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Using balanced sampling in creel surveys 

Ibrahima Ousmane Ida, Louis-Paul Rivest and Gaétan Daigle1 

Abstract 

These last years, balanced sampling techniques have experienced a recrudescence of interest. They constrain the 
Horvitz Thompson estimators of the totals of auxiliary variables to be equal, at least approximately, to the 
corresponding true totals, to avoid the occurrence of bad samples. Several procedures are available to carry out 
balanced sampling; there is the cube method, see Deville and Tillé (2004), and an alternative, the rejective 
algorithm introduced by Hájek (1964). After a brief review of these sampling methods, motivated by the planning 
of an angler survey, we investigate using Monte Carlo simulations, the survey designs produced by these two 
sampling algorithms. 

 
Key Words: Balanced sampling; Creel surveys; Cube method; Multistage sampling; Rejective algorithm; Monte Carlo 

simulation. 

 
 

1  Introduction 
 

Creel surveys provide the foundation for estimating the impact of recreational fishing (Pollock, Jones 

and Brown, 1994). They are conducted to estimate total catch, fishing effort, and catch rate for various 

species at several locations (Hoenig, Jones, Pollock, Robson and Wade, 1997). As they focus on fish of 

interest to recreational anglers, they provide useful information for the management and economic 

contribution of sport fisheries (Minnesota Department of Natural Resources, 2011). 

Two methods are used to contact anglers in creel surveys, either the site access or the roving method. In 

site access, an agent waits at a location that the anglers must go through when they leave the site and 

interviews them when they depart (Robson and Jones, 1989). With the roving method the agent moves 

through the survey area and contacts anglers while they are fishing (United States Environmental Protection 

Agency, 1998). As the agent cannot be on location for the whole survey, survey sampling is used to select 

the periods when he will be on site, interviewing fishermen. 

In practice creel surveys can face several operational constraints especially when they involve many sites 

as an agent can only be at one site at a given time. Accommodating all these constraints can be a real 

challenge when planning a survey. This paper discusses balanced sampling in this context. By framing some 

operational constraints as balancing equations in a multi-stage sampling design, one should be able to ensure 

that the sample selected meets the necessary requirements.  

Balanced sampling is reviewed in Tillé (2011). A popular method to select a balanced sample is the cube 

method of Deville and Tillé (2004). An alternative is to select repeatedly several unbalanced samples until, 

by chance, a sample that approximately meets the balancing equations is drawn. This is the rejective method 

introduced by Hájek (1964), see also Fuller (2009) and Legg and Yu (2010). In a creel survey, the number 

of balancing equations is typically large. The implementation of the cube method in this context is discussed 
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in Chauvet (2009) and Hasler and Tillé (2014). See Vallée, Ferland-Raymond, Rivest and Tillé (2015) for 

a recent application of these methods in the context of a forest inventory. A recent paper in this area by 

Chauvet, Haziza and Lesage (2015) investigates the properties of the balanced samples obtained using a 

rejective method. 

The objectives of this paper are twofold. First, the operational constraints for a creel survey of striped 

bass (Morone saxatilis) carried out in the Gaspé Peninsula are presented. Then we will show how balanced 

sampling, implemented using the cube method, can be used to plan a survey fulfilling most of the 

constraints. The last section of the paper compares the rejective method to the cube method in the context 

of creel surveys. 

In Section 2, balanced sampling is presented using either the cube method or rejective sampling. 

Section 3 introduces operational constraints for a creel survey and shows how they can be met using 

balanced sampling with the cube method. In Section 4, the cube method is compared with the rejective 

algorithm in the context of a resource inventory where the balancing equations only involve indicator 

variables. Discussions of the results are presented in the Section 5. 

