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Robust Bayesian small area estimation 

Malay Ghosh, Jiyoun Myung and Fernando A.S. Moura1 

Abstract 

Small area models handling area level data typically assume normality of random effects. This assumption does 
not always work. The present paper introduces a new small area model with t random effects. Along with this, 
this paper also considers joint modeling of small area means and variances. The present approach is shown to 
perform better than other methods. 

 
Key Words: Random effects model; Student’s t-distribution; Non-subjective priors; MCMC; Gibbs sampling; Metropolis-

Hastings algorithm. 

 
 

1  Introduction 
 

The classic paper of Fay and Herriot (1979) has become a cornerstone of research in small area 

estimation for nearly four decades. The Fay-Herriot model is a random effects model with a normality 

assumption for both the random effects and the errors. Moreover, the error variances are assumed to be 

known. The latter is almost imperative due to an identifiability issue. With availability of only the area level 

direct small area estimates plus nonavailability of microdata, any effective modeling of the error variances 

is near impossible. 

Some valiant remedial attempts were made by W.R. Bell and his colleagues at the US Census Bureau 

(Bell and Huang, 2006; Bell, 2008) for handling some census data, but questions remain regarding the 

universal application of their approach. Additionally, nonavailability of microdata for secondary survey 

users is primarily due to confidentiality reasons, especially from the Federal Agencies. If microdata becomes 

available, unit level models are more appropriate than area level models. A classic example is the well-cited 

article of Battese, Harter and Fuller (1988). However, area level models are widely used due to their 

simplicity of implementation in a complex survey setting when compared to unit level models. 

As the field developed and more data started getting analyzed, researchers found the inappropriateness 

of the assumption of normality as well as that of known error variances. As mentioned in the previous 

paragraph, the latter is hard to rectify without any extra information. One of the first attempts in this regard 

is due to Lahiri and Rao (1995) who replaced the normality assumption of random effects by the finiteness 

of their eighth moments. Datta and Lahiri (1995) considered a general mixture of normal distributions for 

random effects that includes the t distribution. There are papers, dispensing fully with the normality, but 

maintaining linearity of the model, and using ANOVA estimators of the variances. One may refer to Butar 

and Lahiri (2002) and Jiang, Lahiri and Wan (2002) who calculated the corresponding uncertainty measures 

either via jackknife or bootstrap. Bell and Huang (2006) used t distributions for random effects or 

sampling errors to diminish the effects of outliers. 
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The objective of the present article is to address these two important issues in the context of small area 

estimation. First, we consider small area modeling of both the population means and population variances. 

This is possible due to the availability of additional data purported to estimate the error variances. Second, 

in order to induce some robustness of our procedure, we consider t priors for the random effects. 

The data set considered in this paper came from a test demographic census carried out in one municipality 

in Brazil consisting of 140 enumeration districts, hereafter referred to as small areas. The response variable 

was the average income of the heads of households for each small area, and the goal was to make predictions 

for the 140 population means of the heads of household’s income. The auxiliary variables were the 

respective small area population means of the educational attainment of the heads of households, and the 

respective population means of the number of rooms in the households for each small area. Only area level 

data was provided to us. 

We propose a full non-subjective Bayesian analysis for the general small area problem, where we model 

both the population means and variances. The initial idea was to use Jeffreys’ general rule prior, treating all 

the parameters including the degrees of freedom of the Student’s t distribution as unknown. However, the 

resultant prior yielded an improper posterior, which led to a modified Jeffreys’ prior resulting in a proper 

posterior. 

The outline of the remaining sections is as follows. Section 2 introduces the model, the Fisher 

information matrix, Jeffreys’ prior and its modification. The impropriety of the posterior under the former, 

and its propriety under the latter are also included in this section. Section 3 contains a real data analysis as 

well as a simulation study. Some final remarks are made in Section 4. 

The fact that error variances are really random has been recognized for a long time. The work of Otto 

and Bell (1995), Arora and Lahiri (1997), Wang and Fuller (2003), Rivest and Vandal (2003) and others 

have tried to account for this in different ways. Slud and Maiti (2006), Dass, Maiti, Ren and Sinha (2012) 

and Maiti, Ren and Sinha (2014) used an empirical Bayes approach towards this end by estimating the 

hyper-parameters. Full Bayesian analysis using hierarchical Bayesian methods with normality of area level 

effects has been considered in You and Chapman (2006) and Sugasawa, Tamae and Kubokawa (2017). We 

will demonstrate that t priors for random effects often perform better than the methods of the last two 

papers via data analysis and simulations. 

