
Survey Methodology

Catalogue no. 12-001-X 
ISSN 1492-0921

by Ismael Flores Cervantes and J. Michael Brick

Nonresponse adjustments with  
misspecified models in stratified 
designs

Release date: June 22, 2016



Standard table symbols
The following symbols are used in Statistics Canada  
publications:

.	 not available for any reference period 

..	 not available for a specific reference period 

...	 not applicable 
0	 true zero or a value rounded to zero 
0s	 value rounded to 0 (zero) where there is a meaningful 
	 distinction between true zero and the value that was rounded 
p	 preliminary 
r	 revised 
x	 suppressed to meet the confidentiality requirements  
	 of the Statistics Act 
E	 use with caution 
F	 too unreliable to be published 
*	 significantly different from reference category (p < 0.05)

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website, 
www.statcan.gc.ca. 
 
You can also contact us by 
 
email at STATCAN.infostats-infostats.STATCAN@canada.ca 
 
telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following toll-free numbers: 

•• Statistical Information Service	 1-800-263-1136
•• National telecommunications device for the hearing impaired	 1-800-363-7629
•• Fax line	 1-877-287-4369

 
Depository Services Program 

•• Inquiries line	 1-800-635-7943
•• Fax line	 1-800-565-7757

Published by authority of the Minister responsible for Statistics Canada

© Minister of Industry, 2016

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

Note of appreciation
Canada owes the success of its statistical system to a 
long‑standing partnership between Statistics Canada, the  
citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information could not 
be produced without their continued co‑operation and goodwill.

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, 
reliable and courteous manner. To this end, Statistics Canada has 
developed standards of service that its employees observe. To 
obtain a copy of these service standards, please contact Statistics 
Canada toll-free at 1-800-263-1136. The service standards are 
also published on www.statcan.gc.ca under “Contact us” > 
“Standards of service to the public.”

http://www.statcan.gc.ca
mailto:STATCAN.infostats-infostats.STATCAN%40canada.ca?subject=
http://www.statcan.gc.ca/eng/reference/licence-eng.htm
http://www.statcan.gc.ca/pub/12-001-x/2016001/article/14546-eng.htm
http://www.statcan.gc.ca/eng/about/service/standards


Survey Methodology, June 2016 161 
Vol. 42, No. 1, pp. 161-177 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Ismael Flores Cervantes and J. Michael Brick, Westat, 1600 Research Blvd, Rockville, Maryland 20850. E-mail: 

ismaelflorescervantes@westat.com. 

 

Nonresponse adjustments with misspecified models in 
stratified designs 

Ismael Flores Cervantes and J. Michael Brick1 

Abstract 

Adjusting the base weights using weighting classes is a standard approach for dealing with unit nonresponse. A 
common approach is to create nonresponse adjustments that are weighted by the inverse of the assumed response 
propensity of respondents within weighting classes under a quasi-randomization approach. Little and Vartivarian 
(2003) questioned the value of weighting the adjustment factor. In practice the models assumed are misspecified, 
so it is critical to understand the impact of weighting might have in this case. This paper describes the effects on 
nonresponse adjusted estimates of means and totals for population and domains computed using the weighted 
and unweighted inverse of the response propensities in stratified simple random sample designs. The performance 
of these estimators under different conditions such as different sample allocation, response mechanism, and 
population structure is evaluated. The findings show that for the scenarios considered the weighted adjustment 
has substantial advantages for estimating totals and using an unweighted adjustment may lead to serious biases 
except in very limited cases. Furthermore, unlike the unweighted estimates, the weighted estimates are not 
sensitive to how the sample is allocated. 

 
Key Words: Nonresponse; Stratification; Sampling weights; Weighting classes reweighting. 

 
 

1  Introduction 
 

Adjusting the base weights for unit nonresponse using weighting classes is a standard approach to survey 

weighting, but the adjustments are not done in the same way by all researchers or survey organizations. 

Little and Vartivarian (2003), hereafter referred to as L&V, observed that using a nonresponse adjustment 

factor that is weighted by the inverse of the probability of selection appears to be the most common 

approach. They also pointed out that using design weights to compute a weighted nonresponse adjustment 

does not eliminate nonresponse bias in estimates of the mean of the population when the response 

mechanism is not specified correctly by the weighting adjustment model. L&V then conducted a simulation 

study using a simple stratified sample design to examine the effect of weighting the nonresponse adjustment 

factors. They concluded that weighting the nonresponse adjustment has little or no value. 

Theoretical justifications for nonresponse adjustment require that either the response mechanism or the 

target variable must be modeled correctly to eliminate nonresponse bias; we are not aware of any theory 

that suggests that weighting by the inverse of the probability of selection completely eliminates bias when 

the model is misspecified (e.g., Kalton 1983; Little 1986; Little and Rubin 2002; Särndal and Lundström 

2005). In this regard, the importance of modeling for nonresponse adjustment urged by L&V is essential for 

good statistical practice. However, correctly specifying a highly predictive model is an ideal that cannot be 

achieved in most surveys because of the complexity of the phenomenon and because powerful auxiliary 

variables rarely exist. The search for better auxiliary data for this modeling has fueled research into paradata, 

but the models using these data still have relatively poor correlations with response propensities (Kreuter, 
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Olson, Wagner, Yan, Ezzati-Rice, Casas-Cordero, Lemay, Peytchev, Groves and Raghunathan 2010). In 

practice, imperfect models are used and nonresponse bias is never completely eliminated. 

