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A few remarks on a small example by Jean-Claude Deville 
regarding non-ignorable non-response 
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Abstract 

An example presented by Jean-Claude Deville in 2005 is subjected to three estimation methods: the method of 
moments, the maximum likelihood method, and generalized calibration. The three methods yield exactly the 
same results for the two non-response models. A discussion follows on how to choose the most appropriate 
model. 
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1  Deville’s example 
 

During a conference at the University of Neuchâtel, Jean-Claude Deville (2005) presented a simple 

example to illustrate the value of generalized calibration for dealing with non-ignorable non-response 

(regarding generalized calibration, see Deville 2000, 2002 and 2004; Kott 2006; Chang and Kott 2008; Kott 

and Chang 2010; and Lesage and Haziza 2015). The example is reproduced below in its entirety. 
 

Adjustments to offset the effects of non-response require very accurate knowledge of the factors 

that cause it. In particular, if what is to be measured directly influences the response 

probability, we must take risks with the data. Here is a small fictional example: A group of 

students is interviewed about their use of drugs. The survey results are as follows: 

 
Table 1.1 
Deville’s example 

 

 YES NO NON-RESPONSE COMBINED 
Boys 40 80 180 300 
Girls 20 160 120 300 
Combined 60 240 300 600 

 
Naively, we would think that the percentage of drug users is estimated at 60/(240 + 60) = 25%. 

This estimate is made under the assumption that non-respondents have the same behaviour as 

respondents. However, we notice that the response rate for girls is greater than the response 

rate for boys. To correct that, we calculate the rate of drug users among girls, or 1/9, and 

among boys, or 3/9, and we conclude that the rate of drug users in observed student population 

is 2/9 = 22.2%. Now, if we think that drug use is causing the non-response, the model has two 
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parameters yesp  and 
nop ,  the response probabilities of users and non-users, respectively. We 

find that these probabilities equal 0.2 and 0.8, respectively. The estimated number of users is 

therefore 200 among boys and 100 among girls, and the estimated overall percentage is 50! 
 

At first glance, the example is simple, and it perfectly explains the usual typology of the three non-

response mechanisms. Each of the three estimates proposed in the example corresponds to one of the three 

categories below: 
 

 Missing completely at random (MCAR): The response probability does not depend on the 

variable of interest (drug use) or on the auxiliary variable (gender). 

 Missing at random (MAR): The response probability does not depend on the variable of interest 

y  after conditioning on the auxiliary variable x  (gender). In this case, the response probability 

would therefore depend on gender only. 

 Not missing at random (NMAR): The response probability depends on the variable of interest 

itself (drug use) even if consideration is given to the auxiliary variable .x  
 

The example shows the value of generalized calibration, which can deal directly with NMAR. Jean-

Claude Deville addresses the problem by considering the probabilities yesp  and 
n op  as parameters to be 

estimated. This example can be dealt with in several ways, depending on one’s point of view on inference. 

In the following, we will show that there are at least three methods to address the problem, namely the 

method of moments, the maximum likelihood method and calibration. The maximum likelihood method 

was not dealt with by Jean-Claude Deville. We develop calculations completely for the first two estimation 

methods by considering the two models. We also calculate the calibration and generalized calibration 

results. 

We show that the three results obtained are identical. The estimated likelihood function could be used to 

choose between the two models. Unfortunately, the function has the same value for both models, which 

does not make it possible to choose the model. However, we propose a way to make a choice. 

In Section 2, we present the notation used. Section 3 is devoted to estimation using the method of 

moments, and Section 4 is devoted to estimation using the maximum likelihood method. In Section 5, we 

apply the calibration and generalized calibration methods. We close with a discussion on the value of each 

method in Section 6. 
 

2  Notation 
 

Table 2.1 shows the notation for Table 1.1. 
 

Table 2.1 
Notation for Table 1.1 
 

  Drug User Non-user Missing Total 

Male  HDr    HSr    Hm    .Hn   

Female  FDr    FSr    Fm    .Fn   

Total  .Dr    .Sr    m    n   
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For simplicity, assume that we are dealing with a census. In other words, the 600 students were not 

randomly selected. Therefore, the only source of randomness is the non-response mechanism. This 

assumption is not that restrictive, since it is equivalent to considering that the sample is random, but that the 

reasoning below is conditional on the random sample. The objective is to estimate the numbers of people in 

Table 2.2. This table is assumed not to be random. It is therefore a matter of distributing the non-respondents 

Hm  and 
Fm  between drug users and non-users. 