 
2  Balanced sampling 
 

Suppose that U  is a finite population of size N  that is sampled with a design having selection 

probabilities given by  : = 1, , .i i N   If x  is an auxiliary variable known for all population units, then 

the sample is balanced on x  if the Horvitz-Thompson estimator for the total of x  is equal to the known 

total of .x  In other words, for any balanced sample ,s  the following equation has to be satisfied,  

 
=1

= .
N

i
i

i s ii

x
x


   (2.1) 

For the surveys considered here, we balance on indicator variables  iI   equal to 1 if unit i  is of type 

  and 0 otherwise. If all the units i  for which  iI   is equal to 1 have the same selection probability 

,  then equation (2.1) reduces to    
=1

= .
N

i ii s i
I I  

   In this context the balancing equation 

simply requests that the number of sampled units of type ,  = ,ii s
n I 

  is equal to its expectation,  

  
=1

= .
N

i
i

n I    (2.2) 

To implement balanced sampling we use the cube method of Deville and Tillé (2004), and the extension 

of Hasler and Tillé (2014) to cope with highly stratified populations. In Section 4 this method is compared 

with the implementation of the rejection method proposed by Fuller (2009). In the context of this study, we 

are balancing on T  types of units; we want the sampled numbers of units for the T  types, =n  

 1 , , ,Tn n ㄒ  to be equal to their expectations,   ,E n  under the sampling design. Under rejective 

sampling, the sample is said to be balanced if  

         1 2
, = Var <T nQ n E n n n E n      ㄒ  (2.3) 
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where  Var n  represents the design based covariance matrix of n  and 2  is a tolerance value that 

determines the balancing condition. Samples that do not meet the balancing equation 2
, <T nQ   are simply 

rejected. 

 
3  A creel survey for striped bass in the Gaspé Peninsula 
 

The Gaspé Peninsula is on the Canadian East Coast in the Province of Québec. In 2015 a creel survey 

for striped bass was conducted in this peninsula as recreational striped bass fishing had just been 

reintroduced after a long moratorium.  

The study area, presented in Figure 3.1, is scattered over more than 250 kms, on the Gaspé Peninsula 

coast. The survey is carried out by a single wildlife agent; it is not possible for him to visit two distant sites 

on the same day. For that reason, neighboring sites are grouped into three sectors as shown in Figure 3.1. 

We consider the survey for the 33 holidays. The survey variable is the fishing effort, in number of hours of 

fishing. As some sites attract more fishermen than others, the number of visits to site l  of sector i  has to 

be proportional to its importance ilx  as given in Table 3.1. In addition, for the purpose of the survey, a day 

is divided into three periods (AM, PM, EV), where EV stands for evening, and six subperiods (AM1, AM2, 

PM1, PM2, and EV1, EV2). For instance AM1 goes from 8:00 to 10:00 while AM2 is from 10:00 to 12:00. 

A working day contains two periods and four subperiods. For instance if the agent works AM and PM, then 

he has a free evening. Thus during a working day he is able to visit four sites, two per working period.  

The survey population on a day consists of 54 quadruplets,  sector × period × subperiod × site ,  4 

of which are sampled. To denote population units the following indices are useful: 

i) = 1, , = 33h H  represents the days;  

ii) = 1, 2, 3i  stands for the sectors in Figure 3.1;  

iii) = 1, 2, 3j  denotes a period within a day;  

iv) = 1, 2k  represents the subperiods within a period;  

v) = 1, 2, 3l  represents the sites, see Figure 3.1, within a sector. 
 

The goal is to estimate the fishing effort for combination of subperiod (6 levels) and site (9 levels). We 

want to plan a survey with a predetermined sample size for the 54 cells of the cross-classified table. The 

basic selection probabilities are  

 
2

= ,
3

il
hijkl

x

x




 (3.1) 

where replacing i  or l  by   means that a summation is taken on the corresponding index. Observe that 

the sum of hijkl  over the indices ( , , , )i j k l  is equal to 4, the number of units visited by the wildlife 

technician on a single day. 

At a first glance, the sample could possibly be drawn in a single stage using selection probabilities (3.1) 

by balancing on the 54 site by subperiod indicator variables. This is not feasible because of operational 
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constraints. The first one is that on a single day the technician visits sites from the same sector to limit the 

traveling between sites. The second constraint is that on a working day the technician is off duty for the two 

subperiods of the same period. In order to meet these operational constraints we propose, in the next section, 

a design having three levels of sampling where sectors are selected at level 1, periods are selected at level 2 

and sites are selected at level 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The 9 sites to be surveyed for striped bass. 