Consequently, understanding the effects of nonresponse adjustment methods and whether there is any 

value to weighting the nonresponse adjustment with an incorrectly specified response model is important. 

Even though a message of L&V was the need to include design variables in the nonresponse modeling, 

some researchers appear to have concluded that weighting the adjustment has no role (e.g., Chadborn, 

Baster, Delpech, Sabin, Sinka, Rice and Evans 2005; Haukoos and Newgard 2007). However, L&V’s 

conclusion that weighting the nonresponse adjustment factor is either incorrect or inefficient was based on 

comparisons to correctly specified models that always produce unbiased estimates. Their suggestion to 

condition on the design variables (in their setting the design variable was the stratum) resulted in identical 

weighted and unweighted estimators. Their simulations are also centered on a specific stratified sample 

design and they only consider estimating means. As discussed below, these are substantial limitations and 

the conclusions that some have drawn that weighting the adjustment is inappropriate need to be 

reconsidered.  

Following L&V, researchers have examined the effects of weighting in other cases. Sukasih, Jang, 

Vartivarian, Cohen and Zhang (2009) compared nonresponse adjustments with and without weights by 

simulation within the context of a specific survey. West (2009) used simulation to study estimates of 

population means under more complex sample designs that featured clustering and differential sampling 

rates. Both of these studies concluded that weighting the nonresponse adjustments by the design weights 

was beneficial compared to using an unweighted approach, even though the differences due to weighting 

were not large. Kott (2012) assessed the robustness of the adjustments theoretically and described the 

conditions under which the various estimators for population means had greater protection against 

nonresponse bias; he recommended a weighted approach. Related research has been conducted on the need 

for weighting for estimating response propensity model coefficients (Wun, Ezzati-Rice, Diaz-Tena and 

Greenblatt 2007; Grau, Potter, Williams and Diaz-Tena 2006), but this line of research is sufficiently 

different that we do not discuss it here. 

In this article, we explore the effect of weighting nonresponse adjustments when the nonresponse model 

is imperfect. In Section 2, we expand on the L&V results by looking at estimators for totals and domain 

means and totals; L&V only considered overall means. Using the same population and basic simulation 

setting of L&V, we also explore the effect of different sample allocation to the strata while L&V used one 

sample allocation. The results of the simulations presented in Section 3 show that there are important 

differences in the properties of the weighted and unweighted estimators and these vary by how the sample 

is allocated. We explain the behaviors of the estimators using simple approximations to show why they 

differ. Although weighting the adjustment factor does not always give estimates with lower bias and root 

mean square error when compared to estimates from the unweighted alternative, it has substantial benefits 

for estimates of totals and provides protection against large errors that may arise with an unweighted 

approach. As a result, we recommend a weighted approach when the true response mechanism is not fully 

known. Conclusions are presented in Section 4. 
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2  Setting 
 

Survey weights compensate for different types of missing data – sampling or base weights adjust for 

those that are not sampled, noncoverage adjustment weights account for those that are not in the sampling 

frame, and nonresponse adjustment weights compensate for those that are sampled but do not respond. We 

focus on nonresponse adjustment weights and the effect of using the base weights in creating the 

nonresponse adjustments.  

We begin with the unadjusted Horvitz-Thompson estimator of the total 

 ,ˆun i i is
y R d y   (2.1) 

where id  is the inverse of the probability of selection of unit , 1ii R   if unit i  responds and 0  otherwise, 

and the sum is over the units in sample .s  The ratio mean is ˆ .ˆun un i is
y y R d   If all the sample data are 

observed and the frame is complete, then ( ) ,ˆunE y Y  and the ratio mean is consistent for .Y  

When there is unit nonresponse, we assume that response is a random variable and the probability or 

propensity of response   Pr 1i iR    is like the probability from an additional phase of sampling 

(Särndal, Swensson and Wretman 1992). If we assume 0i   for all ,i  then the nonresponse bias of an 

estimated ratio mean under the stochastic model is 

   1
,

ˆbias ,un y yy 
       (2.2) 

where   is the population mean of the response propensities,   is the standard deviation of ,  y  is the 

standard deviation of ,y  , y  is the correlation between   and y  (Bethlehem 1988). The estimated 

respondent mean is unbiased if   and y  are uncorrelated. Brick and Jones (2008) extend these results to 

other types of statistics and estimators. 

To reduce nonresponse bias, auxiliary variables associated with the sample can be used to support 

nonresponse adjustments to the base weights. The adjustments can be implemented by modeling either the 

distribution of   or ,y  or both using the auxiliaries. We are specifically interested in modeling the response 

mechanism. 

