabeaakiaac6caaaa@387D@

2.2  Variance estimation

Consider an imputation model, η , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaai ilaaaa@3802@ describing the relationship between variable y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36A4@ and the vector of observed auxiliary variables x obs . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCa aaleqabaGaae4BaiaabkgacaqGZbaaaOGaaiOlaaaa@3A5D@ Let E η ( . ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacqaH3oaAaeqaaOWaaeWaaeaacaGGUaaacaGLOaGaayzkaaGa aiilaaaa@3B3D@ Var η ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOvaiaacg gacaGGYbWaaSbaaSqaaiabeE7aObqabaGcdaqadaqaaiaac6caaiaa wIcacaGLPaaaaaa@3C7A@ and cov η ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGG2bWaaSbaaSqaaiabeE7aObqabaGcdaqadaqaaiaac6caaiaa wIcacaGLPaaaaaa@3C99@ denote respectively the expectation, the variance, and the covariance with respect to the imputation model η . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaai Olaaaa@3804@ The imputation model is

E η ( y k | X obs ) = μ k V η ( y k | X obs ) = σ k 2 cov η ( y k , y k | X obs ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMi8UaamyramaaBaaaleaacqaH3oaAaeqaaO WaaeWaaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaGPaVpaaeeaa baGaaGPaVlaahIfadaahaaWcbeqaaiaab+gacaqGIbGaae4CaaaaaO Gaay5bSdaacaGLOaGaayzkaaaabaGaeyypa0JaeqiVd02aaSbaaSqa aiaadUgaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMi8UaamOvamaa BaaaleaacqaH3oaAaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadU gaaeqaaOGaaGPaVpaaeeaabaGaaGPaVlaahIfadaahaaWcbeqaaiaa b+gacaqGIbGaae4CaaaaaOGaay5bSdaacaGLOaGaayzkaaaabaGaey ypa0Jaeq4Wdm3aa0baaSqaaiaadUgaaeaacaaIYaaaaaGcbaGaae4y aiaab+gacaqG2bWaaSbaaSqaaiabeE7aObqabaGcdaqadaqaaiaadM hadaWgaaWcbaGaam4AaaqabaGccaGGSaGaaGjbVlaadMhadaWgaaWc baGabm4AayaafaaabeaakiaaykW7daabbaqaaiaaykW7caWHybWaaW baaSqabeaacaqGVbGaaeOyaiaabohaaaaakiaawEa7aaGaayjkaiaa wMcaaaqaaiabg2da9iaaicdaaaaaaa@96C8@

where k , k U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaacY cacaaMe8Uabm4AayaafaGaeyicI4Saamyvaaaa@3C2D@ and k k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgc Mi5kqadUgagaqbaiaac6caaaa@3A0B@ The matrix X obs MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaCa aaleqabaGaae4BaiaabkgacaqGZbaaaaaa@3981@ contains all observed vectors x obs . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCa aaleqabaGaae4BaiaabkgacaqGZbaaaOGaaGzaVlaac6caaaa@3BE7@ The quantities μ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadUgaaeqaaaaa@3878@ and σ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadUgaaeaacaaIYaaaaaaa@3942@ can be estimated by μ ^ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aadaWgaaWcbaGaam4Aaaqabaaaaa@3888@ and σ ^ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaam4Aaaqaaiaaikdaaaaaaa@3952@ respectively. We assume that these estimators are unbiased with respect to the imputation model η . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaai Olaaaa@3804@ These estimators will be useful later for estimating the total variance components and the unit decompositions of those components.