 
 
 
 

Table 3.1 
Average and expected number of visits to each site 
 

Sector Site  ilx   ilE n  iln  Sd
iln  

East  = 1i   Boom Défense  1l  2 20.308 20.286 0.850
E. St-Jean  2l  1 10.154 10.153 0.621
Barachois  3l  2 20.308 20.296 0.881

Centre  = 2i  Ste-T. de Gaspé  4l  1 10.154 10.176 0.865
Malbaie  5l  1 10.154 10.155 0.880
Chandler  6l  1 10.154 10.162 0.881

West  = 3i  Bonaventure  7l  2 20.308 20.311 1.004
P. Henderson  8l  1 10.154 10.153 0.681
C. Carleton  9l  2 20.308 20.309 1.016
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3.1  A balanced multi-stage design for creel survey 
 

This section describes the three stages of the survey that ensures that the operational constraints 

presented in the previous section are met. It also gives, for each stage, the balancing variables. 

The first stage is stratified by day; for each day a single sector is drawn with selection probabilities 

.ix x   At level two, for each sector selected at level 1, two periods are selected out of 3 using simple 

random sampling (i.e., with selection probabilities 2/3). At level three, a sector*period is stratified by 

subperiod and one site is selected for each subperiod, the selection probabilities are .il ix x   In summary 

the selection probabilities at the three levels are  

      1 2 32
= , = , = .

3
i il

hi j i l ijk
i

x x

x x
  

 

  

As expected the product      1 2 3
hi j i l ijk     is equal to (3.1), the target selection probability. 

The goal is still to get a sample with predetermined sample sizes for the 54 site by subperiod 

combinations. Thus balanced sampling needs to be implemented at each stage. At level 1 we need to balance 

on the indicator variables for the three sectors while at level 2 balancing on the 9 indicator variables for the 

sector by period combinations is needed. Balancing at level 3 is slightly more complicated as it involves 

several strata. 

At level 2, 33 2 = 66  sector*periods have been selected. Each one is stratified by subperiod so we are 

facing 132 strata at level 3 and one site is selected from each one. Balancing is needed with respect to the 

54 site by subperiod indicator functions. This is a complex problem and the balancing constraints (2.3) 

involve the inverse of a large variance covariance matrix. Thus to implement a rejective algorithm in this 

context one would need an alternative to criterion (2.3) for accepting a sample. For now we discuss the 

implementation of balanced sampling for this design with the cube method. Comparisons between the cube 

method and rejective sampling in the context of a simplified creel survey are presented in Section 4. 

Among the 132 third stage strata, the number of strata for one subperiod, say AM2, in sector i  is an 

integer close to 22 ix x   that depends on the stage 2 sample. This integer plays the role of  
=1

N

ii
I   

in equation (2.2) for balancing the sites of sector i  at stage 3 while, for the thl  site, the probability in (2.2) 

is = .il ix x   The stage 3 calibration equations for the 54 site by subperiod indicator functions can be 

described in a similar way. Clearly, it is not possible to meet exactly the 54 balancing equations and the 

cube method will give a sample that is approximately balanced. 

The approximation occurs at the landing phase of the algorithm where balancing constraints are dropped 

in order to complete the selection of the sample, as introduced in Deville and Tillé (2004). As the stage 3 

sample is highly stratified, we use the implementation of the landing phase in the function 

balancedstratification2 developed in Hasler and Tillé (2014), with a small correction that 

prevents it from stopping when the sample is already balanced at the start of the landing phase. In the matrix 

of balancing constraints, the site constraints were given more importance than those which make visits to 
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each site equally distributed among subperiods at level 3. They were the last ones to be dropped at the 

landing phase of the cube method.  

To investigate how a failure to meet all balancing equations impacted the sample design, we generated 

= 10,000B  random replications of the balanced sample. The number of visits iln  to site  ,i l  was noted. 