 
Table 2.2 
Number of people to be estimated based on Table 1.1 
 

  Drug User Non-user Total 

Male  HDn    HSn    .Hn   

Female  FDn    FSn    .Fn   

Total   .Dn    . Sn    n   

 
As well, it is assumed that the non-response follows a Poisson design, that is, each individual decides 

whether or not to respond with a probability independent of other individuals. The response probability may 

vary among individuals. 

The two vectors  , , ,HD HS Hr r m  and  , ,F D F S Fr r m  each have a multinomial distribution whose 

parameters depend on the model used. MCAR cases, which are completely trivial, will not be studied. In 

Table 2.3, which shows cases of MAR, the response probability depends on gender only ( Hp  for males, 

Fp  for females). In Table 2.4, which shows cases of NMAR, the response probability depends only on 

being or not being a drug user ( ,Dq  
Sq  for the others). 

 
Table 2.3 
Case 1: MAR model, non-response depends on gender 
 

   Drug User   Non-user   Missing  Total  

Male    E =HD HD Hr n p     E =HS HS Hr n p       .E = 1H H Hm n p    .Hn   

Female    E =FD FD Fr n p     E =FS FS Fr n p       .E = 1F F Fm n p    .Fn   

Total    .E Dr     .E Sr    m    n   

 
Table 2.4 
Case 2: NMAR model, non-response depends on being or not being a drug user 
 

   Drug User   Non-user  Missing  Total  

Male    E =HD HD Dr n q     E =HS HS Sr n q         E = 1 1H HD D HS Sm n q n q      .Hn   

Female    E =FD FD Dr n q     E =FS FS Sr n q         E = 1 1F FD D FS Sm n q n q      .Fn   

Total    .E Dr     .E Sr    m    n   
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3  Estimation using the method of moments 
 

3.1  MAR 
 

The method of moments makes it possible to estimate parameters quickly. For MAR, we obtain the third 

column of Table 2.3 using the equations 

   
   

   
.

.

E = 1 ,

E = 1 ,

H H H

F F F

m n p

m n p




  

which yield the estimators 

 
.

.

ˆ = 1 ,

ˆ = 1 ,

H
H

H

F
F

F

m
p

n

m
p

n





  

and therefore, from the first two columns, 

             

. .
.

. .

. .
.

. .

ˆ = = ,
ˆ ˆ

ˆ = = .
ˆ ˆ

HD FD H F
D HD FD

H F H H F F

HS FS H F
S HS FS

H F H H F F

r r n n
n r r

p p n m n m

r r n n
n r r

p p n m n m

 
 

 
 

  

The estimated response probabilities are ˆ = 0 .4Hp  and ˆ = 0.6.Fp  We therefore obtain the estimates shown 

in Table 3.1. 

 
Table 3.1 
Estimates: MAR 
 

   YES   NO   COMBINED  

Boys   100.00   200.00   300  
Girls   33.33   266.66   300  
COMBINED   133.33   466.66   600  

 
3.2  NMAR 
 

For NMAR, we obtain the following equations from Table 2.4: 

 

     

     

1 1
E = E ,

1 1
E = E .

D S
H HD HS

D S

D S
F FD FS

D S

q q
m E r r

q q

q q
m E r r

q q

 


 


  

After a few calculations, we obtain the following response probability estimators: 
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   

   

ˆ = ,

ˆ = .

HD FS FD HS
D

H HD FS F FD HS

HD FS FD HS
S

F FS HD H HS FD

r r r r
q

m r r m r r

r r r r
q

m r r m r r


  


  

  

Finally, we obtain 

                               

   

   

. . .
. . .

. . .
. . .

ˆ = = = ,
ˆ

ˆ = = = .
ˆ

D H HD FS F FD HS H FS F HS
D D D

D HD FS FD HS HD FS FD HS

S F FS HD H HS FD F HD H FD
S S S

S HD FS FD HS HD FS FD HS

r m r r m r r n r n r
n r r

q r r r r r r r r

r m r r m r r n r n r
n r r

q r r r r r r r r

   
 

   
 

  

As Deville writes, the estimated response probabilities are ˆ = 0.2Dq  and ˆ = 0 .8.Sq  We therefore obtain 

the estimates in Table 3.2. 

 
Table 3.2 
Estimates: NMAR 
 
   YES   NO   COMBINED  

Boys   200   100   300  
Girls   100   200   300  
COMBINED   300   300   600  

 
4  Estimation using the maximum likelihood method 
 

4.1  MAR 
 

The probability distribution is multinomial. For MAR, the following likelihood function applies: 

 

     

   

. . .

. . .

. . .

. . .

! 1
, , , =

! ! !

! 1
.

! ! !

