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Reducing the response imbalance: Is the accuracy of the 
survey estimates improved? 

Carl-Erik Särndal, Kaur Lumiste and Imbi Traat1 

Abstract 

We present theoretical evidence that efforts during data collection to balance the survey response with respect to 
selected auxiliary variables will improve the chances for low nonresponse bias in the estimates that are ultimately 
produced by calibrated weighting. One of our results shows that the variance of the bias – measured here as the 
deviation of the calibration estimator from the (unrealized) full-sample unbiased estimator – decreases linearly 
as a function of the response imbalance that we assume measured and controlled continuously over the data 
collection period. An attractive prospect is thus a lower risk of bias if one can manage the data collection to get 
low imbalance. The theoretical results are validated in a simulation study with real data from an Estonian 
household survey. 

 
Key Words: Survey nonresponse; Bias; Adaptive data collection; Calibration estimator; Auxiliary variables. 

 
 

1  Introduction 
 

The problem of accurate estimation despite considerable nonresponse needs to be examined from two 

time dependent angles: First, ways to handle the data collection, then ways to handle the estimation with the 

data that were finally collected. The first activity may require substantial resources. In a telephone survey, 

the daily scheduling of contact attempts, the interaction with the interviewers, and consideration for their 

workloads, can be expensive efforts. The estimation stage is administratively simpler; there is a search for 

the best auxiliary variables for a calibrated nonresponse adjustment weighting, whereupon the computation 

of estimates is usually carried out with existing software. 

The data collection is in focus in the literature on Responsive Design; Groves (2006), Groves and 

Heeringa (2006) are early references. Adaptive survey designs are discussed in Wagner (2008). One idea in 

this research tradition is that a data collection that extends over a period of time might be inspected at 

suitable decision points, where action may be taken to realize in the end a well-balanced set of respondents. 

Schouten, Calinescu and Luiten (2013) explain how adaptive survey designs may be tailored to optimize 

response rates and reduce nonresponse selectivity, with cost aspects taken into account. Much exploratory 

work has been carried out on responsive (or adaptive) design. Seeking well balanced or representative 

response can be pursued as a goal in itself. Different avenues have been explored: Case prioritization, 

(Peytchev, Riley, Rosen, Murphy and Lindblad 2010); stopping rules to halt data collection attempts for 

specific sample units, (Rao, Glickman and Glynn 2008; Wagner and Raghunathan 2010); uses of paradata 

more generally to manage the survey response, (Couper and Wagner 2011). 

Measuring and controlling the imbalance belongs in the data collection phase. The imbalance statistic 

(see Section 3) has a central role in this article; it was used for example in Särndal (2011), Lundquist and 

Särndal (2013), Särndal and Lundquist (2014a, 2014b). It is related to the -R indicator (R for 
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representativity); see Schouten, Cobben and Bethlehem (2009) and Bethlehem, Cobben and Schouten 

(2011). 

The second time slice relies on estimation theory to resolve the challenge of nonresponse, primarily how 

to achieve low bias in the estimates. Viewed strictly as an estimation problem, it is an activity in itself, after 

a completed data collection. The set of responding units is fixed; the data on those units is a “frozen” supply. 

The choice of auxiliary variables plays a crucial role. The “best ones” should be selected. This aspect has 

been dealt with extensively, as in Särndal and Lundström (2005). Two factors are traditionally cited as 

important for the accuracy of the estimates: The degree to which the chosen auxiliary variables can explain 

the study variable and the degree to which these variables can explain the 0/1 response indicator showing 

presence or not in the set of respondents. Each of the two degrees of explanation is partial at best, not perfect. 

The two roles of the auxiliary variables interact, as recognized for example in Little and Vartivarian (2005). 

An extensive review of weighting adjustment procedures for nonresponse is given in Brick (2013). 

The supply of auxiliary variables depends on the survey environment. In Scandinavia, surveys on 

individuals and households can draw on extensive sources – administrative registers – of auxiliary variables. 

This is increasingly so in other countries also. 

One view holds that the estimation is the all-important step: Whatever may be accomplished at the data 

collection stage – balancing, improved representativeness – is perhaps superfluous; achieving best possible 

accuracy in the estimates can be dealt with effectively at the estimation stage, by clever use of the auxiliary 

variables in a nonresponse adjustment weighting or in other ways. This point of view is supported for 

example in Beaumont, Bocci and Haziza (2014). 

Nevertheless, it is clear that measurable aspects of the data collection will influence the accuracy of the 

estimates that are ultimately produced. One such measure is the imbalance statistic defined in Section 3. In 

this article, the two time dependent activities are taken into account: Balancing the response should be 

combined with efficient estimation methods, to get in the end the best possible (most accurate) estimates. 

Such a view underlies, for example, Schouten, Cobben, Lundquist and Wagner (2014). 

The motivation for this paper is as follows: Methods exist for different courses of action – stopping rules, 

case prioritization, and others – during data collection, so as to get in the end a favourable response set .r  

Särndal and Lundquist (2014a, 2014b) used the imbalance statistic IMB  given in Section 3 as a tool to 

achieve low imbalance in the final response set. Considering that auxiliary variables will also be used in the 

estimation, to what extent, if any, will better accuracy in the estimates follow from low imbalance in the 

preceding data collection? There are encouraging signs, as in Särndal and Lundquist (2014a), that lower 

imbalance creates some accuracy improvement, although modest. That work was empirical; in this article 

we give mathematical/analytical support for a similar conclusion. 