The use of t priors for the errors in the standard normal regression models, but not in mixed effects 

models, was proposed in Lange, Little and Taylor (1989), Fernandez and Steel (1998), Vrontos, Dellaportas 

and Politis (2000), Jacquier, Polson and Rossi (2004), and Fonseca, Ferreira and Migon (2008) primarily 

for protection against outliers. However, there are situations where normality of errors is a reasonable 

assumption, mainly because of the central limit theorem. Also, there are model diagnostic techniques to 

check this. The normality assumption of random effects, however, does not always work well. For the 

Brazilian data that we have on hand, joint modeling of both sample means and variances along with t
priors for random effects yields better performance than some of the other area level models. As suggested 

by referee, we used the data to compute the residuals fitting a regression with the true area means and 

covariates to investigate the distribution of the random effects for this application. See Section 3. 
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2  The model 
 

A typical area level model is given by  = , = 1, , ,x βT
i i iiy u e i m    where m  denotes the number 

of small areas, 1 , ,x x m  are  <p m  dimensional covariates, and  1β p   is the vector of regression 

coefficients. The random effects iu  and the sampling errors ie  are assumed to be independently distributed 

with the  iid 20,i uu N   and the  ind
0, .i ie N v  That is, the classic area level model is  

                                              
 

 

ind

ind2 2

, ,

, , , = 1, , .β x β

i i i i

T
i u ui

y N v

N i m

 

   




  

The iv  are assumed to be known in order to avoid non-identifiability. The assumption of known iv  

almost becomes mandatory for secondary users of survey data who do not have access to any micro data for 

modeling the .iv  However, in reality they are random, based on sampled data. In situations when one has 

additional data to model the ,iv  the data can be used efficiently for estimating the .iv  Moreover, in such 

situations, it is possible to have shrinkage estimators of the small area means i  as well as of the 

variances .iv  

We address small area estimation problems where we have additional data to model the .iv  Also, for 

robustification, we assume t distribution of the random effects instead of the normal distribution. We state 

our model as follows,  

                                         
 

 

ind ind2

ind.2

1 1
, , , ,

2 2

, , , , = 1, , ,β x β

i
i i i i i ii

i

T
i i

n
y v N v s v G

v

t i m 

 

   

 
 
 



 


 

(2.1)

 

where in  is the sample size in the thi  area,  ,t    denotes the Student’s t distribution with location ,  

scale   and degrees of freedom ,  and  ,G c d  denotes the gamma distribution with the kernel density 

 1expcx dx   for > 0.x  

For a full Bayesian analysis, our objective is to find the posterior distribution of  1= , , ,θ T
m   

given  1= , ,y T
my y  and  2 22

1= , , .s T
ms s  To this end, we first need to find the prior distributions 

for all the hyper-parameters,   2
1, = , , , ,β v T

mv v   and .  The usual first try is Jeffreys’ prior which is 

proportional to the positive square root of the determinant of the Fisher information matrix. The Fisher 

information matrix in our case is  

  

 
 

       

   
 

2

2

2 22

2

1
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1 32 3

1 3
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I β v
0 0

0 0

T

m m

m
mg v










 

  
   

  

 
  
 
 
 

 
   
 

 
   
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where  1
2 2
1

1 2 2
= ( , , ) , = Diag , , ,X x x D m

m

nnT
m v v

   and  1
2 2( ) ={ ( ) ( )} 4 ( 5) 2 ( 1)( 3) ,v vg              

with      =z z z    and    =z d z dz   which are the digamma and the trigamma functions. 

Thus, Jeffreys’ prior is  

  
 

     

1
22

1 1
2 22

12 2
2 2

1 1
, , , ( ) .

3 2 3 1 3
π β v X X D

p

p
T

J

g v
 

 
  

   
 

           
 (2.2) 

However, Jeffreys’ prior leads to an improper posterior due to the factor of   2
12

p


   in (2.2). 

 

Theorem 1. Jeffreys’ prior (2.2) leads an improper posterior. 

Proof. Let  2 2, , , ,π π β v y sJ J    be the posterior density with Jeffreys’ prior (2.2). Considering the 

terms that contain 2
  in π J  and taking the transformation  = ,x βT

i i iw    i.e., = ,x βT
i ii w   we 

have 
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T
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v
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d
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  

 

     

       
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        
   

 





 

 
  2

2 2
12 2

0
= .

x β pTm ki i i

i i

y kw
d

v v
         

   
 

  

Therefore, Jeffreys’ prior leads to an improper posterior.  
 