HD HS H

FD FS F

r r m

H HD H H HD H H H
HD FD H F

HD HS H H H H

r r m

F FD F F FD F F F

FD FS F F F F

n n p n n p n p
n n p p

r r m n n n

n n p n n p n p

r r m n n n

     
    

    

     
     

    



  

By setting to zero the partial derivatives of the log-likelihood with respect to parameters 
Hp  and ,Fp  we 

obtain two equations with two unknowns. The solution yields the estimators 

 
.

.

ˆ = 1 ,

ˆ = 1 .

H
H

H

F
F

F

m
p

n

m
p

n





  

By setting to zero the derivatives with respect to 
H Dn  and ,FDn  we obtain the estimators 
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 ˆ ˆ= and = .
ˆ ˆ
HD FD

HD FD
H F

r r
n n

p p
  

Therefore, 

    
.ˆ ˆ ˆ= = .

ˆ ˆ
HD FD

D HD FD
H F

r r
n n n

p p
    

These estimators are exactly the same as those obtained using the method of moments. 

 
4.2  NMAR 
 

For NMAR, the following likelihood function applies: 

 

         

       

. . .

. . .

. . .

. . .

! 1 1
, , , =

! ! !

! 1 1
.

! ! !

HD HS H

FD FS F

r r m

H HD D H HD S HD D H HD S
HD FD D S

HD HS H H H H

r r m

F FD D F FD S FD D F FD S

FD FS F F F F

n n q n n q n q n n q
n n q p

r r m n n n

n n q n n q n q n n q

r r m n n n

        
    

    

        
     

    



  

By setting to zero the partial derivatives of the log-likelihood with respect to the four parameters ,Dq  ,Sq  

H Dn  and ,FDn  we obtain a system of four rather complicated second-order equations with four unknowns. 

We used a symbolic computation software program to verify that the solution given by the method of 

moments is a solution to this system of equations. Obviously, since the system is second-order, there is a 

second solution. However, for Deville’s example, the second solution yields negative values, which are not 

valid for estimating probabilities and numbers of people. 

 
5  Estimation using calibration and generalized calibration 
 

5.1  Notation 
 

To define calibration, we will establish the following notation. Let  = 1, , , ,U k N   be the set of 

people interviewed (here, = 600N  and R U  be the set of respondents to the question regarding drug 

use. As well, we define the following: 

   
 

 

1 0 if individual is male
=

0 1 if individual is female.
k

k

k









x   

and 

                                              
 

 

1 0 if individual reported using drugs
=

0 1 if individual reported not using drugs.
k

k

k









z   

Using the notation defined above, 
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. . .

. . .

.

.

= , = , = ,

0
= , = ,

0

H H H D

k k k
k U k R k RF F F S

H H HD HS

k k k k
k R k RF F FD FS

n n m r

n n m r

n m r r

n m r r

  

 

 

    
             

   
       

  

 

x x z

x x x z

  

and 

.

.

0
= .

0

D

k k
k R S

r

r





 

 
 z z   

 
5.2  Estimation using simple calibration 
 

Using simple calibration as described in Deville and Särndal (1992), we seek a weight that is expressed 
as 

  = ,k kw F x λ   

where  1 2= , λ  is a parameter vector and  .F  is a calibration function, that is, a strictly increasing 

function such that  0 = 1F  and whose derivative  .F   is such that  0 = 1.F   

Vector λ  is determined by using the Newton method to solve the system of equations 

   = .k k k
k R k U

F 

 
 x λ x x  (5.1) 

Finally, the calibration estimator is given by 

 
.

.

ˆ
= .

ˆ

D

k k
k RS

n
w

n 


 

 
 z   

In our application, equation (5.1) becomes 

  
   

   
.. 1

.. 2

= = = .
HH H

k k k
k R k U FF F

nn m F
F

nn m F






 

  
      

 x λ x x   

We directly obtain the following: 

  
 

 
. .

. .

if individual is male
= =

if individual is female.

H H H

k k

F F F

n n m k
w F

n n m k






x λ   

Therefore, the calibrated estimators are 

 

. .
.

. .

. .
.

. .

ˆ =

ˆ = ,

H F
D HD FD

H H F F

H F
S HS FS

H H F F

n n
n r r

n m n m

n n
n r r

n m n m


 


 
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which is exactly the same result as that yielded by the method of moments and the maximum likelihood 

method. In this case, the solution does not depend on the calibration function used. Obviously, the example 

is especially simple. In more complex cases where the category definitions do not overlap, the result depends 

on the calibration function used. 
 