The estimated response propensities are applied as if they were the actual probabilities of responding. In 

other words, the nonresponse adjustment factor is the inverse of the estimated propensity of responding for 

sampled unit  ˆ .ii   The response propensity can be estimated by a variety of methods such as logistic 

regression, but most surveys form mutually exclusive groups called weighting classes or response 

homogeneity groups which contain units with similar estimated propensities and adjust the weights in each 

group or class by a common factor, say 1ˆ ˆ
c cf    for all i c  (Särndal et al. 1992, and Little 1986). When 

this approach is used, the adjusted estimator is called a weighting class estimator and is 

 ˆ ,ˆ
c

wc ci ci c cic i s
y R d f y


    (2.3) 

where 1, 2, ,c C   are the nonresponse adjustment classes and ci s  is a sampled unit in class .c  

The specific issue we address is the effect of weighting the adjustment factor. The unweighted factor is 
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 ˆ c

c

cii s cu
c

ci ci ci s

n
f

R r
 




 





  

where 1ci   if i c  and 0ci   if ,i c  and cn   and cr   are the number of sampled and responding 

units in class .c  The weighted adjustment factor is  

 
ˆ

ˆ ,
ˆ

c

c

cii s cw
c

ci ci ci s

d N
f

R d N




 





  

where ˆ
c

c cii s
N d


   and ˆ .

c
c ci cii s

N R d


    The factors correspond to the unweighted and weighted 

response rates, respectively. Substituting the factors into the estimator (2.3) yields two alternative estimators 

(2.4) and (2.5) of the total population. These are both weighting class estimators but we have changed 

notation to emphasize whether the weighted or unweighted response rate is used. 

 ˆ ,ˆ
c c

cu
urr c ci ci ci cic i r c i r

c

n
y f d y d y

r


 


      (2.4) 

 
ˆ

ˆ .ˆ
ˆc c

cw
wrr c ci ci ci cic i r c i r

c

N
y f d y d y

N 
 

     (2.5) 

These two estimators are the building blocks for all the types of statistics that we consider in the 

simulation study. For example, estimators of means, domain means, and ratios are simple functions of 

estimators (2.4) and (2.5). 

To be consistent with the structure, notation, and simulations in L&V, we restrict our study to the same 

population with a stratified simple random sample where two strata are defined by the binary design 

variable, ,Z  and two nonresponse adjustment classes are defined by a binary auxiliary variable, ,C  that 

cross the strata as shown in Table 2.1. We replaced the X  used in L&V with C  for weighting cell as 

introduced above to easily identify the nonresponse adjustment cell. Consistent with L&V, the population 

size is set at 10,000.N   

 
Table 2.1 
Population counts by strata Z and nonresponse adjustment cell C 
 

 Nonresponse adjustment cell 
Sampling strata C = 0 C = 1 

Z = 0 3,064 3,931 
Z = 1 2,079 926 

Source: Little and Vartivarian (2003) who used X instead of C. 

 
The variable of interest, ,Y  is a binary variable with the probability that 1Y   defined by a logistic 

model with          logit 1 , 0.5 .C Z CZY C Z C C Z Z C C Z Z             The response 

variable R  is also binary with the probability of 1R   generated from a logistic model with 

         logit , 0.5 .C Z CZR C Z C C Z Z C C Z Z            Different populations and 
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response propensities are generated depending on the values of , , , , C Z CZ C Z      and  CZ  as shown in 

Table 2.2. We have adopted the generalized linear model notation L&V used to make comparison to their 

work easier. The tabled values are the same populations and response variables that L&V generated by 

assigning values to  , , , , , .C Z CZ C Z CZ       In the notation  BA  in Table 2.2, the population  Y  or the 

response propensity  R  are indicated by the superscript B  while the parameters and interactions of the 

model for the distribution of the population or response are indicated by A  inside the brackets. For example, 

the additive logistic model that generates the distribution of Y  within the sampling stratum Z  and 

nonresponse cell C  is indicated by   .YC Z  Similarly, models where R  depends on C  only, Z  only or 

neither C  nor Z  are denoted by    , ,R RC Z  and  RC Z  respectively. L&V give more details on their 

rationale for choosing these populations and response models. 

 
Table 2.2 
Models for outcome variable, Y, and probability of response, R 
 

Model for Y 
(Variable of interest) 

Model for R 
(Response propensity) 

Parameters 

, C C   , Z Z   , CZ CZ   

 YCZ   RCZ  2 2 2 

 YC Z   RC Z  2 2 0 

 YC   RC  2 0 0 

 YZ   RZ  0 2 0 

 Y   R  0 0 0 
Source: Little and Vartivarian (2003). 

 
L&V computed estimates of means that are, in our notation, 

 
ˆ ˆ

ˆ ,
ˆ ˆ ˆ

c

urr urr
urr u u

c ci ci c cc i s c

y y
y

f R d f N


 
  

 (2.6) 

and 

 
ˆ ˆ

ˆ .
ˆ ˆ

c

wrr wrr
wrr w

cc ci ci cc i s

y y
y

Nf R d


 
 

 (2.7) 

The denominators of the means are estimates of the population size .N  In estimator (2.7), the 

denominator is a constant and equal ,N  but in estimator (2.6) the denominator is a random variable. In the 

simulation setting with the stratified simple random sample design described below, or in any design where 

ii s
d N


  for every ,s  the estimator (2.7) reduces to the linear estimator 1ˆ ;ˆwrr wrry N y  whereas (2.6) 

is a ratio estimator. This is an important point we return to later. 