The contents are arranged as follows: The survey background (Section 2) and the imbalance statistic 

(Section 3) are presented. The regression relationship – that of the study variable on the auxiliary vector – 

is important (Section 4), notably for the estimator (called CAL) obtained by calibrated nonresponse weight 

adjustment (Section 5). The deviation of the calibration (CAL) estimator from the (unbiased) estimator 

requiring full response is analyzed (Sections 6, Section 7, Section 8), showing how deviation depends on 

imbalance. Two results are presented on statistical properties (mean and variance) of the CAL deviation. In 
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particular, the variance of that deviation is shown to be, approximately, a linear function of the imbalance 

statistic. Hence the deviation is likely to be smaller, and estimates more accurate, if the imbalance can be 

reduced during data collection. The theoretical results are empirically validated (Section 9) using data from 

an Estonian household survey. The statistical software R is used; R Core Team (2014). A discussion 

(Section 10) concludes the article. Three appendices provide the necessary proofs and derivations. 

 
2  Background and notation 
 

A probability sample s  is drawn from the finite population  1, 2, , , , .U k N    Unit k  has the 

known inclusion probability  Prk k s    and the known design weight 1 .k kd   Nonresponse occurs. 

The response set, denoted ,r  is that subset of s  for which the study variable is observed. We do not know 

how r  was generated from ;s  the response probabilities are unknown (if assumed to “exist”, they are not 

needed in this article). The (design weighted) response rate is 

 .k kr s
P d d    (2.1) 

If A  is a set of units, ,A U  a sum 
k A  will be written as .

A  The survey may have many study 

variables. A typical one, denoted y  (continuous or categorical), has value ky  recorded for k r  but 

missing for .k s r   Our objective is to estimate the population -y total, .kU
Y y   The response 

indicator I  has value 1kI   for ,k r  0kI   for .k s r   A goal for practice is to get a response r  that 

is well balanced, in the sense specified later. We are led to consider the different r  that may arise from a 

given .s  

The auxiliary vector x  of dimension 1J   has value kx  known at least for all units .k s  Auxiliary 

information can be used in the data collection (for monitoring the data inflow to achieve improved balance) 

and/or in the estimation (for calibrated weight computation). The auxiliary vector need not be the same for 

the two purposes, but this article assumes that they agree, and that the -x information used is for .k s  This 

includes the important case of paradata, that is, data about the data collection process. 

An important type of auxiliary vector is a group vector. It identifies membership of every unit k  in one 

of J  mutually exclusive and exhaustive sample groups, so that  0, ,1, 0 ,k
x    where the only “1” 

indicates the unique group (out of J  possible) to which k  belongs.  

A group vector occurs when several categorical auxiliary variables are completely crossed. To illustrate, 

if  sex education age  x  represents a crossing of 2 sexes, 3 exhaustive education categories and 4 

exhaustive age categories, then x  is a group vector with dimension 2 3 4 24J      and equally many 

possible values .kx  When several categorical variables are used although not in completely crossed 

manner – important for practice in statistical agencies – then the dimension J  of kx  can be kept relatively 

modest (say less than 15) while still coding a much larger number (say more than one hundred) of possible 

properties kx  of the units .k  For a study of the Swedish Living Conditions Survey, Särndal and Lundquist 
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(2014a) used an -x vector of dimension 14 with 256 possible values. The group vector case and the non-

group vector case give important differences in the results that follow. 

All auxiliary vectors used here satisfy a requirement that grants mathematical convenience without 

severely restricting the choice of vector: There exists a constant vector μ  such that 

 1 for all .k k μ x  (2.2) 

For example, when 2J   and  1, ,k kx x  then  1,0 μ  satisfies the requirement. In the group 

vector case where  0, ,1, ,0 ,k
x    then  1, ,1, ,1 μ    satisfies the requirement. If x  is not a 

group vector, say, one used to code “education” with three mutually exclusive and exhaustive categories 

and “gender” as a univariate variable equal to 1 or 0, then 3 1 4J     (education and gender not crossed), 

and  1,1,1,0 μ  satisfies the requirement. 

 
3  Imbalance 
 

The concept of balance has been often used in statistical literature with reference to an equality of means 

of specified variables for two sets of units, one a subset of the other. One method to realize a probability 

sample s  from U  that is balanced with respect to a vector x  is the Cube Method, see Deville and Tillé 

(2004). In the context with nonresponse, we want to know how well balanced a response r  is, compared 

with the probability sample s  that would have given unbiased estimates. A given auxiliary vector x  has 

computable means r k k kr r
d d  x x  for the response and s k k ks s

d d  x x  for the sample. If 

they are equal, an unlikely outcome, the response is perfectly balanced with respect to .x  The contrast 

between response r  and sample s  can be measured by the scalar quantities 

        1 1; .s r s s r s r r s r r sQ Q       x x Σ x x x x Σ x x  (3.1) 

They differ only in the J J  weighting matrix, s k k k ks s
d d  Σ x x  as opposed to r Σ  

,k k k kr r
d d x x  both assumed non-singular. In particular, sQ  is important for the statistic called 

imbalance of r  with respect to the specified -x vector: 

      2 1 2, ,r s s r s sIMB r s P P Q   x x x Σ x x  (3.2) 

where P  is the response rate (2.1); see for example Särndal and Lundquist (2014a). The full notation 

 ,IMB r sx  emphasizes that imbalance depends on the realized response r  and on the choice of -x vector. 

