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A note on Wilson coverage intervals for proportions 
estimated from complex samples 
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Abstract 

This note discusses the theoretical foundations for the extension of the Wilson two-sided coverage interval to an 
estimated proportion computed from complex survey data. The interval is shown to be asymptotically equivalent 
to an interval derived from a logistic transformation. A mildly better version is discussed, but users may prefer 
constructing a one-sided interval already in the literature. 
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1  Introduction 
 

Brown, Cai and Dasgupta (2001) show that a method proposed by Wilson (1927) can produce reasonably 

well-behaved two-sided coverage intervals for a proportion under simple random sampling with 

replacement. Section 2 of this note discusses the theoretical foundations for extending this interval-

construction method to estimated proportions computed from a complex survey. Section 3 shows that such 

a Wilson-type interval can be asymptotically equivalent to an interval derived from a logistic transformation. 

Section 4 offers some concluding remarks.  

The term “coverage interval” is used here in place of the more common “confidence interval” because a 

95% Wilson coverage interval does not attempt to cover the true proportion at least 95% of the time no 

matter what that proportion is. Instead, it merely tries to cover the true proportion 95% of the time for 

reasonable values of the true proportion. For some values it overcovers, for others it undercovers as shown 

in Brown et al. (2001). By limiting its applicability to two-sided coverage intervals, the Wilson methodology 

is (mostly) able to ignore the asymmetry of the distribution of an estimated proportion.  

 
2  The extension 
 

It is not hard to generalize Wilson coverage intervals (also called “score intervals”) to complex survey 

data. See, for example, Kott and Carr (1997). As with the Wilson itself, one simply solves this equation for 

the true proportion :P  
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where p  is a consistent estimator for P  under probability-sampling theory, and 1 2z   is the Normal z 
score for  1 2  given the goal is to produce a  1 %  coverage interval (  is often set at 0.05). The 

missing piece to equation (2.1) is *,n  the so-called “effective sample size”, which in the standard Wilson 

formulation is the sample size .n  In our more general context,    * 1 var ,n p p p   where  var p  is 

a consistent estimator for the variance of  , Var .p p  

In order to calculate *,n  we need both  1 ,p p  and  var p  to be positive. In addition, let us assume 

that  1 * 1 a
Pn O n  for some positive 1,a    1 * ,Pp P O n      0 Var 1 * ,p O n   and 

   var Varp p  is  1 1 * .PO n  Note that the last three are always true under simple random 

sampling with replacement so long as  1 0.P P B     

Dropping   3 21 *PO n  terms, but allowing  1p p  to be small (effectively (1)),po  one can derive 

this Wilson-like interval for P  from equation (2.1): 
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(2.2)

 

We can call this the “complex-sampling Wilson coverage interval”. WesVar (2007) computes a variant 

of this interval that does not drop   3 21 *PO n  terms. It is dropped here because other terms of that size 

will be dropped later in this note.  

If it is reasonable to drop   3 21 *PO n  terms in deriving equation (2.2), one can also safely ignore 

the difference between 1 n  and  1 1 .n   Under simple random sampling without replacement, 

      * 1 or 1 1n n f n f     where f  is the sampling fraction. When f  is very small, the 

distinction between with and without replacement sampling can be ignored.  

Observe that under simple random sampling with replacement, the denominator of the pivotal appearing 

on the left-hand side of equation (2.1) has no variance at all. By contrast, the denominator in the traditional 

Wald pivotal,      var 1 1 ,p p p n    can have considerable variance, especially when p  or 1 p  is 

small. That is why Wilson intervals have superior performance under simple random sampling, whether 

with or without replacement.  

That superiority carries over to complex sampling (see, for example, Kott, Andersson and Nerman, 

2001), where the pivotal’s denominator is  
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which is likely to have less variance than  var p  in most applications. For an intuition into why this is so, 

observe that a putative variance estimator of the form      1var varp p b p P    is minimized when 

    Cov var , Var .b p p p  Under simple random sampling, whether with or without replacement, b  

is exactly  1 2 *.P n  

Although the minimizing b  is not exactly equal to  1 2 *,P n  under more complex sampling designs, 

the optimal b  is likely to be closer to  1 2 *P n  than to 0. It is thus not surprising that the variance of 

      var 1 2 *p P n p P    will usually be less than the variance of  var .p  Nevertheless, a slight 

improvement on the complex-sampling Wilson coverage interval can be made by replacing *n  in equation 

(2.2) by  

        1 2 var cov var ,n p p p p    

when   cov var , ,p p  a consistent estimator for   Cov var , ,p p  exists (see Kott et al., 2001).  