Domain means may have properties that differ from overall means because the denominators of the 

weighted and unweighted domain means are both random variables. One exception is when the domains 

match the sampling strata and therefore both the domain sizes and stratum sizes are known. L&V did not 

discuss domains, so these estimates are not studied in their simulation. We create domains by randomly 
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generating a random variable i  from a uniform (0, 1) distribution, and defining the membership function 

  1a   if 0a   and   0a   if 0.a   Domain means of 50% were created by substituting *
cid   

 0.5i cid    into expressions (2.6) and (2.7) to produce the estimators ,0.5
ˆ

urry  and ,0.5
ˆ ,wrry  respectively. 

Weighted and unweighted estimators of domain totals ,0.5ˆurry  and ,0.5ˆwrry  were formed similarly. We used 

the same device to create 25 percent domain means and 25 percent domain totals. Since we are interested 

in the effect of the nonresponse adjustments in means computed as ratio estimators, other domains such as 

those defined close to 100 percent of the population were excluded from the analysis because the 

denominator of the domain means approaches the constant population total N  and the mean becomes a 

linear estimator. Domains closer to 0 percent were excluded because of small sample sizes. 

 
3  Findings 
 

The simulation was done in R (R Development Core Team 2011) with 10,000 draws (L&V used 1,000 

draws). We evaluated the estimators by computing the root mean squared error (rmse) and the bias of the 

estimates, where the bias and rmse are measured in deviations from the population quantities as done in 

L&V. We used the same total sample size of 312 that they used in their simulation, but with different sample 

allocation or relative sampling rates between strata. We replicated all 25 configurations in L&V and these 

results are found in Table S-1 in the supplemental materials. Table S-2 in supplemental materials also 

includes the 25 configurations but presents the relative bias of unweighted and weighted means and totals, 

as well as ratios of variances and rmse of unweighted to weighted estimates. The relative bias and ratios of 

variances and rmse facilitate the comparisons between the estimates. These materials include their estimated 

simulation errors, which are all relatively small. For those estimators and sampling rates given in L&V, our 

results are consistent with their published values within simulation error. We begin by examining the bias 

of the estimators. 

 
3.1  Bias 
 

There are two situations where theoretical results exist and are well-known (Little and Rubin 2002). One 

is when the propensity to respond is the same in all cells – missing completely at random (MCAR); MCAR 

corresponds to the model    0, 0, 0R
c z cz         in the last row in Table 2.2. With MCAR, the 

unweighted and weighted adjustment factors are equal in expectation, and both produce unbiased estimates. 

The simulation results in Table V of L&V paper (rows 5, 10, 15, 20, and 25) confirm this observation. The 

second situation is when the response propensity is independent of the strata, corresponding to missing at 

random (MAR) with the response model    2, 0, 0C
c z cz         in the third row of Table 2.2. 

We refer to these situations as MAR because the bias of the estimator does not depend on whether the 

information about Z is used in the model. Here again, the weighted and unweighted estimates are both 

unbiased and the adjustments are equal in expectation. The simulation results in Table V of L&V (rows 3, 

8, 13, 18, and 23) confirm this observation empirically. 
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To focus on the situation in which the model is incorrectly specified, we do not present the simulations 

results for the MCAR and MAR situations in this document, but these results can be found in the 

supplemental materials. An important point is that even though the weighted and unweighted adjustments 

for the MCAR and MAR models are equal in expectation, they are not identical. Sukasih et al. (2009) 

simulated the two approaches under MAR models and stated a preference for the weighted approach largely 

due to the lower variability in the estimates of total across simulations even though both were unbiased. 

As mentioned before, our simulations vary the sampling rates while keeping the overall sample size 

fixed at 312; L&V used a single sampling rate. When the sampling rates are the same across strata (i.e., the 

sample is proportionally allocated to the strata), then the sampling weights are the same for the two strata 

and consequently the weighted and unweighted estimators are identical. The proportional allocation 

sampling rate plays a visible role in our presentation because the two estimates must converge at this point. 