Unless required for emphasis, we use the simpler notation .IMB  We have  0 1IMB P P    for any r  

and vector formulation ,x  given .s  IMB  is a descriptive measure of the response .r  It is related to a special 

case of the R- indicator, whose motivation lies instead in the estimation of (the unknown) response 

probabilities for the population units, see for example Bethlehem et al. (2011). 
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The IMB  statistic (3.2) can be continuously computed and monitored in a data collection extending over 

a period of time, say several days or weeks, during which contact attempts continue with a sample unit until 

desired data are obtained, or, if this fails, until the unit is declared a non-respondent. As the response rate 

P  grows, IMB  serves as a tool for monitoring and managing the data collection to achieve in the end a 

response set r  which, if not perfectly balanced to satisfy ,r sx x  will at least have considerably lower 

IMB  than if balancing had not been attempted in data collection. There are methods for balancing based 

on response propensity, such as the Threshold method and the Equal proportions method in Särndal and 

Lundquist (2014a, 2014b). 

We consider later the particular case where s  is a self-weighting sample (as when s  is a simple random 

sample), the response r  has fixed size ,m  and x  is a group vector of dimension J  as defined in Section 2. 

Then both s  and r  are split into J  non-overlapping groups. For the sample group ,js  denote by jn  the 

size and by js jW n n  the relative size; 
1

.
J

jj
n n


  For the response group ,jr  let j jm n  be the size; 

1
.

J

jj
m m


  The imbalance (3.2) is then 

  2

1
,

J

js jj
IMB W p p


   (3.3) 

where the response rates are j j jp m n  in group j  and p m n  overall. (The response rate P  is defined 

in (2.1) with general design weights ;kd  for a self-weighting sample, where kd  is constant, we use small 

p  for the response rate.) If 0,IMB   we have perfect balance; all group response rates 
j

p  are then equal. 

 
4  The regression aspect 
 

The imbalance (IMB) is determined by the auxiliary vector x  with no attention paid to the study variable 

.y  But the relation of x  to y  is also important for the bias of estimated -y totals. Strong regression of y  

on x  is likely to give small bias, intuitively because regression predicted -y values can then give close 

substitutes for those missing. For some survey data, the strength of the regression may be modest but 

nevertheless important in its effect on bias. The ordinary linear regression coefficient vectors for the whole 

sample s  and for the response r  are, respectively,  

    1 1
; .s k k k k k k r k k k k k ks s r r

d d y d d y
 

     b x x x b x x x  (4.1) 

Under nonresponse, rb  is computable but not .sb  The J J  matrices to invert are assumed non-

singular. Normally ,r sb b  perhaps with considerable (but unknown) difference. The regression based on 

the response is inconsistent.  

The imbalance in the -y variable is ,r sy y  where the means are s k k ks s
y d y d    for the sample 

(unknown) and r k k kr r
y d y d    for the response (computable). The decomposition 
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     ,r s r s r r s sy y      x x b b b x  (4.2) 

highlights two undesirable differences, r sx x  (due to imbalance in the -x vector), and r sb b  (due to 

inconsistent regression); to obtain (4.2) note that r r ry x b  and ,s s sy x b  which are consequences of the 

-x vector condition (2.2). 

 
5  Estimating the population total under nonresponse 
 

The equation (4.2), when multiplied by ˆ ,ks
N d   can be expressed in terms of three common 

estimators of the population total .kU
Y y   Two are possible under nonresponse, 

 ˆ ˆ ˆ ˆ, ,k k k k kr r
EXP CAL

k kr r

d y d g y
Y N Y N

d d
  

 
 (5.1) 

with 1 .k s r kg  x Σ x  Of these, ÊXPY  is just a simple expansion of the response mean of y  and often 

considerably biased. The calibration estimator ĈALY  gives ky  the weight .k kd g P  The calibration property 

is   ,k k k k kr s
d g P d x x  where the right hand side is unbiased for the population -x total ,kU x  

which explains why ĈALY  can be considerably less biased than ÊXPY  when x  and y  are well related. If -y

values had been recorded for the full sample ,s  unbiased estimation would be carried out with the Horvitz-

Thompson estimator 

 ˆ .FUL k ks
Y d y    

The three estimator types will be referred to as EXP, CAL and FUL. Now (4.2) multiplied by 
ˆ

ks
N d   reads 

    ˆ ˆ ˆ ˆ ˆ ˆ .EXP FUL EXP CAL CAL FULY Y Y Y Y Y      (5.2) 

In words, Deviation of EXP   Bias adjustment term + Deviation of .CAL  The computable adjustment 

is  ˆ ˆ ˆ .EXP CAL r s rY Y N   x x b  The two deviations from the unbiased estimate, ˆ ˆ
CAL FULY Y   

 ˆ
r s sN b b x  for CAL and  ˆ ˆ ˆ

EXP FUL r sY Y N y y    for EXP, are not computable under nonresponse, 

because they require -y values for the full sample. 

As mentioned, we have methods to reduce the imbalance IMB  during data collection. Low imbalance 

is intuitively attractive, but does it yield better accuracy in estimates? Or is it enough to involve the auxiliary 

variables at the estimation stage, through a calibrated weight adjustment as in the CAL estimator? The 

adjustment term  ˆ ˆ ˆ
EXP CAL r s rY Y N   x x b  can clearly be reduced by constructing r  to have low 

imbalance; it is zero for the perfect balance .r sx x  In practice, the CAL estimator is preferred to the EXP 

estimator, the former being usually more accurate because of the auxiliary information. But is the deviation 

 ˆ ˆ ˆ
CAL FUL r s sY Y N   b b x  smaller if the response r  had been built to have low ?IMB  Asked 
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differently, is it worth the (perhaps costly) effort to manage the data collection to get rx  closer to sx  and 

therefore reduced ?IMB  The question is essentially whether this would also make rb  and sb  move closer. 