As with the standard Wilson, the center of the complex-sample Wilson interval in equation (2.2) is 

slightly different from p  when p  is not 1
2 :   

 1 21 2
.
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Its length L  appears longer than the Wald’s: 
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When  1 0,P P B    however,  
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(2.3)

 

 
3  The logistic transformation 
 

The complex-sampling Wilson coverage interval turns out to be very similar to this two-sided coverage 

interval derived using a logistic transformation (see Brown et al., 2001): 

            1 1
1 2 1 2var var ,f f p z f p P f f p z f p 

 
      (3.1) 

where      log log 1 ,f p p p    and            
2 2var var 1 1 1 1 *f p f p p p p p p n          

  1 * 1 .n p p  The original rationale for this interval appears to be that it has this desirable property: it 

cannot contain values less than 0 or greater than 1, which would be nonsensical for a proportion.  
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The left-hand side of equation (3.1) can be rewritten as   ,g x h  where 

         11 1 exp , log ,
1

p
g y f y y x f p

p
         

  

and 

 
1 2 .

* 1

z
h

n p p



 

The first and second derivatives of  g y  are       1 ,g y g y g y    and  g" y   

       1 1 2 .g y g y g y   Invoking the mean value theorem, there is an *h  between 0 and h  such 

that  
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An analogous derivation can be made for the right-hand side of equation (3.1).  

Consequently, 
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After invoking the asymptotic equality in equation (2.3) and dropping  1 *Po n  terms, the last set of 

inequalities is equivalent to Wilson interval in equation (2.2) so long as *n  is sufficiently large and 

 1 0,P P   the latter meaning that the true proportion is neither 0 or 1. 
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4  Some concluding remarks  
 

The asymptotic equivalence of a coverage interval based on a logistic transformation to the theoretically 

grounded Wilson interval is the main contribution of this paper. Although in the asymptotic framework, 

 1P P  is fixed and positive as *n  grows large, in practice it is the size of  1 *p p n  that matters 

when comparing the Wilson-type and logistic-transformation intervals. This requires that  1P P  not be 

too small.  

Brown et al. (2001) show empirically that under simple random sampling (with 50),n   coverage 

intervals derived from the logistic transformation tend to be larger than corresponding Wilson intervals for 

small values of  1 .P P  Kott and Liu (2009) make the same observation for one-sided intervals based on 

complex samples, supporting the notion that it is a better choice.  

The asymptotic equivalence of the logistic-transformation interval with the Wilson interval explains the 

former’s empirical superiority in the literature (e.g., in Brown et al., 2001) to an analogous interval 

constructed using an arcsine transformation. Because  arcsin p  has a constant large-sample variance under 

simple random sampling no matter the true value of P  (so long as  1 0),P P   it has been hoped that 

the arcsine transformation would be ideal for interval construction.  

Better than a Wilson interval, but not yet incorporated into any software package I know of, is the one-

sided coverage intervals for P  derived using an Edgeworth expansion on p P  in Kott and Liu (2009). 

That method produces this two-sided interval:  
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where        1 2 var cov var , ,n p p p p   and   cov var , ,p p  a consistent estimator for 

  Cov var , ,p p  exists and equals a consistent estimator for the third moment of .p  Note that 

  cov var ,p p  doesn’t exist for designs with only two primary sampling units per stratum. Moreover, it 

is not a consistent estimator for the third moment of p  when finite population correction matters. 

Observe that n  again replaces * .n  In addition, 1 21 6 3z   replaces 1 2 2 ,z   which means that 

the center will often be closer to the p  using this interval rather than the Wilson. The good coverage 

properties of this interval, like the Wilson, breaks down when the skewness coefficient of 

     3 23E Varp p P p    gets too large in absolute value, how large has yet to be determined.  

Finally, SAS/STAT (SAS Institute Inc., 2010) offers a Wilson coverage interval for estimated 

proportions in its SURVEYFREQ procedure. The procedure’s method of adjusting the effective sample 

size, which can – and should – be turned off, is not related to the n  discussed here. Instead, it is based on 

an ad-hoc t  adjustment that sadly is not related to the variance of the denominator variance of the Wilson 

pivotal.  
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