Figure 3.1 (left panel) is a graph of the simulation results for the bias of the weighted and unweighted 

estimator of the total for  YCZ  and   .RC Z  We chose this configuration (row 2 in L&V’s tables) 

because the simulations in L&V showed the unweighted mean had lower bias and rmse than the weighted 

mean for this case. The horizontal axis shows the relative sampling rate computed as the ratio of the 

sampling rate of 0Z   to 1Z   or  1 1
0 0 1 1 .N n N n   The relative sampling rate used by L&V was about 

2.25. It is immediately apparent that the bias of the weighted estimator is essentially constant across different 

sampling rates while the bias of the unweighted estimator varies substantially with the relative sampling 

rate. The bias of the unweighted estimators of the total can be more than two times the bias of the weighted 

estimator for some sampling rates. Both estimators are biased for almost all relative sampling rates, and the 

estimator that has the lower bias depends on this rate. When the relative sampling rates are equal 

(proportional allocation) the unweighted and weighted estimators have the same bias, as expected. However, 

in practice, it is not generally possible to recognize the effect the sampling rate has on the bias and choose 

in advance the adjustment method to reduce the bias for a specific sample. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Bias for weighted and unweighted estimator for the population model [CZ]Y and response 

propensity model [C+Z]R, where the left panel is for the total and right panel is for the mean. 
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To understand these findings, we applied some standard approximations that hold reasonably well in this 

situation (i.e.,    1 1 .E E     The approximate expected value for the weighted estimator is 

   ,ˆ c
wrr cz czz c

cz czz

N
Ey Y

N
 

  
 (3.1) 

where czY  is the population total in cell .cz  Similarly, the approximate expected value for the unweighted 

estimator is  

 
 

 
1

1
.ˆ

z z czz
urr cz czz c

cz z z czz

N n N
Ey Y

N n N



 


  
 (3.2) 

If cz  is a constant (MCAR) or cz  is constant within weighting cells (MAR), then both estimators are 

unbiased to this order of approximation and consistent with known theory. When the sampling rates are the 

same across strata, the two estimators have the same expected value (as noted above they are identical in 

this case). More importantly, these approximations show the expectation of the weighted estimator is not 

dependent on the sampling rate, but the expectation of the unweighted estimator is. This explains the patterns 

shown in the Figure 3.1. 

Some details of the simulation estimates for this configuration are shown in Table 3.1 for selected 

sampling rates. As noted above, the full simulation results for all configurations and sampling rates used to 

create the figures can be found in the supplemental materials. These materials include the relative biases, 

ratios of variances and ratios of rmse which are better indicators for assessing the impact of the adjustments 

on the estimates. We observed that all configurations with biased estimates of totals have biases that are 

lower for the weighted estimator on one side of the relative sampling rate of 1 and are higher on the other 

side. All configurations exhibit an approximately constant bias for the weighted estimator of the total across 

the relative sampling rates, but the bias of the unweighted estimator varies by relative sampling rate. 

Next, we turn to estimated means – the only estimators considered by L&V. The right panel of Figure 

3.1 shows the bias for the weighted estimator is again independent of the relative sampling rate while the 

bias of the unweighted estimator varies with the sampling rate. L&V used a sampling rate of 2.25 so this 

explains why they found the unweighted estimator had a lower bias for the mean in their simulation. Two 

points are worth noting. First, the biases for the means for both adjustment methods are all relatively small, 

especially when compared to the potential relative biases of the totals with the unweighted estimator in the 

panel on the left. Second, there is no way to identify if a particular estimate would fall on the left or right of 

the relative sampling rate of 1. Table 3.1 shows the estimated biases for this configuration. 

The graphs also show a relationship that is somewhat surprising; the relative sampling rates where the 

unweighted estimator of the total has a lower bias are those where the unweighted estimator of the mean 

has a higher bias. In other words, the means behave differently from the totals because the unweighted mean 

is a ratio while the weighted mean is not. As a result, the relative bias (rb = bias/estimate) of the unweighted 

estimator of the mean is not equal to the relative bias of the unweighted estimator of the total (the 

relationship holds for the weighted estimator). We approximate the relative bias by 

    
 

1 ˆ
ˆ ,

ˆ1
urr
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urr

rb y
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where ˆ
urrN  is the unweighted estimator of the total (where 1iy   for all  .i  This approximation holds 

well in this situation since    ˆ ˆˆcov , 0.urr urr urry N E N   Thus, the relative bias of the unweighted mean is 
reduced whenever the biases of the numerator and denominator are positively correlated. 

Now, consider domain estimates – estimators not studied in L&V. The biases for the weighted and 
unweighted domain total estimators and the relationships with the biases of the unweighted estimators 
varying by the relative sampling rate are the same as observed for the overall totals (see Table 3.1). This 
follows because domain totals are still totals and approximations (3.1) and (3.2) still apply. The domain 
means are also given in the table and they too exhibit the same pattern of biases as shown in Figure 3.1 for 
the full sample mean. It is worth noting that the relative biases for the mean estimates (overall and for the 
domains) do not vary much, with most relative biases in the range of 5 to 7 percent. 