Table 3.1 compares the average iln  of iln  over the Monte Carlo replications,  

  

=1

1
= ,

B
r

il il
b

n n
B
   

to its expectation,   .ilE n  For all practical purposes, the two are equal and a failure to meet some balancing 

equations has no impact on the site selection probabilities. Table 3.1 also reports the standard deviations  

   
1 2

2

=1

1
Sd = .

1il

B
b

n il il
b

n n
B

  
 
  (3.2) 

Most of the standard deviations are less than 1 in Table 3.1. Thus the absolute differences between target 

and realized sample sizes are less than or equal to 2 for most Monte Carlo samples.  

Table 3.2 gives the expected number of visits in the 6 subperiods; they are all equal to 22, up to two 

decimal points, with standard deviations less than 0.2. Thus the period and subperiod constraints are met. 

Table 3.3 gives a realized sample for the first five days of the creel survey. It shows a harmonious 

permutation of sectors at level 1, periods at level 2, and sites at level 3 through the days because of the way 

in which the sample design was constructed. Given a balanced sample produced by the cube algorithm, an 

arbitrary permutation of the days gives an alternative balanced sample. Indeed the sampling design is 

invariant to a relabeling of the days. For instance, with the sample of Table 3.3 the technician has to travel 

from the western to the eastern sector between days 4 and 5. To avoid this long trip one could interchange 

days 1 and 5: the first two days would then be spent in the eastern sector and between days 4 and 5 the 

technician would travel from the western to the central sector. The alternative and the original samples have 

the same estimated totals for the calibration variables.  

 
Table 3.2 
Average and expected number of visits at each subperiod 
 

Period Subperiod  jkE n  jkn  Sd
jkn  

Morning  = 1j  8h00-10h00  = 1k  22 22.000 0.000 

10h00-12h00  = 2k  22 22.000 0.000 

Afternoon  = 2j  12h00-15h00  = 3k  22 21.999 0.184 

15h00-18h00  = 4k  22 21.999 0.184 

Evening  = 3j  18h00-20h30  = 5k  22 22.001 0.184 

20h30-23h00  = 6k  22 22.001 0.184 
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Table 3.3 
Units selected in a balanced sample for the first five days 
 

H Sector Period Subperiod Site 

1 Centre  = 2i  Afternoon  = 2j  12h00-15h00  = 3k  Chandler  = 6l  

15h00-18h00  = 4k  Malbaie  = 5l  

Evening  = 3j  18h00-20h30  = 5k  Chandler  = 6l  

20h30-23h00  = 6k  Ste-T. de Gaspé  = 4l  

2 East  = 1i  Morning  = 1j  8h00-10h00  = 1k  E. St-Jean  = 2l  

10h00-12h00  = 2k  Boom Défense  = 1l  

Evening  = 3j  18h00-20h30  = 5k  Barachois  = 3l  

20h30-23h00  = 6k  E. St-Jean  = 2l  

3 Centre  = 2i  Morning  = 1j  8h00-10h00  = 1k  Malbaie  = 5l  

10h00-12h00  = 2k  Ste-T. de Gaspé  = 4l  

Afternoon  = 2j  12h00-15h00  = 3k  Malbaie  = 5l  

15h00-18h00  = 4k  Chandler  = 6l  

4 West  = 3i  Morning  = 1j  8h00-10h00  = 1k  P. Henderson  = 8l  

10h00-12h00  = 2k  Bonaventure  = 7l  

Afternoon  = 2j  12h00-15h00  = 3k  C. Carleton  = 9l  

15h00-18h00  = 4k  C. Carleton  = 9l  

5 East  = 1i  Afternoon  = 2j  12h00-15h00  = 3k  Boom Défense  = 1l  

15h00-18h00  = 4k  Barachois  = 3l  

Evening  = 3j  18h00-20h30  = 5k  Boom Défense  = 1l  

20h30-23h00  = 6k  Barachois  = 3l  

 
3.2  Estimation of the fishing effort and of its variance 
 

Once the survey is completed, the sample is a set of site subperiod   , , , ,h i j k l  with sampling 

weights equal to the inverse of the selection probabilities given in (3.1). As the balancing equations for the 

54 cells of the site by subperiod cross-classified table are not met exactly, we propose, following Deville 

and Tillé (2004), calibrating the survey weights on the total, ,H  of the indicator variables for these 54 cells. 