The total error of the estimator (2.2) can be expressed as

t ^ d t d = ( t ^ d 0 t d ) + ( t ^ d t ^ d 0 ) , ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja WaaSbaaSqaaiaadsgaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWG Kbaabeaakiabg2da9maabmaabaGabmiDayaajaWaa0baaSqaaiaads gaaeaacaaIWaaaaOGaeyOeI0IaamiDamaaBaaaleaacaWGKbaabeaa aOGaayjkaiaawMcaaiabgUcaRmaabmaabaGabmiDayaajaWaaSbaaS qaaiaadsgaaeqaaOGaeyOeI0IabmiDayaajaWaa0baaSqaaiaadsga aeaacaaIWaaaaaGccaGLOaGaayzkaaGaaiilaiaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG4maiaacMcaaaa@57A6@

where t ^ d 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja Waa0baaSqaaiaadsgaaeaacaaIWaaaaaaa@387F@ is the estimator under complete response given by (2.1). The first term on the right-hand side of (2.3) is usually referred to as the sampling error and the second term is called the non-response error. As proposed in Särndal (1992) and in Beaumont and Bissonnette (2011), the mean square error of t ^ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaja WaaSbaaSqaaiaadsgaaeqaaaaa@37C4@ using (2.3) can be decomposed in three components and is given by

E η p q ( t ^ d t d ) 2 = E η V p ( t ^ d ) + E p q E η [ ( t ^ d t ^ d 0 ) 2 | s , s r ] + 2 E p q E η [ ( t ^ d t ^ d 0 ) ( t ^ d 0 t d ) | s , s r ] , ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadweadaWgaaWcbaGaeq4TdGMaamiCaiaadghaaeqaaOWaaeWa aeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaGccqGHsislcaWG0b WaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaaGcbaGaeyypa0JaamyramaaBaaaleaacqaH3oaAaeqaaO GaamOvamaaBaaaleaacaWGWbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamyram aaBaaaleaacaWGWbGaamyCaaqabaGccaWGfbWaaSbaaSqaaiabeE7a ObqabaGcdaWadaqaamaabmaabaGabmiDayaajaWaaSbaaSqaaiaads gaaeqaaOGaeyOeI0IabmiDayaajaWaa0baaSqaaiaadsgaaeaacaaI WaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaaqqaae aacaaMc8Uaam4CaiaacYcacaaMe8Uaam4CamaaBaaaleaacaWGYbaa beaaaOGaay5bSdaacaGLBbGaayzxaaaabaaabaGaaGjbVlabgUcaRi aaikdacaWGfbWaaSbaaSqaaiaadchacaWGXbaabeaakiaadweadaWg aaWcbaGaeq4TdGgabeaakmaadmaabaWaaeWaaeaaceWG0bGbaKaada WgaaWcbaGaamizaaqabaGccqGHsislceWG0bGbaKaadaqhaaWcbaGa amizaaqaaiaaicdaaaaakiaawIcacaGLPaaadaqadaqaaiqadshaga qcamaaDaaaleaacaWGKbaabaGaaGimaaaakiabgkHiTiaadshadaWg aaWcbaGaamizaaqabaaakiaawIcacaGLPaaacaaMc8+aaqqaaeaaca aMc8Uaam4CaiaacYcacaaMe8Uaam4CamaaBaaaleaacaWGYbaabeaa aOGaay5bSdaacaGLBbGaayzxaaGaaiilaiaaywW7caaMf8UaaGzbVl aaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGinaiaacMcaaaaaaa@9457@

under imputation model, η , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaai ilaaaa@3802@ sampling design, p , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacY caaaa@374B@ and response mechanism, q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaac6 caaaa@374E@ E η p q ( t ^ d t d ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacqaH3oaAcaWGWbGaamyCaaqabaGcdaqadaqaaiqadshagaqc amaaBaaaleaacaWGKbaabeaakiabgkHiTiaadshadaWgaaWcbaGaam izaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@41DC@ is approximately equivalent to the variance V η p q ( t ^ d t d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacqaH3oaAcaWGWbGaamyCaaqabaGcdaqadaqaaiqadshagaqc amaaBaaaleaacaWGKbaabeaakiabgkHiTiaadshadaWgaaWcbaGaam izaaqabaaakiaawIcacaGLPaaaaaa@4104@ assuming that the overall bias is negligible. Thus, the equation (2.4) is equivalent to V η p q ( t ^ d t d ) V TOT ( t ^ d ) = V SAM ( t ^ d ) + V NR ( t ^ d ) + V MIX ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacqaH3oaAcaWGWbGaamyCaaqabaGcdaqadaqaaiqadshagaqc amaaBaaaleaacaWGKbaabeaakiabgkHiTiaadshadaWgaaWcbaGaam izaaqabaaakiaawIcacaGLPaaacqGHHjIUcaWGwbWaaSbaaSqaaiaa bsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadshagaqcamaaBaaale aacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9iaadAfadaWgaaWc baGaae4uaiaabgeacaqGnbaabeaakmaabmaabaGabmiDayaajaWaaS baaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamOvamaa BaaaleaacaqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBa aaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadAfadaWg aaWcbaGaaeytaiaabMeacaqGybaabeaakmaabmaabaGabmiDayaaja WaaSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@6256@ where:

Beaumont and Bissonnette (2011) proposed the following estimators for V SAM ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGtbGaaeyqaiaab2eaaeqaaOWaaeWaaeaaceWG0bGbaKaa daWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@3D82@ V NR ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGobGaaeOuaaqabaGcdaqadaqaaiqadshagaqcamaaBaaa leaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3C0E@ and  V MIX ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaqGnbGaaeysaiaabIfaaeqaaOWaaeWaaeaaceWG0bGbaKaa daWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaacaGGUaaaaa@3D91@

  1. V ^ SAM ( t ^ d ) = V ^ ORD ( t ^ d ) + V ^ DIF ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabofacaqGbbGaaeytaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9i qadAfagaqcamaaBaaaleaacaqGpbGaaeOuaiaabseaaeqaaOWaaeWa aeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPa aacqGHRaWkceWGwbGbaKaadaWgaaWcbaGaaeiraiaabMeacaqGgbaa beaakmaabmaabaGabmiDayaajaWaaSbaaSqaaiaadsgaaeqaaaGcca GLOaGaayzkaaaaaa@4D38@ where:
    • V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ is the naive sampling variance estimator using the imputed values as though they were reported values.
    • V ^ DIF ( t ^ d ) = k s m ( 1 π k ) w k 2 d k σ ^ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9m aaqababaWaaeWaaeaacaaIXaGaeyOeI0IaeqiWda3aaSbaaSqaaiaa dUgaaeqaaaGccaGLOaGaayzkaaGaam4DamaaDaaaleaacaWGRbaaba GaaGOmaaaakiaadsgadaWgaaWcbaGaam4AaaqabaGccuaHdpWCgaqc amaaDaaaleaacaWGRbaabaGaaGOmaaaaaeaacaWGRbGaeyicI4Saam 4CamaaBaaameaacaWGTbaabeaaaSqab0GaeyyeIuoaaaa@52F6@ is a correction to V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ in order to reduce the bias of V ^ ORD ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D95@ as proposed by Beaumont and Bocci (2009), since the variance component V ^ ORD ( t ^ d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaaaa@3CE6@ relies on the use of imputed values, usually more homogeneous than the reported values.
  2. V ^ NR ( t ^ d ) = l s r W d l 2 σ ^ l 2 + k s m w k 2 d k σ ^ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaeyypa0Zaaabeae aacaWGxbWaa0baaSqaaiaadsgacaWGSbaabaGaaGOmaaaakiqbeo8a ZzaajaWaa0baaSqaaiaadYgaaeaacaaIYaaaaaqaaiaadYgacqGHii IZcaWGZbWaaSbaaWqaaiaadkhaaeqaaaWcbeqdcqGHris5aOGaey4k aSYaaabeaeaacaWG3bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaam izamaaBaaaleaacaWGRbaabeaakiqbeo8aZzaajaWaa0baaSqaaiaa dUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGZbWaaSbaaWqaai aad2gaaeqaaaWcbeqdcqGHris5aaaa@5AE2@ is the estimator of the non-response component of variance.
  3. V ^ MIX ( t ^ d ) = 2 l s r W d l ( w l 1 ) d l σ ^ l 2 2 k s m w k ( w k 1 ) d k σ ^ k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9i aaikdadaaeqaqaaiaadEfadaWgaaWcbaGaamizaiaadYgaaeqaaOWa aeWaaeaacaWG3bWaaSbaaSqaaiaadYgaaeqaaOGaeyOeI0IaaGymaa GaayjkaiaawMcaaiaadsgadaWgaaWcbaGaamiBaaqabaGccuaHdpWC gaqcamaaDaaaleaacaWGSbaabaGaaGOmaaaaaeaacaWGSbGaeyicI4 Saam4CamaaBaaameaacaWGYbaabeaaaSqab0GaeyyeIuoakiabgkHi TiaaikdadaaeqaqaaiaadEhadaWgaaWcbaGaam4AaaqabaGcdaqada qaaiaadEhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaaIXaaacaGL OaGaayzkaaGaamizamaaBaaaleaacaWGRbaabeaakiqbeo8aZzaaja Waa0baaSqaaiaadUgaaeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWG ZbWaaSbaaWqaaiaad2gaaeqaaaWcbeqdcqGHris5aaaa@6873@ is the estimator of the mixed variance component.