 

Table 3.1 
Bias (times 10,000), root mean square error (times 10,000) and variance of weighted and unweighted estimators 
of means and total of the full sample and domains, configuration [CZ]Y, [C+Z]R with various sampling rates 
 

    Relative sampling rate 
 Characteristic Domain Adjustment 0.30 0.44 1.00 2.25 3.30 

Bias Mean Full urr 515 491 404 301 248 
  wrr 398 403 404 404 394 
 50% urr 513 501 411 307 257 
  wrr 397 414 410 410 401 
 25% urr 523 498 407 298 252 
  wrr 408 411 407 400 395 

 Total Full urr -419 -184 401 1,058 1,335 
  wrr 398 403 404 404 394 
 50% urr -214 -89 205 535 673 
  wrr 194 205 206 207 200 
 25% urr -107 -48 101 264 335 
  wrr 97 98 102 101 100 
Rmse Mean Full urr 643 614 546 536 566 
  wrr 553 547 545 587 616 
 50% urr 758 726 669 699 778 
  wrr 687 671 669 728 794 
 25% urr 949 898 863 952 1,062 
  wrr 895 859 863 955 1,041 

 Total Full urr 537 376 543 1,183 1,485 
  wrr 553 547 545 587 616 
 50% urr 371 311 393 714 888 
  wrr 399 392 394 449 494 
 25% urr 255 233 282 451 553 
  wrr 285 273 283 328 365 
Variance Mean Full urr 15 14 14 20 26 
  wrr 15 14 14 18 22 
 50% urr 32 28 28 40 54 
  wrr 32 28 28 37 47 
 25% urr 64 57 59 83 107 
  wrr 64 58 59 76 93 

 Total Full urr 11 11 14 28 43 
  wrr 15 14 14 18 22 
 50% urr 9 9 11 23 34 
  wrr 12 11 11 16 21 
 25% urr 5 5 7 14 20 
  wrr 7 7 7 10 12 

 
3.2  Root mean square error 
 

Despite the small sample size used in the simulations (312 before nonresponse) and the relatively modest 

relative bias of the estimates for means, the bias is still a large component of the rmse. For example, the bias 



170 Flores Cervantes and Brick: Nonresponse adjustments with misspecified models in stratified designs 
 

 
Statistics Canada, Catalogue No. 12-001-X 

accounts for 56 (unweighted) to 69 (weighted) percent of the rmse for the estimate of the mean in the  YCZ  

and  RC Z  configuration using the L&V sampling rate. With larger sample sizes that are common in 

large sample surveys, the bias is often the dominant component of the rmse (Brick 2013). 

Figure 3.2 shows the rmse for the estimated total (left panel) and for the mean (right panel) using the 

same configuration used in the previous figure. The rmse for the total for the weighted estimator is 

approximately constant and smaller than the rmse for the unweighted estimator, except when the relative 

sampling rate is about 0.5 which corresponds to the region with very low bias for the unweighted estimator 

as shown in Figure 3.1. However, when the relative sampling rate is greater than one, the rmse of the 

unweighted estimator of the total is much larger than the rmse of the weighted estimator (it can be as much 

as twice the rmse of the weighted estimator for some sampling rates). In contrast, for the estimates of the 

mean shown in Figure 3.2 (right panel), the rmse of both the weighted and unweighted estimators are similar 

in magnitude, and the symmetry around the proportional allocation rate remains. Even though L&V point 

out the unweighted estimator has a lower rmse (at the relative sampling rate of 2.25), we view the rmse of 

both estimators to be approximately equal across the range of relative sampling rates.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 Root mean square error for weighted and unweighted estimator when [CZ]Y and [C+Z]R, where the 

left panel is for the total (rmse is in millions) and the right panel is for the mean. 

 
Figure 3.3 shows the rmse for the estimated 50% domain mean (left panel) and for the 25% domain mean 

(right panel) again using  YCZ  and   .RC Z  Looking at the three graphs of the rmse of the means (for 

the overall mean, the 50% domain mean, and the 25% domain mean) reveals the effect of the ratio estimator. 

As the percentage in the domain decreases from 100% to 25%, the weighted estimator becomes more like 

an unconditional ratio estimator and the correlation between the numerator and denominator reduces the 

rmse of the estimate. As a result, the rmse of the weighted and unweighted estimators are very similar for 

the domain estimators. Even though the weighted estimator has a lower rmse at each of the relative sampling 

rates compared to the unweighted one for the 25% domain mean, the two estimators are essentially 

equivalent in terms of rmse. The slight advantage of the unweighted estimator pointed out by L&V for the 

full population mean for this configuration vanishes for domain means where the weighted estimator is also 

a ratio estimator. 
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Figure 3.3 Root mean square error for weighted and unweighted estimator when [CZ]Y and [C+Z]R, where the 

left panel is for the 50% domain mean and the right panel is for the 25% domain mean. 

 
3.3  Variance 
 

A general concern about nonresponse adjustment factors is that when the factors are based on a small 

number of respondents they may increase the variance of the estimates (Kalton 1983; Tremblay 1986). L&V 

suggest weighting the nonresponse adjustment factors may be responsible for greater variance inflation than 

using the unweighted factors. The figures above show that this did not occur in this simulation. Figure 3.4 

shows the ratio of the unweighted estimator’s variance to that of the weighted estimates for the full 

population mean and total and the 50% domain total for the  YCZ  and  RC Z  configuration. For the 

mean, the variance ratio is nearly equal to one over all the relative sampling rates showing no inflation of 

variance for the weighted estimator compared to the unweighted estimator. For totals, the ratio is less than 

unity for relative sampling rates less than 1 and greater than 1 for relative sampling rates greater than unity. 