All the sampled units in cell  , , ,i j k l  have the same weight, namely 1 ijkl  where = ,ijkl hijkl   defined 

in (3.1), does not depend on .h  The calibrated weight for a sampled unit in cell  , , ,i j k l  is  

   1
= = ,c

ijkl
ijkl ijkl ijkl ijkl

H H
w

n n 
   

where ijkln  is the sample size for cell  , , , ;i j k l  it is the number of days for which site l  of sector i  has 

been visited during subperiod k  of period .j  In general ijkln  is a random variable. When the samples are 

perfectly balanced, (2.2) implies that = ;ijkl ijkln H  the calibrated and basic weights are then equal. Now if 

hijkly  represents the fishing effort for population unit  , , , , ,h i j k l  the fishing effort in cell  , , ,i j k l  is 

= .Uijkl hijklh
Y y  Its calibrated estimator is ˆ =ijkl sijklY H y  where sijkly  is the average fishing effort for the 
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ijkln  units sampled for that cell of the cross classified table. An estimator for the total fishing effort is 

obtained by summing the cells’ estimated totals. 

The evaluation of a design based variance estimator for the calibrated estimator of the total fishing effort 

is complex. A simple variance estimator for the estimated total for a single cell of the cross-classified table 

is available. The sample of days selected for cell  , , ,i j k l  is a Bernoulli sample with selection 

probabilities ,ijkl  neglecting the balancing constraints. Thus by conditioning on the sample size, ,ijkln ˆ
ijklY  

is H  times the sample mean of a simple random sample. It is a design-unbiased estimator whose variance 

can be estimated using the formula for the variance of an estimated total in a simple random sampling 

design. We claim that these results are still valid when the balancing constraints are taken into account since 

the balanced sample design is invariant to a relabelling of the days. The estimated fishing efforts for the 54 

cells of the cross-classified table are however dependent and it seems difficult to come up with a 

conditionally unbiased design based variance estimator for their total. A model based estimator seems to be 

only approach available for this total.  

For the survey actually conducted in 2015, the methods used to estimate fishing effort and total catch 

are among those proposed in Pollock et al. (1994). It was a roving survey and the fishing effort at a sampled 

site was calculated as the average number of anglers on the site during the subperiod times the length, in 

hours, of the subperiod. Fishing efforts were estimated using calibrated weights; additional results are 

available in (Daigle, Crépeau, Bujold and Legault, 2015). 

 
4  Comparison of the cube method and the rejective algorithm 
 

Chauvet et al. (2015) have studied the cube method and the rejective algorithm by examining different 

aspects of these balancing techniques. They balanced on continuous auxiliary variables and they 

documented how the balancing algorithm impacted the selection probabilities and the sampling properties 

of estimators of population totals. The goal of this section is to compare the two sampling algorithms in a 

resource inventory where the balancing equations only involve indicator variables. This comparison is 

carried out in the context of a simplified creel survey with a stratified two stage design. The days represent 

strata = 1, , ,h H  the sectors are defined as primary units = 1, 2, 3i  and sites, indexed by ,j  are the 

secondary units. This sampling plan is similar to the design exposed in Section 3.1 except that periods and 

subperiods do not enter in the sampling design.  