However, once the component   2
12

p


   in (2.2) is replaced by    2

12 2exp 2
p

a      for some 

> 0,a  this modified version of Jeffreys’ prior will lead a proper posterior under the condition, 

 1min , , > .mn n p  Therefore, we suggest a modified Jeffreys’ prior for our model as follows:  

 

   

 
     

2

2

1
2

12 2
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2
=1

2 2

1 1
, , , exp

2 3

1
where > 0.

2 3 1 3

π β v

p

p m

i i

a

v

g v
a

v v v

 



  

 



                

 
     


 

(2.3)

 

By combining the likelihood of (2.1) and modified Jeffreys’ prior (2.3), the full posterior of parameters given 

the data is  
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     
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   
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2
.
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 

 

(2.4)

 

 

Theorem 2. Under the model (2.1), the posterior  2 2
MJ , , , , ,π θ β v y sv  in (2.4) is proper, provided 

 1min , , > .mn n p  
 

Proof. See Appendix A.  
 

Theorem 2 shows that modified Jeffreys’ prior (2.3) leads to a proper posterior (2.4). The key idea is 

that we need a prior for 2
  such that     2

12 2 2

0
< .π

p

d    
     

 

Remark 1.  2
MJ , , ,π β v    can be factored into four independent priors for each parameter.  

          2 2
MJ , , ,π β v π β π v π π v      

where 

    
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i

v i m
v
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  2 IG ,
2 2

π
p a
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

 
 

   

and 

  
 

     

1
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2 2

1 1
.

3 2 3 1 3
π

p

g v
v

v v v

 

           

  

Here  IG ,c d  denotes the inverse gamma distribution with the kernel density  1expcx d x    for > 0.x  

The full conditional distributions to implement the Markov chain Monte Carlo (MCMC) are given in 

details in Appendix B. To generate samples, we use Gibbs sampling with Metropolis-Hastings algorithm 

where the conditional distribution of a parameter is known only up to a multiplicative constant. We provide 

details on how to apply a result of Chib and Greenberg (1995) for the Metropolis-Hastings algorithm to 

generate samples. 
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3  Application 
 

3.1  Real data analysis 
 

The data set is selected by a 10% random sampling of households in each area from a test demographic 

census completed in one municipality in Brazil. The municipality consists of 38,740 households in 140 

small areas in total, and the number of households per area in the population ranges from 57 to 588. Thus 

the area sample sizes in the data set range from 6 to 59. We are interested in estimating the 140 population 

means of the head of household’s income. The response variable iy  denotes the average income of the 

heads of households in thi  area. 

This data set includes two centered auxiliary covariates which are the respective small area population 

means of the educational attainment of the head of households (ordinal scale of 0 5)  and the average 

number of rooms in households (1 11 )  . Lastly, the data set contains the respective sampling variances 

which are calculated in the usual way. Since only area level data were provided to us and the true area means 

are known, we can compare the 140 small area predictions with the true area means respectively. The 

analysis suggests that our model performs better than other models where random effects are based on the 

normal distribution. For comparison, we use three other models. 

The first one is the Fay-Herriot model, referred to as FH, with known sampling variances. 

 
   

     

ind. ind.2 2

2
0 0

, , , , ,

1, IG , ,

β x β

β

T
i i i i i i iy v N v N

a b

 



    

  

 


  

where 0a  and 0b  are chosen to be 0.0001 (a small constant) to reflect the vague knowledge of 2 .  

The second model suggested by You and Chapman (2006), referred to as YC, is a hierarchical Bayesian 

model given by  
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n
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 
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   

 
 
 



 



 

  

where 0, ,i ia b a  and 0b  are also chosen to be 0.0001. 

The third model is a Bayesian multi-stage small area model proposed by Sugasawa et al. (2017), referred 

to as STK. The STK model produces shrinkage estimation of both means and variances.  