The same relationship holds true for the 50% domain total. These results suggest that weighting the 

adjustment is not the source of large factors that can inflate the variance of the estimates. A prudent approach 

is to examine the size of nonresponse factors, irrespective of whether they are weighted or unweighted. 
 

 

 

 

 

 

 

 

 

 
Figure 3.4 Ratio of variance of unweighted to weighted estimates of the mean, total and 50% domain total for 

[CZ]Y and [C+Z]R. 
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Table 3.2 gives the simulation results for another configuration,  YCZ  and   ,RCZ  that was favorable 

to the unweighted adjustment in L&V (the first row in their tables). In contrast, Table 3.3 gives simulation 

results for  YC Z  and  RC Z  which is a configuration that was favorable to the weighted adjustment. 

The results for both of these configurations show the same general patterns as discussed above for  YCZ  

and   .RC Z  

 
Table 3.2 
Bias (times 10,000), root mean square error (times 10,000) and variance of weighted and unweighted estimators 
of means and total of the full sample and domains, configuration [CZ]Y, [CZ]R with various sampling rates 
 

    Relative sampling rate 

 Characteristic Domain Adjustment 0.30 0.44 1.00 2.25 3.30 

Bias Mean Full urr 329 329 289 255 237 
  wrr 294 299 289 298 298 
 50% urr 334 341 293 251 238 
  wrr 299 311 293 294 298 
 25% urr 336 344 306 257 247 
  wrr 302 314 306 299 307 

 Total Full urr -412 -187 287 732 901 
  wrr 294 299 289 298 298 
 50% urr -209 -91 145 367 455 
  wrr 143 152 146 149 154 
 25% urr -103 -46 72 184 230 
  wrr 74 76 73 75 79 

Rmse Mean Full urr 530 507 476 501 533 
  wrr 505 487 476 520 554 
 50% urr 684 653 616 664 732 
  wrr 666 638 616 674 740 
 25% urr 911 859 832 920 1,016 
  wrr 900 849 832 920 1,011 

 Total Full urr 550 395 474 886 1,078 
  wrr 505 487 476 520 554 
 50% urr 385 326 373 575 696 
  wrr 394 375 373 425 475 
 25% urr 263 244 278 390 464 
  wrr 285 274 278 321 361 

Variance Mean Full urr 17 15 14 19 23 
  wrr 17 15 14 18 22 
 50% urr 36 31 30 38 48 
  wrr 36 31 30 37 46 
 25% urr 73 63 61 79 98 
  wrr 73 63 61 76 94 

 Total Full urr 14 12 14 25 35 
  wrr 17 15 14 18 22 
 50% urr 11 10 12 20 28 
  wrr 14 12 12 16 20 
 25% urr 6 6 7 12 16 
  wrr 8 7 7 10 13 
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Table 3.3 
Bias (times 10,000), root mean square error (times 10,000) and variance of weighted and unweighted estimators 
of means and total of the full sample and domains, configuration [C+Z]Y, [C+Z]R with various sampling rates 
 

    Relative sampling rate 

 Characteristic Domain Adjustment 0.30 0.44 1.00 2.25 3.30 

Bias Mean Full urr 763 735 654 566 529 
  wrr 665 661 654 654 652 
 50% urr 773 737 653 564 532 
  wrr 677 664 653 651 656 
 25% urr 773 739 659 574 513 
  wrr 679 668 659 660 636 

 Total Full urr -272 -8 651 1,411 1,744 
  wrr 665 661 654 654 652 
 50% urr -133 -6 326 711 875 
  wrr 336 328 328 332 328 
 25% urr -69 -2 157 359 438 
  wrr 165 166 158 168 165 

Rmse Mean Full urr 854 818 745 699 711 
  wrr 767 753 745 764 790 
 50% urr 951 901 827 816 863 
  wrr 877 845 826 863 912 
 25% urr 1,101 1,046 981 1,023 1,098 
  wrr 1,044 1,004 981 1,045 1,107 

 Total Full urr 426 313 741 1,503 1,868 
  wrr 767 753 745 764 790 
 50% urr 334 300 475 867 1,071 
  wrr 489 470 476 529 575 
 25% urr 246 240 314 530 649 
  wrr 320 316 314 372 409 

Variance Mean Full urr 15 13 13 17 23 
  wrr 15 13 13 16 20 
 50% urr 31 27 26 35 46 
  wrr 31 28 26 32 40 
 25% urr 62 56 54 73 95 
  wrr 63 57 54 67 83 

 Total Full urr 11 10 13 27 45 
  wrr 15 13 13 16 20 
 50% urr 10 9 12 25 39 
  wrr 13 12 12 17 22 
 25% urr 6 6 7 15 23 
  wrr 8 7 8 11 14 

 

3.4  Estimating population size 
 

A particular type of estimate studied by Sukasih et al. (2009) is the estimate of the number of units in a 

population. We refer to this as an estimate of population size where the population size is just an estimate 

of a total where 1iy   for all .i  It can be estimated for a domain by assigning all units outside the domain 

0.iy   In the simple stratified sample design studied here, the weighted estimator always reproduces the 

overall total population size 10,000,N   but the unweighted estimator does not. Since this situation clearly 

favors the weighted estimator, we instead examine the domain population size estimates. 