On each day two out of 3 sectors are selected and within each one 2 sites are sampled; thus 4 units are 

selected each day. The site importance variable ijx  determines the inclusion probabilities =hij  

   2 2 =i ij i hi hj ix x x x       for the two stages. As two out of three units are selected at each level, 

the joint selection probabilities are completely determined by   , : , = 1, 2, 3hi hj i i j   for the two stages; 

see the Appendix. If hijZ  stands for the indicator variables taking the value 1 if site  ,i j  is sampled on 

day h  and 0 otherwise then the entries of 9 9  variance covariance matrix for  : , = 1, 2, 3hijZ i j  are 

given by  
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  

2

|

| |

if = and =

Cov , = if = and

if

hij hij

hij hi hijhi j hjj i hij

hj i hijhii hj i hi j

i i j j

Z Z i i j j

i i

 

   

    
 

   

  

  

   


  

 (4.1) 

where 
hii



 represents the joint selection probability of sectors i  and i   on a single day, hj i  is the 

probability for selecting site ,j  in sector ,i  at stage 2 and 
|hjj i

   is the joint selection probability of sites j  

and j   in sector .i  All these probabilities are evaluated using the size measure .x  Details are available in 

the appendix, see also Ousmane Ida (2016). The corresponding matrix  Var n  in (2.3) is singular as one 

of the 9 constraints is redundant; thus in (2.3) a generalized inverse of the covariance matrix was used and 
2,  in (2.3), was set equal to 2.73 and 7.34, the th5  and the th50  percentiles of the 2

8  distribution.  

 
4.1  Simulations on the comparison of the cube method and of the rejective 

algorithm 
 

To investigate the impact of the algorithm on the sampling properties of survey estimators we simulated, 

for each unit, a fishing effort for site  ,i j  on day ,h ,hijy  using independent Poisson random variables 

with mean 15 .ijx  The total fishing effort for site  ,i j  is then  

 
=1

= .
H

Uij hij
h

Y y   

A calibrated estimator, as defined in Section 3.2, for the fishing effort in site  ,i j  is ˆ = ,ij sijY H y  the 

average fishing effort for the ijn  units sampled at site  ,i j  times .H  

To compare the balancing algorithms, we used designs with = 12H  strata and two importance variables 

,x  one with a small variation between site and one with a medium variation. Under each scenario we 

generated = 100,000B  random replications of a balanced sample by using the cube methods on one hand, 

and two rejective algorithms on the other. The inclusion probabilities for site  ,i j  was estimated by  

  

=1

1
ˆ = .

B
b

ij ij
b

n
B H


    

This estimator assumes that the inclusion probabilities hij  are constant in .h  This holds true because 

the sample design is invariant to a relabelling of the days, see Section 3.1. 

As argued in Section 3.2, the calibrated estimator ˆ
ijY  is design unbiased under the two selection 

algorithms. We compare their standard deviations,  

   
1 22

ˆ
=1

1 ˆ ˆSd = ,
1ij

B
b

ij ijY
b

Y Y
B

  
 
   

where ˆ
ijY  is the average of the B  simulated values. The sample size standard deviations were also calculated 

using (3.2). Observe that ˆ = .ij ijn H  The simulation results are presented in Tables 4.1, 4.2 and 4.3.  
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Table 4.1 
Comparison of the cube method (CM) and of two rejective algorithms (R 5% and R 50%) when x has a low 
variation 
 

 CM 5%R  50%R  

Sector Site ijx  ij  ˆ ij  ˆSd
ijY

 ˆ ij  ˆSd
ijY

 ˆ ij  ˆSd
ijY

 

= 1i  = 1j  3 0.500 0.500 16.56 0.503 16.86 0.505 17.40
= 2j  2 0.333 0.333 22.20 0.329 23.35 0.328 25.07
= 3j  3 0.500 0.500 23.99 0.503 24.47 0.505 25.15

= 2i  = 4j  2 0.333 0.333 25.80 0.329 26.93 0.326 29.11
= 5j  2 0.333 0.333 33.97 0.329 35.54 0.326 38.28
= 6j  2 0.333 0.333 27.65 0.329 28.87 0.326 31.10

= 3i  = 7j  3 0.500 0.500 22.50 0.502 22.88 0.502 23.66
= 8j  3 0.500 0.500 20.02 0.502 20.20 0.502 20.94
= 9j  4 0.667 0.667 22.01 0.674 21.98 0.679 22.25