 
6  Statistical properties of the CAL estimator deviation 
 

In the decomposition (5.2), the deviation of CAL from the unbiased FUL is ˆ ˆ ˆ
CAL FUL rY Y N    where 

  .r r s s
 Δ b b x  To see if rΔ  is smaller, or likely to be so, by realizing low imbalance in data collection, 

we seek analytic results about statistical properties, such as mean and variance, of rΔ  as a function of the 

IMB  statistic (3.2). Highly general results of this kind are hard to obtain. Several factors complicate the 

analysis, such as the sampling design used to draw ,s  the probability distribution of the response sets r  

given ,s  the make-up of the auxiliary vector ,x  and so on. Results for special situations are obtained in 

Sections 7 and 8. 

Result 1 in Section 7 gives properties – expected value and variance – of  r r s s
 Δ b b x  over 

response outcomes r  with fixed size m  and fixed mean rx  when x  is a group vector, and s  is a simple 

random sample. The mean of rΔ  over such outcomes is zero. The imbalance appears in the variance of ,rΔ  

which is linearly increasing in ,IMB  approximately. A reason for taking x  to be a group vector is that 

conditioning on rx  grants relatively simple derivations. A fixed rx  implies a fixed value .IMB  (But the 

opposite is not true; several rx  can give the same IMB.) Another simplification when x  is a group vector 

is due to diagonal matrices rΣ  and .sΣ  The empirical test in Section 9.1 addresses Result 1. 

Simple derivations for the group vector are at the expense of generality. The -x vectors used in 

production at Statistics Sweden, for example, are often not group vectors. To get transparent mathematical 

results about rΔ  is then more difficult.  

Result 2 in Section 8 is derived under a model of linear regression between y  and .x  The ky  are then 

considered random, with properties stated by the model. A group vector feature for x  is no longer necessary. 

The conclusions are in some respects similar to those in Result 1. The empirical Test situation 2 in 

Section 9.2 refers to both Results 1 and 2. 

 
7  The first result 
 

Result 1 refers to the following survey context: A self-weighting sample s  of size n  is drawn from

 1, , , , ;U k N    kd  is the same for all .k  The auxiliary vector x  is a group vector of dimension ,J  so 

the sample s  and the response set ,r  assumed to be of fixed size ,m n  are split into J  non-overlapping 

groups. The notation for these is given at the end of Section 3. The values ky  are treated as fixed, non-

random, as is usual in the design-based tradition. If ky  were observed for all ,k s  then F̂UL sY N y  with 

s ks
y y n   would be design unbiased for the population -y total .kU

Y y   But ky  is available for 
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k r  only; the CAL estimator (5.1) becomes 
1

ˆ ,
j

J

CAL js rj
Y N W y


   where 

jry  is the mean of respondent 

values ky  in group .j  Statistical properties – expected value and variance – of  ˆ ˆ
CAL FUL rY Y N    with 

 
1 j

J

r r s s js r sj
W y y


    b b x  are given in Result 1 for the following probabilistic setting: All  n

m  

response sets r  of fixed size m  are assumed a priori equally probable. Given ,s  the imbalance IMB  is 

determined by    1
, , , , .1

j Jr m m mm x    Given ,rx  we are left with  1
j

j

J

j

n
mR


   sets ,r  all with 

the same non-zero probability 1 R  and the same ,IMB  given by (3.3). The other sets r  of size m  are no 

longer in scope. Conditioning on rx  allows us to study the properties of CAL as a function of .IMB  Result 1 

involves the variance of the study variable ,y  within-group and combined over groups: 

    
2

2 2 2

1

1 ; .
j jyj js

J

k s y js yj
j

S ny y S W S


     (7.1) 

Result 1. Let s  be a self-weighting sample of size n  and let kx  be a group vector of dimension .J  Assume 

that all  n
m  response sets r  of fixed size m  are a priori equally probable. Then 

                                   E , , 0r r m s   x   (7.2) 

   22 2 2

1

1 1 1
E , , 1

J

r r y js yj
j j

p
S m s S W S

m n m p


              
x  (7.3) 

where js jW n n  and j j jp m n  are relative size and response rate, respectively, for group ,j  

p m n  is the overall response rate, and 2
yS  and 2

yjS  are given in (7.1). If response rates jp  and variances 
2
yjS  vary by little only over the groups, then  

 
2

2
2

1 ySIMB
S p

p m

  
 

  (7.4) 

where IMB  is given by (3.3). 

For full response, when ,r s  the right hand sides of (7.3) and (7.4) are zero; the approximation in (7.4) 

is exact: 2 0.S   To interpret Result 1, note that the first term on the right hand side of (7.3) is a constant, 

given .m  It states the conditional variance for a perfectly balanced response, where jp  is the same for all 

groups. The second is the penalty term, namely the penalty for failing to get perfect balance in data 

collection. Its size depends on how well an adaptive design succeeds in generating group response rates 
j

p  

that vary little only. It is zero if all 
j

p  can be made equal.  

Formula (7.4) states that the variance 2S  is decreasing with IMB  in a roughly linear fashion. Thus low 

imbalance brings improved chances for a small deviation ˆ ˆ ˆ .CAL FUL rY Y N    This is important for practice. 

To illustrate, for a nonresponse of 1 40p   per cent, 2 20.57 yS S m   if 0.06,IMB   but if 0,IMB   

as in perfect balance, that variance is reduced to 2 20.40 .yS S m   The improvement is clear but cannot be 

claimed to be very large. This is because with most data, 2IMB p  is small compared with a nonresponse 

1 p  of the order of 30 to 60 per cent, cases that we are mainly concerned with here. Thus taking action to 

reduce imbalance has a desirable effect, although modest rather than strong.  
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In (7.2) and (7.3), the expectation  E   is taken by averaging over the  1
j

j

J

j

n
m

R


   equi-probable sets 

r  that remain out of  n
m

 after fixing .rx  It should also be noted that more than one rx  can give the same 

value .IMB  Hence there may be more than one value 2S  for the same .IMB  The linearly increasing 

function of IMB  in (7.4) is nevertheless their common approximation. 