Suppose we are estimating the number of units in a domain or subgroup that have a value below a 

percentile defined by a characteristic for the total population (e.g., national median income). This type of 
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statistic is extremely important in surveys because estimates of the population size for domains are often 

key outcome statistics. For example, an estimate of this type is the total number of persons with an income 

below the poverty line or the low income line (Kovačević and Yung 1997). 

The L&V analysis did not consider estimates for domains sizes or means, so there is not an explicit 

variable that can be used to define a subpopulation. To avoid complicating this analysis, we illustrate the 

performance of the two estimators using an artificial domain created by randomly selecting half of the 

population (i.e., 50% domain). Similar to the analysis in previous sections we computed weighted and 

unweighted totals and means for the 50% domain. Even though we know the size for this domain beforehand 

for this example (i.e., 50 percent of the total population), the analysis is still valid. In practice, the domain 

size would not be known. 

When estimating a statistic such as the population size in a domain, both the weighted and unweighted 

estimators of domain population size are unbiased when the data are MCAR or MAR, as noted by Sukasih 

et al. (2009). Furthermore, the rmse errors of the weighted and unweighted estimators are approximately 

equal in this case as confirmed in the simulations. 

When the data are not MAR, the situation may be very different. The weighted estimator of a domain 

population size is approximately unbiased for all relative sampling rates and all configurations, but the 

unweighted estimator is always biased except when it is identical to the weighted estimator (at a relative 

sampling rate of 1). As a consequence the rmse of the unweighted estimator for the domain size is often 

considerably greater than that of the weighted estimator. Figure 3.5 shows that the rmse of the unweighted 

estimator of the 50% domain size for  YCZ  and  RC Z  is substantially greater than that of the weighted 

estimator for most relative sampling rates (as much as twice the rmse of the weighted estimator). The only 

exception is when the two estimators are approximately equal (near proportional allocation). 

The weighted estimator of domain sizes thus has a substantial advantage over the unweighted estimator 

for all of the missing data mechanisms in L&V that are not MCAR or MAR. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 Root mean square error (rmse) for 50% domain size weighted and unweighted estimators when 

[CZ]Y and [C+Z]R. 
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4  Conclusions 
 

Nearly every survey suffers from nonresponse so the method for adjusting the base weights for unit 

nonresponse is an important topic. L&V appropriately noted that using design weights to compute a 

weighted nonresponse adjustment does not eliminate nonresponse bias when the response mechanism is not 

specified correctly in the weighting adjustment model. However, their simulation study suggested to at least 

some researchers that an unweighted adjustment might be more appropriate than a weighted adjustment 

more generally. The results from our evaluation, using the same setting as in L&V, contradict this 

perception. We explored the differences between the unweighted and weighted estimators when the 

adjustment model is misspecified in more detail using the L&V setting by including different sampling rates 

and estimates of totals and domains in addition to the means discussed in L&V. 

These expanded simulations show that the unweighted and weighted adjustments do have different 

properties. The bias of the weighted estimator of totals means in stratified simple random sample designs is 

approximately constant irrespective of the sampling rate but the bias of the unweighted estimator depends 

on the sampling rate. In contrast, the bias of the unweighted estimator of the total is substantially larger than 

that of the weighted estimator for some sampling rates. For means, the bias and the rmse of the two 

estimators are not very different including those configurations that L&V described as favoring the 

unweighted estimator. The same general conclusions hold for estimates of domain means and totals as the 

weighted mean becomes more of a ratio estimate for domains and this influences its behavior somewhat. 

We also looked at estimating domain sizes. With this type of statistic, the rmse of the weighted estimator 

is almost uniformly lower than the rmse of the unweighted estimator when the data are not MAR in the 

simulation settings. The differences are due to the bias in the unweighted estimator of the domain size, and 

this bias causes the unweighted estimator to have a substantially greater rmse compared to the weighted 

estimator for some sampling rates. 

Imperfect models are used in most surveys so the nonresponse adjustment method is important. The 

expanded simulation findings we present show the weighted adjustment has substantial advantages for some 

estimates and for some sampling rates when compared to the unweighted adjustment. In particular, any 

survey with this design that produces estimates of totals and statistics other than just means appears to 

benefit by weighting the adjustment. Of course, weighting the adjustment does not remove bias; weighting 

does diminish the magnitude of the bias in many situations and for many of the estimators we examined. 

The bias of the weighted estimator also is not sensitive to the relative sampling rate, but the bias of the 

unweighted estimator is sensitive. The potential disadvantage of an increase in the variance of the estimate 

using the weighted adjustment did not arise in these simulations, and can be avoided by inspecting the 

adjustment factors, as should also be done with an unweighted adjustment. Finally, the results of this study 

highlight the potential problem of generalizing from simulations. Although simulations are valuable to 

demonstrate a specific point, generalizing simulation findings more broadly can be misleading especially 

when the findings are highly dependent on the conditions of the model being simulated.  
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