 

   

 

 
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2

, , , , ,

1 1
, , IG , ,
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β

T
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i
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i
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n
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v

 


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 

  

 
 
 

 

    

where = 2ia  and = 1i ib n  as suggested by authors for a reasonable choice.  
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We compare the small area means predicted by FH, YC, STK, and our model, hereafter referred to as 

RTS model. For the MCMC implementation, we generate a chain with a burn-in length of 50,000 and the 

sampling size of =G  50,000. The estimates of the i  are given by  

        
=1

1ˆ = 1 x β
G

g g T g
i ii i i

g

y
G

      

where 

  
 

     

1

1 2
= .

g
ig

i g g g
i i

v

v 


 



 
  

The comparison criteria are the average squared deviation (ASD), average absolute bias (AAB), average 

squared relative bias (ASRB), and average relative bias (ARB). They are defined as follows;  

  
2

2

=1 =1 =1

ˆ1 1 1ˆ ˆASD = , AAB = , ASRB = ,
m m m

i i
i i i i

i i i im m m

 
   


 

   
 

     

and 

 
=1

ˆ1
ARB = ,

m
i i

i im

 



  

where î  and i  are the estimated and true values respectively in the thi  area. Table 3.1 compares the four 

models. Recall the prior distribution of 2 ,  which is    2
2 2IG , .π p a

   With the shape parameter, 2 = 1,p  

we consider several values of .a  If we choose a  to be close to ,p  RTS model fits better than the rest under all 

four criteria. When we choose = 1,a  RTS model performs best. YC model performs worse than the other three 

models. If we choose very small ,a  such as 0.01 or 0.001, then RTS model performs the worst. 

 
Table 3.1 
Comparison between RTS model, FH model, YC model, and STK model  
 

Model ASD AAB ASRB ARB 
RTS model ( a  = 0.0001) 57.297 6.152 0.395 0.589 

RTS model ( a  = 0.01) 16.546 2.741 0.090 0.244 

RTS model ( a  = 0.5) 3.244 1.249 0.020 0.118 

RTS model ( a  = 0.2) 4.185 1.439 0.025 0.133 

RTS model ( a  = 1) 2.745 1.164 0.019 0.113 

RTS model ( a  = 2) 3.080 1.231 0.020 0.117 

RTS model ( a  = 3) 3.079 1.229 0.020 0.117 

RTS model ( a  = 5) 2.994 1.213 0.019 0.116 

RTS model ( a  = 10) 3.377 1.278 0.020 0.119 

RTS model ( a  = 50) 2.905 1.180 0.018 0.112 

RTS model ( a  = 100) 2.799 1.154 0.018 0.109 
FH model 4.484 1.448 0.026 0.133 
YC model 4.983 1.543 0.029 0.141 
STK model 3.199 1.257 0.021 0.121 
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Additionally, as suggested by a referee, we compute the residuals fitting a regression with the true area 

means and covariates to see the distribution of the random effects for this real data. Figure 3.1 shows that 

the distribution departs from the normal distribution. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.1 Residuals fitting a regression with the true mean and covariates. 

 
3.2  Simulation study 
 

In this section, we set up a simulation close to Maiti et al. (2014) (or Sugasawa et al. (2017)) to compare 

the accuracy of our estimators to other estimators, specifically those from You and Chapman (2006) and 

Sugasawa et al. (2017). We generate observations for each small area from the model  

 0 1= , = 1, , , = 1, , ,ij i i ij iy x u e j n i m        

where  0,iu t   and  0, .ij i ie N n v  Then the random effects model for the small area mean is  

 0 1= , = 1, , ,i i i iy x u e i m       

where 1
=1

= =
in

i i iji j
y y n y   and 1

=1
= .

in
i iji j

e n e   Hence,  ,i i i iy N v   where 0 1= ;i i ix u     

 0 1 , ,i it x      and  0, .i ie N v  The interest parameter is the mean ,i  for the thi  small area. 

Also, the direct estimator of iv  is  
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 

  2

=1

1
.

1

in

ij i
i i j

y y
n n


    

We set = 30m  and = 7in  for all areas, and generate covariates ix  from the uniform distribution on 

(2, 8). The true parameter values are set as 0 =  0.5, 1 =  0.8, =1,  = 3  and IG(10, 5exp(0.3 )).i iv x  

Also, we chose = 3a  for all simulations. 

For the MCMC implementation, we generated 5,000 posterior samples after discarding the first 1,000 

for =R  2,000 simulation runs. Table 3.2 provides comparison among the four models. The comparison 

criteria are ASD, AAB, and BIAS, the latter being defined as  

     
=1 =1

1 ˆBIAS = .
m R

r r
i i

i rmR
     

 

Table 3.2 
Simulation result for t  random effects with = 3  
 
Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  1.393 0.895 0.021 5.048 1.608 1.324 
STK  1.821 0.933 0.025 5.042 1.514 1.367 
FH  1.540 0.942 0.022    
YC  2.165 0.974 0.030 5.970 1.803 1.689 
 

RTS model performs better than others under ASD, AAB, and BIAS criteria for the mean. While RTS 

shows small improvements over other models for AAB and BIAS criteria, it shows approximate 23.5%, 

10%, and 35.7% improvements over STK, FH and YC models respectively for ASD criteria. For the 

variance, RTS and STK models perform better than YC model. 