 
8  The second result 
 

In Result 1, the survey variable values ky  are treated as fixed, nonrandom. In Result 2, they are random 

with properties as stated in a linear regression model   with residuals kk ky   x β  for some 

unknown :β  

      2 2; , all ; , 0, all .k k k k k k kE y E k s E k s           x β x x xx     (8.1) 

The properties in (8.1) apply also to units k  and   belonging in any subset r  of .s  Result 2 presents 

expected value and approximate variance of  r r s s
 Δ b b x  conditionally on a fixed self-weighting 

sample s  and a fixed response set r  with respective sizes n  and .m  
 

Result 2: Let s  of size n  be a self-weighting sample. Let X  be the J n  -x data matrix with columns 

,kx  .k s  Then, under the model   in (8.1), 

    
2

2
2

, , 0; , , 1 ,r r

IMB
E r s E r s p

p m


 

      
 

X X  (8.2) 

where m  is the size of the fixed response set ,r  p m n  is the response rate and IMB  is given by (3.2). 

Result 2 (for arbitrary -x vector and random )ky  mirrors Result 1 (for group -x vector and non-random 

)ky  in that both give conditional mean zero and the same linearly increasing form for the conditional 

variance approximation.  

The derivation in Appendix 3 of Result 2 relies on a comparison of the two quadratic forms in r sx x  

given in (3.1), sQ  and .rQ  The former is used in the imbalance statistic (3.2), 2 ;sIMB P Q  the latter 

determines the weight factors 
k

g  for the CAL estimator (5.1). The approximation ,r sQ Q  needed for 

Result 2, is justified in Appendix 2. 

 
9  Empirical testing 
 

Results 1 and 2 give the basis for testing empirically in this section how mean and variance of the 

deviation  ˆ ˆ ˆ ˆ
CAL FUL r r s sY Y N N     b b x  depend on the imbalance .IMB  Both results state that the 

variance of rΔ  increases in a roughly linear fashion as IMB  increases, without being small even if IMB  

is near zero.  
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We use real data from an Estonian survey with 17,540 households. The following variables are available 

for every household: Household net income, used here as the study variable ,y  and three categorical 

variables referring to the designated head of household, used here as auxiliary variables: (i) Gender (1 for 

male, 0 for female), (ii) Economic activity (1 for employed, 0 for not employed) and (iii) Education, with 

three exhaustive levels: low, medium, high. 

We compute the mean   of rΔ  and the variance 2S  of rΔ  by averaging over the sets r with fixed mean 

,rx  given .s  

 

9.1  Test situation 1 
 

In line with Result 1, we want to consider the response sets r  with fixed size m  arising from a given 

sample s  of size .n  The computational volume is prohibitive even for rather small .n  We drew s  as a 

simple random sample of size 20n   from 17,540. The kd  are then constant. The sample mean for the -y

variable (household income) was 10,386.65.sy   We define kx  as the group vector of dimension 3J   

that identifies the three exhaustive levels of Education; low, medium, high. For the realized sample ,s  we 

have  5,8,7 .sn x  

We fixed the size of the response sets r  to be 12.m   The response rate is 60 per cent for every one of 

the   520
12

1.26 10   possible response sets .r  From these, we excluded all those for which the response 

count vector rmx  contained a zero, to avoid a singular .rΣ  This left 31 configurations  1 2 3, ,m m m  such 

that 1 2 3 12m m m    and all three counts 1.
j

m   For each of the 31 possibilities, we computed   and 
2S  by averaging over the response sets r  satisfying the fixed configuration. For example,

   1 2 3, , 3, 4,5m m m   is satisfied by 14,700 response sets ,r  so mean and variance of r  are computed 

over those. Other configurations give much fewer response sets, for example, only 70 for the configuration 

(3, 8, 1); a few of those can then be very influential in the computations. For every one of the 31 cases,   

is theoretically zero, by Result 1. The computations confirmed this; a plot of   against IMB  is unnecessary. 

Figure 9.1 shows the 31 point plot of 2S  against .IMB  Because of the non-uniqueness of IMB  noted 

earlier, it happens several times that more than one 2S  occurs at the same IMB  value. Figure 9.1 shows 

that 2S  has a clear upward trend as IMB  increases. Figure 9.1 also shows the approximation 

   2 22 2 1
yapprox S m p pS S IMB      from Result 1. We have 0.6, 12p m   and 2 626.3 10 ,yS    

so the computed approximation, linear in ,IMB  is 2
approxS a b IMB    with 60.879 10a    and 

66.102 10 .b    For points with low ,IMB  2S  agrees closely with the linearly increasing 2 .approxS  A 

contributing reason is that when IMB  is low, the group response rates jp  vary little, and this is one of the 

conditions for close approximation, as the derivation of Result 1 in Appendix 1 explains. For higher IMB  

values, the increasing trend in 2S  is still evident, but the scatter around the theoretical line is more 

pronounced. Five outlying points in Figure 9.1 have very large 2 ;S  three of them occur when one 

component of  1 2 3, ,m m m  is equal to the maximal count (5 or 8 or 7). For those, less accurate linear 

approximation is expected, the jp  being far from equal. 
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Figure 9.1 Conditional variance of Δ r  as a function of imbalance ;IMB  x k  a group vector of dimension 3; 

response sets r  of fixed size 12 from a fixed sample s  of size 20. 

 
9.2  Test situation 2 
 

The setup and the computational steps are similar to those in Test situation 1, but kx  is no longer a group 

vector; some results change considerably, compared with Test situation 1. 

A new simple random sample s  of size 20n   was drawn from the 17,540 households. For this sample, 

9,618.4.sy   We let kx  incorporate all three auxiliary variables (i), (ii) and (iii), but not completely 

crossed: Gender (univariate coded 0 or 1), Economic activity (univariate coded 0 or 1) and Education level 

(three exhaustive categories coded (1,0,0) or (0,1,0) or (0,0,1)). This kx  is not a group vector; it has 

dimension 1 1 3 5    and 2 2 3 12    possible values; rΣ  and sΣ  are not diagonal. We have 

 9,11, 4,7,9 .sn x  For this sample s  we considered the response sets r  of fixed size 12m   excepting 

those where one or more of the five components of the count vector rmx  are zero. This left 658 different 

vectors ,rmx  each composed of five non-zero counts, and satisfied by a certain number of response sets r  

over which we computed, by simple averaging, the mean   and variance 2 .S  These are thus moments 

conditionally on .rx  

Figure 9.2 shows the 658 point plot of   against .IMB  In Test situation 1,   was zero for every point 

because kx  was a group vector. This is not so in Figure 9.2, where the means   fan out when IMB  

increases. They are much more concentrated around zero for low IMB  than for large .IMB  Several points 

(that is several means )rx  can give the same or nearly the same .IMB  Figure 9.2 shows that in a small 

neighborhood of a fixed value 0IMB  on the IMB  axis, the mean of the means   is roughly zero. With 

reference to Result 2, we can expect to see the average of   for fixed IMB  to be near zero: Under model 
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(8.1) for ,ky  Result 2 says that  , , 0.rE r s  X  When X  and r  are fixed, so is .IMB  If the model is 

a reasonably good representation, the average of r  for fixed IMB  should be close to zero, as Figure 9.2 

indicates. 

Figure 9.3 shows the plot of the conditional variance 2S  against .IMB  The pattern with a variance 2S  

that increases linearly in IMB  prevails, even though kx  is not a group vector here. Figure 9.3 shows the 

computed approximating line    2 22 ˆ 1approx p pS m IMB    derived from Result 2, with 2ˆ   

   2

k k ss
y n J  x b  used to estimate 2 .  We have 5, 0.6, 12J p m    and 2 6ˆ 33.6 10 ,    

so the line in Figure 9.3 is 2
approxS a b IMB    with 61.12 10a    and 67.78 10 .b    The linear 

approximation holds particularly well for small ,IMB  say less than 0.1. For large ,IMB  there is much 

scatter; 2S  has some very large values, and some very low values as well. Figure 9.4 shows the joint 

behavior of   and 2S  for the 658 points. The size of a dot is proportional to 2 ;IMB  the reason for squaring 

is to better contrast larger and smaller IMB  values. Response sets r  with small IMB  are found to give 

small   and 2 ,S  a favourable sign because the CAL and FUL estimators are then close. To illustrate, for 

points satisfying 0.1,IMB     is in the interval (-1,390; 1,447) and 2S  in (0.846×106; 4.86×106). These 

are narrow intervals; this is even more pronounced for 0.05.IMB   But when IMB  is large, this 

advantageous situation no longer holds. For example,   can be very small and at the same time 2S  very 

large (points in the middle and right side of the figure). On the other hand, 2S  can be near zero while   is 

very large in absolute value (points in the top and bottom left parts of the figure.) Test situation 2 illustrates 

that a non-group vector kx  can give both a distinctly non-zero mean of r  and a high variance of ,r  and 

that these tendencies are accentuated by large imbalance. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 9.2 Conditional mean of Δ r  as a function of imbalance ;IMB  x k  is a non-group vector of dimension 

5; response sets r  of fixed size 12 from a fixed sample of size 20. 
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Figure 9.3 Conditional variance of Δ r  as a function of imbalance ;IMB  x k  is a non-group vector of dimension 

5; response sets r  of fixed size 12 from a fixed sample of size 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.4 Plot of conditional mean of Δ r  against conditional variance of Δ ;r  x k  is a non-group vector of 

dimension 5; response sets r  of fixed size 12 from a fixed sample of size 20. Dot size proportional 
to imbalance squared. 
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10  Discussion 
 

We comment on several issues arising and indicate limitations of our study. 
 

1. Choice of variables for the auxiliary vector. The auxiliary variables for the vector x  is treated as a 

fixed choice in this article. That choice is important when a perhaps large supply of such variables is 

available. Which ones should be chosen to meet the ultimate objective, which is best possible accuracy in 

the estimates? Result 1 shows that in the group vector case two factors are important for 2S  (which 

determines the conditional variance of CAL): The response imbalance IMB  and the variance 2
yS  of the 

survey variable .y  The fact that 2S  is (approximately) linearly decreasing with IMB  gives incentive to try 

to reduce IMB  in data collection. But allowing more variables in x  increases IMB  (because agreement is 

sought on more -x means). As for the -y variance 2 ,yS  the trend is the opposite. By (7.1), 2
yS  is an averaged 

residual variance around group means; allowing additional variables in x  will, especially if they explain y  

well, reduce 2 .yS  The two factors work in opposite directions: More auxiliary variables give greater IMB  

but lower -y variance. It suggests a possible trade-off, a question not examined in this article. A particularity 

of a group vector x  plays a role: When more categorical variables enter, the vector dimension grows in 

multiplicative bounds. The risk of small or empty cells restricts the expansion. To illustrate, if 

 sex education age  x  of dimension 2 3 4 24J      is expanded to also include occupation with 

4 categories, in completely crossed fashion, the new dimension (equal to the new number of groups) is 

24 4 96.J     In principle, 2
yS  decreases, but risk of small cells is a good reason to abstain from 

completely crossing all the variables and instead involve them in a non-group -x vector. That case is 

addressed in Result 2, which says that if x  explains y  well, then 2
  is small and will give a desired low 

variance for .r  
 

2. Auxiliary information at different levels. In this article, the imbalance IMB  and the calibration 

estimator ĈALY  use the same -x vector, and more particularly one that has auxiliary data for the sample units 

only. It is a realistic case. But in more general formulations, the data collection would use a monitoring 

vector MVx  possibly different from the calibration vector CALx  used later in the estimation. The first is an 

instrument to get low imbalance IMB  in the response, the second serves to get good calibrated weights for 
ˆ .CALY  One reason why MVx  and CALx  may differ in practice is that auxiliary variables for the estimation 

may be updated versions of the same variables available in the data collection. There may be other reasons 

to choose MVx  and CALx  to be different. Also, they can contain information (if available) at the population 

level. Extensions of our approach to such situations are possible. 
 

3. Uncertain benefit from reduced imbalance. Schouten et al. (2014) find evidence that balancing 

response reduces bias. We also find that there is incentive to strive, in data collection, for an ultimate 

response set with low imbalance .IMB  As Results 1 and 2 show theoretically, and as test situations 1 and 2 

confirm empirically, low imbalance gives a deviation ˆ ˆ ˆ
CAL FUL rY Y N    with zero or almost zero expected 

value and a small variance. This is our protection against large bias. If IMB  were to increase, the variance 
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tends to increase. The zero expected value of the deviation ˆ ˆ
CAL FULY Y  is an average property. There is no 

guarantee that the deviation is small for any particular response r  with low .IMB  
 

4. Perfect balance does not eliminate the bias. Zero imbalance, 0,IMB   implies an equality of means 

for response and full sample, .r sx x  If that perfect balance were achieved, the bias adjustment term in 

(5.2) would be zero; the calibration (CAL) estimator and the expansion (EXP) estimator are identically 

equal. One can say that if perfect balance is achieved, the power of the auxiliary vector is exhausted, not in 

its potential for explaining the study variable, but in its potential for distancing itself from the crude EXP 

estimator, which, although it uses no auxiliary information at all, is as good as the otherwise better choice 

CAL. However, CAL EXP  is still not ideal. As Result 1 shows, the variance of the CAL deviation is not 

near zero even if the imbalance IMB  is near zero. Perfect balance does not eliminate the deviation of CAL, 

but small IMB  protects against large deviation. 
 

5. Practical implications. In this article we have primarily in mind surveys with a “substantial and non-

eradicable nonresponse” that cannot realistically (under time and budget constraints for the survey) be 

brought to single-digit per cent levels even if large resources are spent. Surveys with 30 per cent or more 

nonresponse are common today. This is far from an ideal with near 100 per cent response, where imbalance 

and nonresponse would essentially cease to be issues; the EXP, CAL and FUL estimators would be close. 
 

6. Directions for generalization. Results 1 and 2 show properties of the CAL deviation among response 

sets under a given formulation of the auxiliary vector. It would be desirable to generalize the results to other 

situations. Our proofs assume the existence of certain inverse matrices. Extensions to other cases would be 

possible with the aid of Moore-Penrose generalized inverse. 
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Appendix 1 
 

Derivation of Result 1 
 

We derive (7.2) to (7.4) under the conditions and notation in Section 7. The sample s  is self-weighting, 

of size ,n  and x  is a group vector of dimension .J  We assume probability   1
n
m



 for every response set r  

with fixed size .m  We derive the expected value and the variance of  
1

,
j

J

r r s s js r sj
W y y


    b b x  

where ,js jW n n  conditionally on fixed m  and mean    1
, , , , ;1

j Jr m m mmx    
1

.
J

jj
m m


  



234 Särndal et al.: Reducing the response imbalance: Is the accuracy of the survey estimates improved? 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Under that conditioning,  1
j

j

J

j

n
m

R


   sets r  have the same probability, where 
j

n  is the size of sample 

group ;
j

s  
1

.
J

jj
n n


  This is identical to the probability structure for stratified simple random sampling 

of jm  from jn  in stratum ; 1, , .j j J   Given m  and ,rx  the expected value and variance of 
jry  are, 

respectively,
j j

js ks
ny y   and   21 1j j yjm n S  with 2

y j
S  given in (7.1). Thus 

1 j

J

js sj
W y


    

0,sy   which proves (7.2), and  2 2 2
1

1 1 .
J

js j j yjj
S W m n S 

   Substituting j j jp m n  and p   

,m n  and using 2 2
1

J

y js yjj
S W S


   given in (7.1), we get 

 2 2 2 2

1 1

1 1 1 1 1
1 1 .

J J

js yj y js yj
j jj j

p
S W S S W S

n p m n m p
 

                
   (A.1) 

This proves (7.3). To analyze the penalty term (second term on right hand side) in (A.1), suppose that 

the 
j

p  vary little only around the overall rate .p  Then 1,j jp p   1, , ,j J   are small quantities, and 

     2 31 1 1 1 1 .j j j j jp p p           Keeping terms to second order, 21 .j j jp p       

The penalty term is then approximated as 

 
2

2 2 2

1 1 1

1 1 1
1 1 1 .