5.3  Generalized calibration 
 

For generalized calibration as defined in (Deville 2000, 2002, 2004; Kott 2006), the weights are 
expressed as 
  = .k kw F z λ   

Vector λ  is determined by solving the system of equations 

   = .k k k
k R k U

F 

 
 z λ x x  (5.2) 

Finally, the generalized calibration estimator is given by 

 
.

.

ˆ
= .

ˆ

D

k k
k RS

n
w

n 


 

 
 z   

In our application, equation (5.2) becomes 

  
   

   
.1 2

.1 2

= = = ,
HHD HS

k k k
k R k U FFD FS

nr F r F
F

nr F r F

 

 


 

  
      

 z λ x x   

Which can be written as a matrix 

 
 

 
.1

.2

= .
HD HS H

FD FS F

r r nF

r r nF





  
         

  

We simply solve the linear system 

 
 

 

. .
1

.1

.2 . .

= = .

H FS F HS

FS HD FD HSHD HS H

FD FS F H FD F HD

FD HS FS HD

n r n r

r r r rr r nF

r r nF n r n r

r r r r







 
                  

  

  

The estimators are therefore 

 

. .
. .

. .
. .

ˆ =

ˆ = .

H FS F HS
D D

FS HD FD HS

H FD F HD
S S

FD HS FS HD

n r n r
n r

r r r r

n r n r
n r

r r r r







  

Again, the solution does not depend on the calibration function used. The solution is identical to the solution 

obtained using the method of moments and the maximum likelihood method. Here, too, this property results 

from the simplicity of the example. In more complex cases, the result depends on the calibration function 

used. 
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6  Discussion 
 

Deville’s example is especially welcome since, for both models, the three estimation methods provide 

exactly the same estimators. Obviously, if the model is more complicated, using the maximum likelihood 

method becomes cumbersome, if not impossible. The calibration and generalized calibration method works 

in all cases as long as the number of calibration variables whose totals are known is sufficient and the matrix 

 k k
k R




x z   

is invertible. In this example, the determinant of this matrix appears in the denominator of the estimators. 

Therefore, a small determinant makes the estimates especially risky. Lesage and Haziza (2015) recommend 

verifying that the correlations between variables 
kx  and 

kz  are great enough to avoid potentially 

amplifying the bias. 

If the variables are quantitative, the solutions will depend on the calibration function used (.).F  The use 

of the calibration function    = 1 expk kF  z λ z λ  is recommended, since it has the advantage of providing 

weights greater than 1. The inverse of the weights can now be interpreted as a response probability estimated 

using a logistic model. 

The main difficulty is obviously choosing between the two proposed models. In Deville’s example, it 

may seem more “logical” to see the non-response depend rather on drug use than on gender. However, we 

are not well equipped to make a choice between the two models. The values of the two likelihood functions 

for the estimated parameters are equal. Is it possible to choose the model based on more than a strong 

conviction? As suggested in Haziza and Lesage (2016), we recommend always calculating both weightings 

and comparing the weights and estimates obtained with each of them. 

One option may be to calculate an indicator of the dispersion of the response probabilities, such as the 

variance. For example, if the variance is great, it means that the model has made it possible to calculate 

response probabilities with greater contrast between individuals and that the model has therefore taken better 

account of the non-response. Validation through a search for contrasting weights is the basis for identifying 

response homogeneity groups (RHGs) for all segmentation methods, for example with the chi-square 

automatic interaction detector (CHAID) algorithm developed by Kass (1980). For example, with CHAID, 

in each step the RHGs are split based on categories that result in response probabilities with the greatest 

contrast. By using the same principle in choosing the model, we can select the model that provides the 

weights with the greatest contrast. For example, if the variance is small, it means that the non-response 

model could not highlight the differences in non-response probabilities between individuals. Incidentally, 

the variance in response probabilities is the square of the R-indicator defined by Schouten, Cobben and 

Bethlehem (2009), used here to choose a non-response model. 

In both cases, the average response probability equals 0.5. Specifically, 

   . .
.

ˆ ˆ 300 0.4 300 0.6
= = = 0.5
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n p n p
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and 
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For the MAR model, the variance is 

 
       2 2 2 2

. .ˆ ˆ 300 0.4 0.5 300 0.6 0.5
= = = 0.01.

600
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n p p n p p
V

n
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For the NMAR model, the variance is 

  
       2 2 2 2

. .ˆ ˆ ˆ ˆ 300 0.2 0.5 300 0.8 0.5
= = = 0.09.

600
D D S S

NMAR

n q q n q q
V

n

     
  

The greater variance of the NMAR model is an argument in its favour. In fact, the response probabilities 

show much greater contrast. 
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