The following two tables provide the simulation results when one sets the degrees of freedom as = 2  

and = 4.  
 

Table 3.3 
Simulation result for t  random effects with = 2  
 

Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  1.617 0.949 0.020 6.569 1.610 1.070 
STK  7.566 1.107 0.038 11.144 1.441 0.996 
FH  1.921 1.035 0.022    
YC  9.063 1.187 0.038 7.072 1.685 1.340 
 

Table 3.4 
Simulation result for t  random effects with = 4  
 

Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  1.265 0.862 0.019 4.876 1.619 1.428 
STK  1.322 0.874 0.019 5.077 1.577 1.489 
FH  1.350 0.894 0.020    
YC  1.509 0.905 0.022 6.201 1.869 1.802 
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With = 2,  RTS model performs better than others under ASD, AAB, and BIAS criteria for the mean. 

In this simulation, the ASD values for STK and YC models are very large compared with RTS and FH 

models. RTS model shows improvements of about 78.6% over STK model, 82.2% over YC model, and 

15.8% over FH model. For AAB and BIAS, the values of RTS model are smaller than those of other models. 

When considering the variance, ASD for RTS model gives smallest value. 

With = 4,  RTS model also shows better performance over others. Especially, ASD and BIAS values 

indicate that RTS model improves results when compared with STK and YC model. 

The next two tables consider the situation where one assumes normality of the random effects. Here RTS 

model performs slightly worse than the other models. 
 

Table 3.5 
Simulation result for normal random effects with  20, 5N  
 

Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  2.896 1.305 0.038 6.036 1.512 0.514 
STK  2.560 1.229 0.051 1.851 0.961 0.114 
FH  2.597 1.240 0.036    
YC  2.735 1.259 0.048 3.674 1.305 0.463 
 

Table 3.6 
Simulation result for normal random effects with  20,10N  
 

Model Mean Variance 
 ASD AAB BIAS ASD AAB BIAS 
RTS  3.007 1.316 0.032 10.117 1.895 1.202 
STK  2.784 1.272 0.031 2.221 1.038 0.155 
FH  2.765 1.272 0.048    
YC  2.873 1.285 0.033 9.166 1.798 1.129 

 
4  Final remarks 
 

The paper considers small area models for handling area level data. The new feature of this article is 

modeling both small area means and variances along with the use of t distribution of random effects. It is 

shown via both data analysis and simulation that the proposed method performs mostly better than the 

models of You and Chapman (2006) and Sugasawa et al. (2017) in most situations.  
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Appendix A 
 

Proof 
 

Theorem 2. Under the model (2.1) with modified Jeffreys’ prior (2.3), the posterior distribution (2.4) is proper, 

provided  1min , , > .mn n p   
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Proof. Recall the posterior distribution (2.4),  
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approximation, we have  
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Hence this approximation simplifies the last term in (2.4). The corresponding posterior is 
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(A.1)

 

First, integrating out with respect to .β  By letting  = ,x βT
i i iw    i.e., = ,x βT

i ii w   we have 
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After integrating out with respect to ,  we have  
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Finally, since 
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p

T Tv    where max 1= max ( , , ),mv v v  if  1min , , > ,mn n p  

modified Jeffrey’s prior leads to a proper posterior.  

 
Appendix B 
 
Full conditional distributions  
 

The full posterior of the parameters given the data is specified in (A.1). For the MCMC implementation, 

it is convenient to use the latent parameters  = 1, ,i i m   such that 
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All but (VI) requires the generation of samples from standard distributions. While we use the Gibbs 

sampling method for (I)-(V), we use the Metropolis-Hastings algorithm for generating samples from (VI) 

as given in Chib and Greenberg (1995). 

How to apply the result of Chib and Greenberg (1995) to (IV) in (B.1). 

If the target density  t  can be written as      ,t t h t   where  h t  is a density that can be sampled 

and  t  is uniformly bounded, then one can set  h t  as a candidate density to draw samples and use  t  

in       , = min ,1x y y x    which is the probability of move. 

Recall that the full conditional distribution of   is  
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Chib and Greenberg (1995) with  
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Here  h v  is a candidate-generating density, and  v  is uniformly bounded. 
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