J J J
j j

js yj js yj js yj
j j jj

p pp
W S W S W S

m p m p m p  

   
             

    (A.2) 

Let us further assume that the group variances 2 ,yjS  1, , ,j J   vary little only around their weighted 

mean 2 .yS  Approximating 2 2
yj yS S  in (A.2) we get 

                              
22 2 2

1 1 1

1 1 1 .
J J J

y y j y j
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j j jj

S S p S pp
W W W

m p m p m p  

   
             

     

Here the first term on the right hand side is zero. The second term, equal to    2 2
yIMB p S m  with 

IMB  given in (3.3), becomes a second approximation for the penalty term in (A.1). Therefore,

     2 2 2 21 1 .y yS m n S IMB p S m     This gives the desired result (7.4). 

 
Appendix 2 
 

Comparing two quadratic forms 
 

We compare the two quadratic forms in ,r sx x  rQ  and sQ  defined in (3.1), and justify the 

approximation r sQ Q  needed in the proof in Appendix 3 of Result 2. The respective weighting matrices, 

rΣ  and ,sΣ  are positive definite. Therefore rQ  (or )sQ  can be equal to zero only under the perfect balance 

.r sx x  Since r sQ Q  for perfect balance, the continuity argument implies that r sQ Q  for nearly 

balanced response sets. How close are they more generally?  

The CAL estimator (5.1) uses the weight factors 1 ,s r kkg  Σ xx  defined for all .k s  Their link to rQ  

is shown in the second and third expressions in (A.3) below. Consider also the factors 1
r s kkf  Σ xx  for 
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.k s  They are instrumental for ,sQ  and for 2 ,sIMB P Q  as the last two expressions in (A.3) show. The 

following moments of kg  and kf  are verified with the aid of the -x vector condition (2.2): 

    1, var , 1 ; 1, var , 1 .r r r s r s s s r sg g Q g Q f f Q f Q         (A.3) 

For ,kg  the means are defined as ,s k k ks s
g d g d    ,r k k kr r

g d g d    and the variances 

are    2
var ,

s k ks sk sd dg g g      2
var .r k k r kr r

g d g g d    For the corresponding 

moments of ,kf  replace kg  by .kf  The variances  vars g  and  varr f  do not have an equally transparent 

form and will be approximated. Another important property following from (2.2) is k k k ks s
d f g d    

1.k k k kr r
d f g d    Those equations and appropriate expressions in (A.3) give 

           cov , 1 ,s k k s k s k s s rs s
f g d f f g g d f g Q          

           cov , 1 .r k k r k r k r r sr r
f g d f f g g d f g Q          

Now use      2cov , var vars s sf g f g  and the analogous inequality where r  replaces .s  Using also

 vars sf Q  and  varr rg Q  from (A.3), we get bounds for the ratio :r sQ Q  

 
 

 var
.

var
s r s

r s r

Q Q g

f Q Q
   (A.4) 

For more transparent upper and lower bounds, approximate the two variances in (A.4) by assuming that 

the coefficient of variation (standard deviation divided by mean) is approximately the same for the response 

r  as for the sample ,s  and this for both f  and .g  This assumes a certain stability of the coefficient of 

variation. Then          2 2 2
var var 1 ,s s r r r rg g g g Q Q    so the upper bound in (A.4) is 

approximately  2
1 1.rQ   Similarly,          2 2 2

var var 1 ,r r s s s sf f f f Q Q    which gives 

  2
1 1sQ

   as an approximate lower bound in (A.4). The interval approximation for the ratio r sQ Q  is 

therefore  

     2 2
1 , 1 .r s s rQ Q Q Q

     

This is to illustrate that the ratio is not far from 1, because for most data both sQ  and rQ  are small 

compared with 1, rQ  usually the somewhat bigger. Empirical work suggests however that the approximate 

upper bound  2
1 rQ  can often be too low. 

 
Appendix 3 
 

Derivation of Result 2 
 

We derive the expressions in (8.2) under the stated conditions. The sizes of r  and s  are m  and ,n  

respectively; the response rate is .p m n  The deviation of CAL from the unbiased FUL is ˆ ˆ
CAL FULY Y   

ˆ
rN  where  



236 Särndal et al.: Reducing the response imbalance: Is the accuracy of the survey estimates improved? 
 

 
Statistics Canada, Catalogue No. 12-001-X 

  r r s s r k k k r k s k k s kd g y d d y d        b b x   

with rb  and sb  given by (4.1), and 1 .k s r kg  x Σ x  Note that s s sy b x  by (2.2). Now r k k k r kd g d  x  

.s k k s k sd d   x x  Post-multiply that equation by β  and use the result to get r   

    ,r k k k k r k s k k k s kd g y d d y d       x β x β  which expresses r  in terms of the residuals 

kk ky   x β  of the model (8.1): 

 .k kk k k sr
r

k kr s

dd g

d d


   

 
  

Then use the model properties of k  in (8.1). From   0k kE  x  for all k  it follows that 

 , , 0.rE r s  X  To evaluate the variance, use  2 2 ,k kE  x  for all ,k s  and 

 , 0,k kE   x x   all .k s   This gives 

  
       

22 2 2

2 2 2 2
2 2

, , 2 .kk k k ksr r
r

k kr sk kr s

dd g d g
E r s

d dd d
         

  
X   

Here the kd  cancel out, because constant. The first and second expressions in (A.3) hold for any ,kd  in 

particular constant ,kd  so we get 1kr
g m   for the mean and 2 1k rr

g m Q   for variance plus 

squared mean. Therefore, 

    2 2 2
1 1 1 1 1

, , 1 2 .r
r r

Q
E r s Q

m n n m n m               
  

X   

As a final step, use the approximation r sQ Q  justified in Appendix 2, and 2 .sIMB p Q  Then, as 

claimed in Result 2,      2 2 2, , 1 .rE r s p IMB p m    X  
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