 
Table 4.2 
Comparison of the cube method (CM) and of two rejective algorithms (R 5% and R 50%) when x has a medium 
variation 
 

 CM 5%R  50%R  

Sector Site ijx  ij  ˆ ij  ˆSd
ijY

 ˆ ij  ˆSd
ijY

 ˆ ij  ˆSd
ijY

 

= 1i  = 1j  3 0.500 0.500 25.52 0.505 25.78 0.507 26.60
= 2j  2 0.333 0.333 25.25 0.330 26.26 0.329 28.16
= 3j  3 0.500 0.500 21.12 0.505 21.36 0.507 22.03

= 2i  = 4j  1 0.167 0.167 29.17 0.158 32.45 0.149 31.19
= 5j  2 0.333 0.333 13.73 0.329 14.38 0.326 15.49
= 6j  2 0.333 0.333 32.82 0.329 34.22 0.326 36.91

= 3i  = 7j  2 0.333 0.333 16.84 0.329 17.52 0.325 18.85
= 8j  4 0.667 0.667 18.68 0.672 18.70 0.678 18.89
= 9j  5 0.833 0.833 8.06 0.844 7.81 0.854 7.67

 
Table 4.3 
Standard deviations of the sample sizes obtained with the cube method (CM) and with two rejective algorithms 
(R 5%, R 50%) 
 

 x  has a low variation x  has a medium variation 

Sector Site x  CM 5%R  50%R  x  CM 5%R  50%R  

= 1i  = 1j  3 0.000 0.894 1.371 3 0.000 0.891 1.371
= 2j  2 0.000 0.854 1.295 2 0.000 0.831 1.294
= 3j  3 0.000 0.896 1.377 3 0.000 0.891 1.374

= 2i  = 4j  2 0.130 0.828 1.293 1 0.144 0.654 1.013
= 5j  2 0.195 0.832 1.298 2 0.170 0.831 1.290
= 6j  2 0.179 0.826 1.296 2 0.141 0.830 1.297

= 3i  = 7j  3 0.339 0.859 1.366 2 0.342 0.835 1.294
= 8j  3 0.381 0.859 1.367 4 0.350 0.807 1.294
= 9j  4 0.319 0.822 1.288 5 0.248 0.655 1.010
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In Tables 4.1 and 4.2, the cube method maintains the selection probabilities and yields a total estimator 

with the smallest standard deviations. Taking 2  equal to the th50  percentile of the 2
8  distribution for the 

rejective algorithm yields the poorer results, both in terms of selection probabilities and of the standard 

deviations of .sijy  The largest biases for the selection probabilities occur at the extreme x  values in 

Table 4.2. The selection probability for site = 4j  is underestimated by 11% with the rejective method 

based on the th50  percentile and by 5% with the th5  percentile. The probability is over estimated in the sites 

with the large values for .x  

In Tables 4.1 and 4.2, the standard deviation for ˆ
ijY  is, in most cases, smallest for the cube method and 

largest for the rejection algorithm based on the th50  percentile. The standard deviations for the rejective 

algorithm are up to 10% larger than the ones for the cube method. In Table 4.2, the largest gain in efficiency 

of the cube method with respect to the 5%R  rejective algorithm (equal to the ratio of standard deviations 

squared) is 23%; it occurs when = 4j  and = 1.x  These standard deviations are driven by the variability 

in sample sizes .ijn  Table 4.3 gives the sample sizes’ standard deviations. Since the expected number of 

visits to sector 1 and to sites 1, 2, and 3 are integers, the cube method is able to get sample sizes equal to 

their expectations for this sector and the sample sizes standard deviations are 0. This is not possible in 

sectors 2 and 3 as the expected sample sizes for these sectors are not integer valued. In general, the rejective 

algorithms give sample sizes whose standard deviations are much more variable than those for the cube 

method. This makes the rejective algorithm total estimators more variable than those obtained with the cube 

method.  

The conditional variance estimator for fishing effort ˆ
ijY  in site  ,i j  proposed in Section 3.2 is  

       22 1ˆ = .
1

ij

ij hij sij
ij

h sij ij

H n H y y
v Y

n n

 

   

The conditional sampling properties, given ,ijn  of this variance estimator were investigated in the Monte 

Carlo study with = 10,000B  balanced samples for the three sample designs. For each site and for each 

sample size ijn  the conditional variance  ˆVar ij ijY n  and the conditional expectation of the variance 

estimator   ˆE ijv Y  were evaluated using the Monte Carlo samples for which the sample size for site 

 ,i j  was .ijn  The conditional relative bias of the variance estimator,     ˆ ˆE Var 1 ,ij ij ijv Y Y n   was 

then calculated. The conditional relative biases were then aggregated by weighting each sample size ijn  

using its frequency in the 10,000 Monte Carlo samples; the results are in Table 5.1. 

In Table 5.1, the aggregated relative biases are less than 3% in absolute value for the three selection 

algorithms. This validates the conditional variance estimator proposed in Section 3.2 for a single cell of the 

cross-classified table. The conditional variances of sums such as ˆ ˆ
ij ij

Y Y


  is more complicated as it involves 

joint selection probabilities; the estimation of these variances is not considered here. See Breidt and Chauvet 

(2011) for a discussion of variance estimation with the cube method.  
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Table 5.1 
Aggregated conditional bias, in percentage, of the conditional variance estimator  ˆ

ijv Y  obtained with the cube 
method and two rejective algorithms (R 5%, R 50%) 
 

 x  has a low variation x  has a medium variation 

Sector Site x  CM 5%R  50%R  x  CM 5%R  50%R  

= 1i  = 1j  3 1 -3 3 3 -1 1 1
= 2j  2 2 -1 -2 2 3 1 -2
= 3j  3 -1 0 1 3 0 -1 0

= 2i  = 4j  2 -2 2 0 1 1 -1 -2
= 5j  2 1 -1 -1 2 2 2 3
= 6j  2 0 3 -2 2 0 0 -3

= 3i  = 7j  3 1 -3 2 2 0 -3 -1
= 8j  3 2 1 1 4 0 0 0
= 9j  4 -1 1 -2 5 -2 -1 1

 
The conclusion of this Monte Carlo investigation is that the rejective algorithm changes the selection 

probabilities: sites with small importance are under represented in the rejective samples while the cube 

method is very good at preserving the selection probabilities. Under both algorithms the calibrated estimator 

for the total of y  in a domain is unbiased. Smaller variances are however obtained with the cube algorithm 

as it gives domain sample sizes that are less variable than the rejective algorithm. 

 
5  Discussion 
 

In the context of creel surveys, balanced sampling techniques such as the cube method or the rejective 

algorithm are used to ensure a predetermined sample size in small domains of the survey population. The 

cube method is very effective at doing so especially in complex survey designs with several stages of 

sampling. It does not change the selection probabilities and it yields domain sample sizes that are very close 

their target values. The rejective method, on the other hand, changes the selection probabilities slightly and 

produce domain sample sizes that are more variable. With a large number of constraints, Fuller’s rejective 

sampling scheme is not really applicable as it requires the evaluation and the inversion of a large covariance 

matrix in (2.3); alternative acceptation criteria for a sample need to be investigated. 
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Appendix 
 

Calculation of the joint selection probabilities when = 3N  
 

Consider a population of size 3 and let 1 , 2 ,  and 3  be the marginal selection probabilities when 

drawing a sample of size = 2.n  The joint selection probabilities ,ij = 1, 2, 3i j  satisfy  

 

12 1

13 2

23 3

1 1 0

1 0 1 = .

0 1 1

 

 

 

    
    
    
    

    

  

Thus  

 

1
12 1 1

13 2 2

23 3 3

1 1 0 1 1 1
1

= 1 0 1 = 1 1 1 .
2

0 1 1 1 1 1

  

  

  

         
        

        
                

  

Using these equations, the entries of the covariance matrix (4.1) can be evaluated using the stage 1 and 

the stage 2 selection probabilities. 
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