Under complete response, s m = , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGTbaabeaakiabg2da9iabgwGiglaacYcaaaa@3AF5@ the compensation weights are W d l = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGKbGaamiBaaqabaGccqGH9aqpcaaIWaGaaiilaaaa@3B02@ and the variance components, V ^ DIF ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D84@ V ^ NR ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab6eacaqGsbaabeaakmaabmaabaGabmiDayaajaWa aSbaaSqaaiaadsgaaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@3CCE@ and V ^ MIX ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D9F@ are also equal to 0, leaving the total variance as V ^ TOT ( t ^ d ) = V ^ ORD ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9i qadAfagaqcamaaBaaaleaacaqGpbGaaeOuaiaabseaaeqaaOWaaeWa aeaaceWG0bGbaKaadaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPa aacaGGUaaaaa@45F0@ Under a census, s = U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2 da9iaadwfacaGGSaaaaa@392E@ the variance components, V ^ DIF ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabseacaqGjbGaaeOraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D84@ V ^ ORD ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab+eacaqGsbGaaeiraaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D96@ and V ^ MIX ( t ^ d ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGjbGaaeiwaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3D9F@ are equal to 0, leaving the total variance as V ^ TOT ( t ^ d ) = V ^ NR ( t ^ d ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdIqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabsfacaqGpbGaaeivaaqabaGcdaqadaqaaiqadsha gaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiabg2da9i qadAfagaqcamaaBaaaleaacaqGobGaaeOuaaqabaGcdaqadaqaaiqa dshagaqcamaaBaaaleaacaWGKbaabeaaaOGaayjkaiaawMcaaiaac6 caaaa@4528@

2.3  Non-response bias

The reduction of non-response bias is always a desirable goal. It can be achieved through an adaptive design and/or through an appropriate method of dealing with missing values. Our framework assumes that the non-response bias is removed through imputation methods that use relevant auxiliary information. In practice, it is likely that imputation will only reduce non-response bias, not eliminate it. We may then wonder whether adaptive designs could be used to reduce further the bias. In the context of non-response weighting, Beaumont, Bocci and Haziza (2014) argued that auxiliary information used in an adaptive design to reduce non-response bias can also be used in non-response weighting to reduce the same amount of bias. Their argument can also be made in the context of imputation. This justifies our focus on variance reduction rather than bias reduction. We acknowledge that some bias may remain after imputation but ignore this bias because it may not be possible to reduce it further through an adaptive design without the availability of additional auxiliary information. However, it is possible to reduce the variance through an adaptive design. 


Date modified: