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A comparison between nonparametric estimators for finite
population distribution functions

Leo Pasquazzi and Lucio de Capitani?

Abstract

In this work we compare nonparametric estimators for finite population distribution functions based on two types
of fitted values: the fitted values from the well-known Kuo estimator and a modified version of them, which
incorporates a nonparametric estimate for the mean regression function. For each type of fitted values we consider
the corresponding model-based estimator and, after incorporating design weights, the corresponding generalized
difference estimator. We show under fairly general conditions that the leading term in the model mean square
error is not affected by the modification of the fitted values, even though it slows down the convergence rate for
the model bias. Second order terms of the model mean square errors are difficult to obtain and will not be derived
in the present paper. It remains thus an open question whether the modified fitted values bring about some benefit
from the model-based perspective. We discuss also design-based properties of the estimators and propose a
variance estimator for the generalized difference estimator based on the modified fitted values. Finally, we
perform a simulation study. The simulation results suggest that the modified fitted values lead to a considerable
reduction of the design mean square error if the sample size is small.

Key Words:  Finite population sampling; Distribution function estimator; Fitted values; Kuo estimator.

1 Introduction

Since Chambers and Dunstan’s seminal paper Chambers and Dunstan (1986), several estimators for
finite population distribution functions have been proposed. Most of them are based either on different types
of fitted values or on different ways to combine them into an estimator. The estimator proposed by Chambers
and Dunstan (1986), for example, is based on fitted values derived from a superpopulation model where the
study variable and an auxiliary variable are linked by a linear regression model with independent error
components whose variances are assumed to be known. Substituting the fitted values to the unobserved
indicator functions in the definition of the population distribution function of the study variable yields the
Chambers and Dunstan estimator. Rao, Kovar and Mantel (1990) incorporate design weights into the fitted
values of Chambers and Dunstan and use them in a generalized difference estimator. Kuo (1988) uses
nonparametric regression to estimate directly the regression relationship between the indicator functions
and the auxiliary variable and obtains fitted values that accommodate virtually any superpopolation model.
Like Chambers and Dunstan, she substitutes the unobserved indicator functions with their corresponding
fitted values and obtains a model-based estimator. Chambers, Dorfman and Wehrly (1993) combine the
fitted values of Chambers and Dunstan (1986) and of Kuo (1988) and propose still another model-based
estimator that aims to be more efficient than the Kuo estimator if the linear superpopulation model assumed
by Chambers and Dunstan is true, and that does not suffer from model misspecification bias otherwise.
Following these early works there has been quite a large number of subsequent proposals with the aim to
achieve some gain in efficiency with respect to the Horvitz-Thompson estimator, while preserving
robustness and sometimes also one or both of the following desirable properties shared by the Horvitz-
Thompson estimator: (i) the fact that it is a linear combination of the sample indicator functions with
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lucio.decapitanil@unimib.it.
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coefficients that do not depend on the study variable and (ii) the fact that it gives always rise to
nondecreasing estimates for the distribution function.

The present work originates from the idea to improve upon the fitted values proposed by Kuo (1988)
through incorporation of an estimate for the mean regression function (see Section 2). This idea has been
put forward in a recent textbook of Chambers and Clark (2012) and it is based on the assumption of an
underlying superpopulation model with smooth regression relationship between the study variable and an
auxiliary variable and with smoothly varying error component distributions. According to this idea, the
fitted values are the outcome of a two-step procedure: at the first step the mean regression function is
estimated through either parametric or nonparametric regression, and at the second step, using the regression
residuals from the first step, the distribution functions of the error components are estimated using
nonparametric regression in order to accommodate the possibility of smoothly varying error component
distributions. Combining both estimates one may compute fitted values for the indicator functions in the
definition of the finite population distribution function of the study variable. Chambers and Clark (2012)
analyze the model-based estimator that is obtained by substituting the unobserved indicator functions by
their corresponding fitted values and they sketch a proof that leads to an expression for the model variance
of the resulting estimator. In that proof they assume that the mean regression function is estimated by a
consistent estimator and that the contribution from its estimation error to the model variance of the final
distribution function estimator can be neglected. In the present work we consider local linear regression for
estimating both the model mean regression function and the error component distributions. We provide
asymptotic expansions for the model bias and the model variance of the resulting estimator and compare
them with those corresponding to the Kuo estimator based on local linear regression. It turns out that the
leading terms in the model variances are the same and that, for appropriately chosen bandwidth sequences,
the squared model bias of both estimators goes to zero faster than the model variance. To establish which
estimator is asymptotically more efficient from the model-based perspective thus requires knowledge of the
second order terms of the model variances. The latter however depend on more specific assumptions than
those considered in the present work and, at least for the estimator based on the modified fitted values, it
seems no easy task to determine the second order terms of the model variances. Which estimator is more
efficient from the model-based perspective remains thus an open question.

In addition to the above model-based estimators, we analyze also the generalized difference estimators
based on both types of fitted values in their design weighted versions. The results in Section 3 show that the
convergence rates of their model biases and their model variances are the same as those of their model-
based counterparts. As for design-based properties, they are discussed to some extent in Section 4 along
with the issue of variance estimation. It would of course be of interest to derive and compare asymptotic
expansions for the design biases and the design variances. Breidt and Opsomer (2000) derive under mild
conditions a general expression for the first order term in the design mean square error of local polynomial
regression estimators, of which the generalized difference estimator based on the fitted values of Kuo is a
special case. The generalized difference estimator based on the modified fitted values does however not fall
into this class. In line with Sarndal, Swensson and Wretman (1992), we conjecture that under broad
conditions the first order term of its design mean square error is the same as the one of the generalized
difference estimator based on the fitted values of Kuo. Formal proofs could perhaps be obtained by adapting
and extending some of the results in Wang and Opsomer (2011). To test this conjecture and to compare the
performance of the generalized difference and the model-based estimators in various settings, we performed
a simulation study whose results are presented in Section 5.
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2 Definition of the estimators

Let (y;,X;) denote the values taken on by a study variable Y and an auxiliary variable X onunit i of
a finite population U :={1,2,...,N}. Suppose that

Yi =m(x)+&, eV, (2.1)

where m(x) is a smooth function and where the &,’s are independent zero mean random variables whose
distribution functions P (g <¢)=G(&|x;) depend smoothly on x;. Let scU be a sample chosen from
the population U according to some sample design. As usual in the context of complete auxiliary
information we assume that the x; — values are known for all population units, while the y, —values are
observed only for the population units which belong to the sample s.

To estimate the unknown population distribution function
1
FN (t) = NZ I (yi = t)'
ieU
Kuo (1988) proposes the estimator given by

A 1

F(t):zN[Zl(yj <)+ > w I (y, st)} (2.2)
jes igs jes

where in place of w; ; she suggests to use either the local constant regression weights

X: — X
K|l !
)

W. .

kes

with some (integrable) kernel function in place of K (u) and 4 >0, or the nearest k neighbor weights

{1/k, if x; is one of the k nearest neighbors to x;
W=

0, otherwise.

Note that in the definition F (t),
G, (t):=> w1 (y, <t) (2.3)
jes
is used as the fitted value in place of the unobserved indicator function | (y, <t) for igs.

Following an idea put forward in the textbook of Chambers and Clark (2012), we shall analyze an
estimator for F, (t) based on alternative fitted values which incorporate a nonparametric estimate for the
mean regression function m(x). The fitted values in question are given by

G (t):=Y w Iy, -, <t—m) (2.4)

jes

where
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M= D WY,

kes

is a nonparametric estimator for m(x) at x = x;, and the resulting estimator for F (t) is given by

E 0= [0, 29+ TZw1 (0, -, <t @5)

jes igs jes

The fitted values in (2.3) and (2.4), or appropriately modified versions of them which include sample
inclusion probabilities in the regression weights w; ;, can obviously be computed also for i € s, and they
can be employed for example in generalized difference estimators (Sarndal et al. 1992, page 221) or in
model calibrated estimators (see for example Wu and Sitter 2001; Chen and Wu 2002; Wu 2003; Montanari
and Ranalli 2005; Rueda, Martinez, Martinez and Arcos 2007; Rueda, Sanchez-Borrego, Arcos and
Martinez 2010). In addition to the model-based estimators in (2.2) and (2.5), we shall thus consider also the
generalized difference estimators given by

F(t):=— [ZZW”( t)]+27ril(l(yist)—ZWi’jl(ijt)J

ieU jes ies jes

E ()= = [ZZW'J( mjgt_mi)}rzﬁil(l(yist)—Zwi'jl(yj—mjst—mi)J

ieU jes ies jes
where 7; denotes the first order sample inclusion probabilities, W, ; denotes design weighted regression
weights whose definition is given below, and m,:=>" w,,y,. Note that F(t) and F’(t) are based on
design weighted counterparts of the fitted values G, (t) and G, (t) which are given by
G ():=> w I(y; <t)
jes

and

G/ (6):= 2wl (y, - m; <t-m),

jes
respectively.

As for the regression weights w, ; and W, ;, in the present work we consider local linear regression

weights in their place. In what follows w, ; and W, ; are thus defined by

—1K(X‘;XJ) Mo (4) - ( les(X)

) Mz,s(xi)Mo,Axi)—Mfs (%)

A
. 1 X, )(J 25(X) ( les(X)
b '_ﬂjn/l ( A JMz,s(xi)MO,s(Xi)_Mlz,s(xi),

and

where n is the number of units in the sample s,
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w1 X=X\ X=X\ _
Mr,s(x).—zMK( 2 j( 7 j r=0.1,2,

kes

and

ML=y K(X;ij[x_lxkjr, r=0,1,2.

kes ﬂ-knﬂ’

It is worth noting that the nonparametric estimators of this section are not well-defined if the regression
weights w, ; and W, ; included in their definitions are not well-defined. This problem occurs for example
when the support of the kernel function K (u) is given by the interval [-1,1] (e.g., uniform Kkernel,
Epanechnikov kernel), and when there are not at least two j € s such that \ X; — X; \ < A. To overcome this
problem one can use a kernel function whose support is given by the whole real line (e.g., Gaussian kernel)
or choose the bandwidth adaptively. The latter solution may also lead to more efficient estimators (see e.g.,
Fan and Gijbels 1992). With reference to the estimators F'(t) and F’(t) based on the modified fitted
values, it is moreover worth noting that one could in principle apply different bandwidths and/or regression
weights to the y;, — values and to the indicator functions. For the sake of simplicity, in the present work we
shall consider neither adaptive bandwidth selection nor the possibility of different regression weights to
estimate the mean regression function and the distributions of the error components.

Comparing the definitions of the estimators based on the two types of fitted values, it becomes
immediately obvious that F (t) and F (t) are easier to compute since they are linear combinations of the
observed indicator functions | (yj < t). The coefficients of these linear combinations do not depend on the
study variable Y and they can therefore be used to estimate averages of other functions than indicator
functions, or of functions of several study variables, in particular when there are reasons to believe that the
latter are related to the auxiliary variable X. This fact is of particular value to practitioners who want
estimates related to several study variables to be consistent with one another. However, there is a strong
argument in favor of the estimators F"(t) and F’(t) based on the modified fitted values too: if y, = a + bx,
for all i eU, then it follows that F’(t)=F’(t) = F, (t) for every sample s such that the estimators are
well-defined. One would therefore expect that F"(t) and F’(t) be more efficient than F (t) and F (t) when
there is a strong regression relationship between Y and X.

3 Model-based properties

In this section we provide asymptotic expansions for the model bias and the model variance of the
estimators introduced in the previous section. The expansions are based on the following assumptions:

(C1) N — oo and the sequence of population x; —values and of sample designs are such that

1
HN,S(X)::HZI (X, < X)
and
1
N—n

D (% <X)

igs

Hys ()=
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converge to absolutely continuous distribution functions H,(x):= _[:hs (z)dz and
H, (x):= _[:h§ (z)dz, respectively. The support of H, (x) and H, (x) is given by a bounded
interval [a,b] and the density functions h, (x) and h (x) have bounded first derivatives for
X € (a,b). h,(x) is bounded away from zero.

(C2) The kernel function K (u) is symmetric, has support on [-1,1] and has bounded derivative
for ue(-1,1). The bandwidth sequence 1 goes to zero slow enough to make sure that

= max{sup Hy o (X)=H (X)], sup |H ¢ (x)- Hg(x)}
xe[a,b] xe[a,b]
is of order o(4).

(C3) The population y; — values are generated from model (2.1). The function m(x) is such that

<Clx—x,|**

100 ~Mk) 0 (0) (K2~ " (1) (-,

for some & >0, and the family of error component distribution functions G (¢x) is such that
G (&]X) =G (&%) - G*? (col%p) (6= &5) = GO (&0l%p) (X =X,)

_;(G(Z’O) (50‘)(0)(5_‘90)2 +2G%Y (€ol%y) (e — &) (X~ Xo)"'G(O’Z) (&ol%y) (X — Xo)z)

2+8

sC(\g—go\ +\x-x0\2+"‘)

for some C >0 and some S >0, where

G (e1x):= 076 (¢]x)/(96"0x") for 1,5=01,2,

Assumption (C1) poses a restriction on how the sample and nonsample Xx; —values are generated.
Together with assumption (C2) it makes sure that the estimation errors of the kernel density estimators for
h, (x) and hg(x) go to zero uniformly for x e[a+4,b— 4] and that they are uniformly bounded for
x €[a,b]. Replacing (C1) by more specific assumptions may allow for relaxing (C2) and for improving the
uniform convergence rate for the estimation error of the kernel density estimators (see for example the
results in Hansen 2008). Assumption (C3) is finally needed to make sure that the model mean square errors
of the two estimators converge to zero. It can be relaxed at the cost of slowing down the convergence rates.
In addition to assumptions (C1) to (C3) we shall also need the following assumption (C4) to make sure that
the model mean square errors of the generalized difference estimators go to zero:

(C4) The first order sample inclusion probabilities are given by

* X .
. :=n7”( ) ey,

o 2E()

jeU
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where n” is the expected sample size and = (x) is a function which is bounded away from
zero and has bounded first derivative for x € (a,b).

Proposition 1. Under assumptions (C1) to (C3) it follows that:

N-n s
N 24,

E(F()-F, (1) =2 [°[6%2 (t=m( ) (m ()" ~ 6% (t—m(x) x)m"(x)
= 2G* (t=m(x)[x)m’(x)+ G *? (t —m(x)|x)]h, (x)dx +0(2?)

and

var(lf (t)—Fy (1) 1(N,\I n) I:[G (t—m(x)[x)=G*(t—m(x)|x)][hs (x) /h, () ]h, (x)dx

n

* Nl_n(N,\Injz J.:[G(t_m(x)\x)—Gz(t—m(X)\X)]hg (x)dx+o(n™),

where 4, := .[:llK (u)u'du for r=0,1,2.
Adding assumption (C4) it can be shown that

N-n s

N 24, [7[6% (¢ -m(x) x) (' (x))° -G (t~m(x)|x)m" (x)

E(F(t)-F, (1) =42
=2G" (t=m(x)[x)m’(x) +G? (t—m(x)|x) ]h (x)dx +0(2?),
where
h(x):=h, () +(1-77 (x))h, (%),
and it can be shown that

var (F (t)— F,, (1)) = var (F (t) - F (t))+0(n™).

Proposition 2. Under assumptions (C1) to (C3) and assuming that

i) the function

o’ (x):= Jigsz(g\x)

has bounded first derivative for x € (a,b)

sup _[w £'dG (g]x) < o,
] —o0

xela,b

it can be shown that
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E(F(1)-Fy (1) =42 N””ZJGM(t m(x)|x)h, (x)dx

b 1 N-nlK(0)-«

ni N Ho
K—0 b
+ 2

jG<1°>(t m(x)|x)(t—m(x))h;* (x)h, (x)dx

@9 (t —m(x)|x)o? (x)h;* (x) hg (x)dx} +0(4% +(n2)™),

where « := _[_11K2 (u)du and @:= _[_11K (v)j_llK(u +V)K (u)dudv, and it can be shown that
var (F'(t)— Fy (1)) = var(F (t) - Fy (1)) +o(n™" + 2%).
Adding assumption (C4) it can also be shown that

E(F (1)-Fy (1) =42 N”“Zj G (t —m(x)|x)h(x)dx

+nlﬂNl\In|:K(i)l)o_KI:G(l,0) (t—m(X)‘X)(t—m(X))hgl(X)h(x)dx

57 _QHIbG(“’) (t—=m(x)[x)o” (x)h;* (X)h(X)dX}
Hy "2
+0(4*+(n4)7)
and that

var (F(t) - Fy () = var (F (t) - F,, () +o(n* + 2°).

The proofs of the Propositions are given in the Appendix. Dorfman and Hall (1993) derived similar
expansions for the Kuo estimator with local constant regression weights instead of local linear ones.

Note that in view of the asymptotic expansions it is possible to choose bandwidth sequences A in such
a way as to make sure that the squares of the model biases are of smaller order of magnitude than the
corresponding model variances. For the estimators based on the fitted values of Kuo this is achieved
whenever A = o(n‘l/“), while for the estimators with the modified fitted values this requires that 4 goes
to zero faster than O(n™*) and slower than O(n"¥?). The convergence rates for the model biases of the
latter estimators are optimized when A = O(n‘l/ 3) and in this case the resulting model biases are both of
order O(n’z/ 3). The model biases for the estimators based on the fitted values of Kuo can be made to
converge much faster, depending on the sequences H  (x) and H  (x) and on the bandwidth
sequence A.

Given the above considerations concerning the model biases and given the fact that the leading terms in
the model variances are the same for both types of fitted values, it would be of interest to know the second
order terms in the model variances in order to establish which estimator is more efficient from the
model-based perspective. The proofs in the Appendix suggest however that the second order terms depend
on more specific assumptions than (C1) to (C3) and that, in particular for the estimators based on the
modified fitted values, they are difficult to determine.
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4 Design-based properties

In the previous section we have shown that the model-based estimators F(t) and F'(t) are
asymptotically model-unbiased and model mean square error consistent. However, they are not design-
unbiased in general and therefore they should not be used when the sample inclusion probabilities are not
constant. In these cases the generalized difference estimators F (t) and F(t) should be used. In fact, it
follows from the results in Breidt and Opsomer (2000) that under fairly general conditions F(t) is
asymptotically design-unbiased and that its design mean square error is given by

E (F®)-F,(®F)= N2ZLZiﬁj[l(yist)—Gi(t)][l(yjSt)—Gj(t)]+o(n’l),

i,jeU ﬂ.i j

where E, (-) denotes expectation with respect to the sample design, 7, ; denotes the joint sample inclusion
probability for units i and j (it is understood that 7, = ﬁi), and where

G ():=> w, I(y, <t).

jeu

The regression weights w
by

., in the definition of G, (t) refer to the whole finite population U and are given

ML (%) 1s (%)
W ::1K[Xi AXjJMZS ();.)ME,S(X.)J"\\"A&(:)'

where

. 1 - -x )
Mr,s(X)i:ZK(X ij(x ij, r=0,1,2.
AN 2 2

Moreover, according to Breidt and Opsomer (2000),

VE®)= X 1y, <0-6,0]0 (v, <0 -6, (0]

i,jes IJIJ

is a consistent estimator for the design mean square error of F (t).

Unfortunately the results in Breidt and Opsomer (2000) cannot be applied to the generalized difference
estimator F (t) as well, since the latter estimator does not fall into the class of local polynomial regression
estimators due to the presence of the regression function estimators m, and m; inside the indicator functions
in the fitted values G, (t). However, the results for F (t) suggest that in large samples G (t) and

G/ ()= 2w, 1 (y, ~my <t-m,)

jeu
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where m, := Z o Wi iy, are approximately the same, and that

e, (F - F 0F)= 0 X 1y, <06 01 (v, <) - 6; 0] +o(n )

i,jeU i’"j
Based on this conjecture, we tested

v(ﬁ*(t)):ziz

Z % J[l(y,<t) G ®)][1(y; <t)-G;(1)].

'J'J

as estimator for the design mean square error of the generalized difference estimator F’(t) in the simulation
study of the following section.

5 Simulation study

In this section we analyze some simulation results. Our goal is to compare efficiency with respect to the
sample design of the distribution function estimators introduced in Section 2 and of the variance estimators
of Section 4. The simulation results refer to simple random without replacement sampling and to Poisson
sampling with unequal inclusion probabilities. As a benchmark, we included also the Horvitz-Thompson
distribution function estimator

and the corresponding variance estimator

V(F,(1):= sz "I(y,<t)|( <t)

i,jes Ijlj

in the simulation study.

We considered both artificial and real populations. The former were obtained by generating N =1,000
values x; from i.i.d. uniform random variables with support on the interval (0,1) and by combining them
with three types of regression function m(x) and two types of error components &,. The regression
functions are (i) m(x)=0 (flat), (ii) m(x)=10x (linear) and (iii) m(x) =10x"* (concave), while the error
components ¢&; are either independent realizations from a unique Student t distribution with v =5 d.o.f.,
or independent realizations from N different shifted noncentral Student t distributions with v =5 d.o.f.
and with noncentrality parameters given by x =15x;. The shifts applied to the error components in the
latter case make sure that the means of the noncentral Student t distributions from which they were
generated are zero. The artificial populations are shown in Figure 5.1 to 5.3. As for the real populations, we
took the MU 284 Population of Sweden Municipalities of Sarndal et al. (1992) (population size N =284)
and considered the natural logarithm of RMT 85 = Revenues from the 1985 municipal taxation (in millions
of kronor) as study variable Y, and the natural logarithm of either P85 =1985 population (in thousands)
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or REV 84 = Real estate values according to 1984 assessment (in millions of kronor) as auxiliary variable
X. The real populations are shown in Figure 5.4.

ol
-

00 02 04 06 08 10

Figure 5.1 Populations generated from vy, = ¢;, where ¢, ~i.i.d. Student t with v =5 (left panel) and ¢, ~
indep. noncentral Student t with v =5 and g =15x; (right panel).

Figure 5.2 Populations generated from y, =10x,; + &, where g, ~i.i.d. Student t with v =5 (left panel) and
& ~indep. noncentral Student t with v =5 and g =15x; (right panel).

Figure 5.3 Populations generated from vy, = 10xi1/4 +¢&,, where g ~i.i.d. Student t with v =5 (left panel) and
g, ~indep. noncentral Student t with v =5 and x4 =15x; (right panel).

Statistics Canada, Catalogue No. 12-001-X
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Figure 5.4 MU284 Population of Sweden Municipalities of Sarndal et al (1992). y, = InRMT 85, for the i"
municipality, and x, =InP85, (left panel) or x; = InREV 84, (right panel).

From each population we selected independently B =1,000 samples. When sampling from the artificial
populations we set the sample size equal to n =100 in case of simple random without replacement sampling
and, in case of Poisson sampling, we set the expected sample size equal to n” =100 and made the sample
inclusion probabilities proportional to the standard deviations of the shifted noncentral Student t
distributions of above. When sampling from the real populations, we set the sample size equal to n =30 in
case of simple random without replacement sampling. In case of Poisson sampling, we set the expected
sample size equal to n” = 30 and made the sample inclusion probabilities proportional to the absolute values
of the residuals from the linear least squares regressions of the population y; values on the population x;
values.

As for the definition of the nonparametric estimators, we used the Epanechnikov kernel function
K(u):= 0.75(1— u2) with 4 =0.15 or 4 =0.3 for the samples taken from the artificial populations, and
the Gaussian kernel function K (u):=1/~27e ¥?" with 1 =1 or A2 =2 for the samples taken from the
real populations. In the tables with the simulation results the nonparametric estimators corresponding to the
small and large bandwidth values are identified with an s (small) or an | (large) in the subscript. We
resorted to the Gaussian kernel function for the samples taken from the real populations to avoid singularity
problems that occur in case of holes in the sampled set of x; —values. Such holes are much more likely to
occur with the real populations than with the artificial ones, because the distributions of the auxiliary
variables are asymmetric in the former. In fact, in the artificial populations the nonparametric estimators
were well-defined for all the B =1,000 samples selected according to the simple random without
replacement sampling design. For the Poisson sampling design, on the other hand, 47 among the B =1,000
simulated samples were such that the nonparametric estimators with the small bandwidth value could not
be computed and just one of these samples was such that the nonparametric estimators with the large
bandwidth value were undefined. The simulation results referring to the nonparametric estimators in
Tables 5.2 and 5.5 account only for the samples where they were well-defined and thus they are based on a
little less than B =1,000 realizations.

Tables 5.1 to 5.4 report the simulated bias (BIAS) and the simulated root mean square error (RMSE) for
each distribution function estimator at different levels of t at which F, (t) has been estimated: based, for
example, on the values F, (t), b=1,2,...,B, taken on by the estimator F (t),
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BIAS:= éZB:(Ifb (t)— Fy (1)) x10,000

b=1

and

RMSE := \/éi(ﬁb (t)— Fy (1))° x10,000.

The RMSE’s show that the estimators based on the modified fitted values are usually more efficient. In
sampling from the real populations the gain in RMSE is sometimes quite large. As expected, the model-
based estimators tend to be more efficient than the generalized difference estimators in case of simple
random without replacement sampling when both types of estimator are approximately unbiased. Under the
Poisson sampling scheme the BIAS of the model-based estimators increases, but nonetheless they remain
competitive. More variability in the sample inclusion probabilities would certainly change this outcome,
because it would increase the BIAS of the model-based estimators. The simulation results should therefore
not be seen to be in contrast with Johnson, Breidt and Opsomer (2008) who argue in favor of generalized
difference estimators (called model-assisted estimators in their paper) as “a good overall choice for
distribution function estimators”.

Table 5.1
Avrtificial populations (population size N =1,000). BIAS and RMSE of distribution function estimators under
simple random without replacement sampling. Sample size n =100

t=F"(0.05) t=Fg'(0.25) t=F;*(0.50) t=F7"(0.75) t=Fg'(0.95)
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
Y; = &, With g ~ i.i.d. central Student t with v=5
F (1) 6 216 -3 433 31 512 23 434 12 207
F (1) 15 219 10 430 0 502 -10 429 3 213
F(t) 6 209 -30 411 22 484 22 414 3 200
B (t) 15 214 -9 409 10 477 1 407 -10 207
= (1) 6 213 8 425 24 504 -4 430 8 207
F (1) 6 210 10 417 22 494 -8 422 6 206
= (1) 8 213 9 426 25 503 -5 432 5 206
F () 7 210 10 417 23 494 -6 424 4 206
= (1) 7 208 11 411 19 489 5 417 6 200
y; = &, with g ~ indep. noncentral Student t with v =5 and x =15x,
F, (1) 26 225 33 376 8 477 26 419 33 209
F () 52 236 23 374 5 475 38 421 29 213
F(t) 20 195 -29 351 -89 471 11 407 30 202
B (t) 36 201 -11 357 -94 473 28 410 21 204
= (1) 8 211 11 370 -7 473 4 415 16 211
F (1) 5 208 8 367 5 468 5 411 16 212
= () 11 210 11 372 -11 475 4 416 15 210
F ) 7 208 11 368 -7 468 8 412 15 211
= () 1 211 1 391 -6 477 8 399 18 210
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Table 5.1 (continued)
Avrtificial populations (population size N =1,000). BIAS and RMSE of distribution function estimators under

simple random without replacement sampling. Sample size n =100

t=F*(0.05) t=Fg'(0.25) t=F;*(0.50) t=Fg"(0.75) t=Fg'(0.95)
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
y; =10x, +¢;, with g ~ i.i.d. Student t with v=5
F (1) 32 201 25 275 13 250 -14 264 -36 217
F (t) 114 250 152 304 12 236 -180 312 -86 242
F(t) -50 165 12 226 51 216 26 230 13 172
F (0 -46 155 -14 199 69 195 23 211 17 156
= (1) 5 186 275 15 248 1 269 -2 201
F (t) -5 184 274 17 250 5 269 -2 196
F (1) -10 180 275 16 245 14 266 -1 200
Fr(t) -9 176 272 15 242 13 262 -1 194
= (Y -7 203 14 413 37 472 17 405 1 206
y; =10x, +¢;, with g ~ indep. noncentral Student t with v =5 and u =15x,
F, (1) 24 204 23 351 27 403 26 382 29 208
F (1) 94 242 135 372 51 392 13 380 15 212
F(t) 55 182 -9 301 -18 368 -23 359 37 202
B (t) 124 210 -31 278 -63 363 -8 356 48 200
= (1) 2 194 -4 349 1 401 18 377 13 208
F (1) -2 190 -5 345 12 398 17 374 11 209
= () 0 191 5 352 14 401 20 376 13 207
F ) -1 189 -6 344 13 397 18 375 12 209
E (1) -4 205 -5 401 21 470 24 401 14 207
y, =10xY* +&,, with & ~ i.i.d. Student t with v=5
F, (t) 81 207 44 316 17 384 -2 376 23 203
F (1) 138 258 183 356 35 367 -50 374 8 208
F.(t) 7 146 -14 274 16 352 -8 358 15 197
B (t) 9 144 10 246 -2 323 -18 339 24 186
= (1) 3 175 319 10 383 17 374 10 203
F (1) 0 178 316 11 380 17 370 202
F. (1) 1 167 320 12 383 17 374 203
F ) -1 164 316 13 379 20 368 201
= () 4 209 11 412 25 477 27 422 10 200
y, =10x¥* + &, with & ~ indep. noncentral Student t with v =5 and u = 15X,

F, (1) 59 234 95 402 66 455 51 395 26 208
F (1) 94 259 190 441 147 467 98 400 16 212
F (1) 30 184 33 343 -123 435 -34 385 40 203
F (0 57 201 58 331 -148 437 2 382 34 203
= (1) 1 205 386 12 449 17 392 13 208
F(t) -1 204 385 9 445 20 389 11 209
F (1) 3 201 389 7 449 13 392 14 207
F (1) 198 383 9 446 19 390 13 208
= (1) 205 -2 399 9 463 25 398 14 208
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Table 5.2

Avrtificial populations (population size N =1,000). BIAS and RMSE of distribution function estimators under
Poisson sampling with sample inclusion probabilities z, proportional to the standard deviations of the
noncentral Student t distributions with v =5 d.o.f. and with noncentrality parameters x4 =15x;. Expected
sample size n* =100

t=F;'(0.05) t=F'(0.25) t=Fy'(0.50) t=F;'(0.75) t=F'(0.95)
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
y, =&, with & ~ i.i.d. central Student t with v=5
F, (1) -10 252 -11 593 -22 738 -20 743 6 357
F (1) -1 237 9 543 -15 621 -5 590 1 302
F () 22 244 -29 485 -3 555 9 515 -17 297
If,* (t) 14 238 -10 492 -5 564 14 524 -1 283
E (1) 6 247 0 579 -27 724 -40 736 3 349
F (1) -2 231 11 526 -1 598 -10 566 7 285
F (1) 23 248 23 505 -4 562 -27 531 -20 304
F (1) 12 240 20 504 1 573 -13 538 -6 287
= (Y -6 220 -7 543 -37 741 -44 929 -48 1,058
y; = &, With g ~ indep. noncentral Student t with v =5 and x =15x,
F (b) 17 164 30 411 4 749 14 590 15 190
F (1) 47 173 19 383 -1 602 57 498 15 187
F. (1) 21 175 -7 378 -89 554 -11 473 192
B (t) 29 152 -3 367 -99 555 27 481 184
= (1) 1 159 10 406 -11 737 -5 579 -2 194
F (1) 1 158 9 388 -5 586 14 482 -1 192
=T () 14 186 27 409 -3 562 -17 487 -10 200
F () 3 160 22 399 -11 566 -5 482 -2 193
= (Y -3 162 -7 451 -31 738 -29 980 -55 1,067
y; =10x, +¢;, with g ~ i.i.d. Student t with v=5
F, (1) 8 461 21 561 -12 259 -18 218 -30 164
IfI (t) 78 429 183 451 2 248 -161 261 -79 189
F (1) -69 306 12 340 10 267 15 199 6 143
F(t) -59 294 302 56 205 15 172 17 124
F. (1) -25 441 560 -10 257 219 153
F (1) -14 372 35 410 -10 262 219 151
=T () -31 333 2 386 -29 294 227 -1 161
F ) -20 339 15 372 -10 259 11 215 4 151
= (t) -15 385 3 746 -37 917 -35 1,004 -48 1,070
y, =10x; + &, with & ~ indep. noncentral Student t with v =5 and x =15X;

F, (t) -4 516 30 671 7 453 11 344 6 182
F () 63 409 129 539 61 421 9 341 1 180
F.(t) 44 300 -29 433 -45 422 -47 345 12 180
F(t) 107 314 -41 420 -60 397 -22 323 31 171
F. (1) -27 502 8 667 -8 450 0 344 -8 185
F (1) -10 364 16 510 11 425 -2 345 -7 182
F. (1) -6 325 -9 479 -25 447 -14 356 -10 187
F ) -7 332 -9 489 -5 426 -3 344 -6 182
= (1) -16 349 -2 705 21 886 -42 1,013 -61 1,069
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Table 5.2 (continued)
Avrtificial populations (population size N =1,000). BIAS and RMSE of distribution function estimators under
Poisson sampling with sample inclusion probabilities z, proportional to the standard deviations of the
noncentral Student t distributions with v =5 d.o.f. and with noncentrality parameters x4 =15x;. Expected
sample size n* =100

t = F;'(0.05) t=F;'(0.25) t=Fy'(0.50) t=F;'(0.75) t=F;'(0.95)
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
y, =10x"* + &, with & ~ i.i.d. Student t with v=5
F. (1) 36 497 47 629 9 418 -11 320 15 191
F (1) 56 393 186 490 43 383 -48 308 13 184
F () -29 276 -19 383 -18 380 -43 335 -1 204
B () -29 274 10 355 7 336 -29 290 23 179
E (1) -30 475 12 630 4 421 7 317 6 191
F (1) -42 336 31 452 11 390 8 312 8 186
F (1) -31 306 5 429 -18 406 -14 344 -8 210
F (1) -28 308 14 424 7 387 5 315 7 191
= () -15 380 10 739 -23 891 -37 993 -47 1,064
y, =10x* + &, with & ~ indep. noncentral Student t with v=5 and u =15x,
F. (1) 24 308 69 687 53 690 38 406 2 188
F (1) 47 301 131 553 139 561 91 393 -2 186
F. (1) 15 237 2 435 -135 513 -59 411 12 186
F (1) 27 235 18 435 -149 506 5 374 13 179
F (1) -28 274 -8 673 4 688 3 403 -10 191
F (1) -29 251 -12 512 17 541 7 395 -9 188
F (1) -3 255 -12 481 -7 536 -20 422 -12 196
F (1) -12 251 -16 489 2 538 -4 399 -9 189
F.(t) -10 267 -8 608 -4 860 -38 1,009 -63 1,066
Table 5.3

Real populations (population size N = 284). BIAS and RMSE of distribution function estimators under simple
random without replacement sampling. Sample size n = 30

t=F;'(0.05) t=F'(0.25) t=F'(0.50) t=Fy'(0.75) t=Fy'(0.95)
BIAS RMSE BIAS RMSE RBIAS RMSE BIAS RMSE BIAS RMSE
MU284 population with Y =InRMT85 and X =InP85
F. (1) 133 421 339 625 180 529 -265 490 -187 439
F (t) 52 380 67 588 45 555 -63 469 -87 370
F (1) 8 81 -154 203 90 130 62 123 6 54
B (1) 28 66 -170 212 69 112 57 109 2 50
F @) -28 300 -24 497 8 483 -48 421 -38 319
F (1) -28 326 -96 569 -52 544 3 466 1 319
F () 26 177 -11 302 0 244 1 308 -18 102
F(t) 29 179 -10 302 -2 243 -1 308 -21 104
F. (1) 22 388 -10 771 9 864 5 731 -43 394
MU284 population with Y =InRMT85 and X =InREV 84
F. (1) 143 449 303 643 138 554 -217 543 -166 446
F (t) 62 395 62 611 36 582 -49 519 -71 376
F (1) -11 204 -32 300 -101 328 42 285 31 155
B (1) 36 183 -40 288 -149 345 6 261 34 122
F() 5 340 -22 548 4 557 -30 498 -23 332
F (1) -2 349 -78 599 -36 588 10 522 8 331
F (1) 24 303 7 446 -6 494 2 439 -13 209
F(t) 29 304 4 443 -6 495 -1 432 -18 192
= (1) 34 395 1 766 16 880 9 744 -37 398
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Table 5.4

Real populations (population size N = 284). BIAS and RMSE of distribution function estimators under Poisson
sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression
of the population y, —values on the population x, — values. Expected size n" = 30

t=Fg*(0.05) t=Fg"(0.25) t=F3*(0.50) t=F;'(0.75) t=Fg"(0.95)
BIAS RMSE BIAS RMSE RBIAS RMSE BIAS RMSE BIAS RMSE
MU284 population with Y =InRMT85 and X =InP85
F. (1) 204 420 485 668 239 519 -412 626 -90 317
F (t) 180 424 417 684 319 614 -239 548 -148 348
F (1) -41 97 -118 199 132 178 40 140 -71 104
B (1) 11 70 -147 211 63 128 -25 122 -85 106
F. (1) 24 360 30 649 0 675 -68 614 58 368
F (1) 9 390 -63 737 -64 774 -7 682 75 414
F (1) 16 184 -14 307 36 283 16 323 -11 103
F(t) 25 187 -15 312 30 286 14 328 -11 112
F. (1) 40 445 73 1,983 12 2,498 -43 3,004 -49 3,341
MU284 population with Y =InRMT85 and X =InREV 84

F. (1) 349 660 1,185 1,373 890 1,059 458 654 -32 270
F () 287 601 1,003 1,236 771 989 484 695 42 263
F. (1) 317 453 739 866 761 879 624 701 159 207
F (0 364 471 720 842 718 824 572 647 96 158
F, (t) 35 488 82 818 -31 772 7 634 -8 326
F (1) 22 500 3 878 -98 852 40 704 27 354
F. (1) 37 317 32 498 -13 513 32 412 7 157
F (1) 51 313 30 498 -30 518 12 411 -10 149
F,(t) 32 671 19 1,658 -172 2,354 -173 2,787 -191 2,935

Consider finally the simulation results referring to the variance estimators of Section 4. Tables 5.5t0 5.8
report the relative bias (RBIAS) and the relative root mean square error (RRMSE) for each of them. For
example, based on the variance estimates V, (F (t)), b=1,2,...,B, obtained from the estimator V (F (t)),

J, (F () -Vs (F (1)
RBIAS:= BbZ; V. (F0) x10,000
and
J;zmama»Agﬁa»f
RRMSE := b=t _ x10,000
Vg (F (1))
where

2 (F(1):= gFaraaﬁ-

As a benchmark, we report also the RBIAS and RRMSE of the estimator
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V(E )= Xy <01 (y, <)

i,jes i i j

for the variance of the Horvitz-Thompson estimator.

Table 5.5
Avrtificial populations (population size N =1,000). RBIAS and RRMSE of variance estimators under simple
random without replacement sampling. Sample size n =100

t = Fy'(0.05) t=F;'(0.25) t=Fy'(0.50) t=F.'(0.75) t=F;'(0.95)
RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE
y, =&, with & ~ i.i.d. central Student t with v=5
V (F, (1) -1,092 32,442 -1,249 3,895 -1,714 3,077 -1,536 3,828 -824 34,601
V(F, (1)) -576 31,726 -603 3,838 -1,122 3,374 -951 3,758 -441 33,055
V(F (1) -1,001 32,579 -1,292 3,914 -1,708 3,085 -1,640 3,828 -802 34,809
V(F (1) -556 31,881 -622 3,857 -1,148 3,361 -1,025 3,749 -425 33,184
V(F, (1)) 42 30,952 57 3,928 -592 3,776 -287 3,825 551 33,462
y, = &, with & ~ indep. noncentral Student t with v =5 and u =15x;
V (F, (1) -1,900 29,622 50 4,707 -917 3,557 -998 3,695 -1,480 29,417
V (F (1) -1,359 29,623 535 4,572 -395 3,881 527 3,736 -1,277 28,267
V(F (1) -1,832 30,119 -101 4,710 -991 3,530 -1,077 3,704 -1,398 29,927
V(R (1) -1,362 29,713 465 4,559 -420 3,865 -591 3,718 -1,236 28,489
V(F, (1) -351 29,132 1,096 4,215 -78 4,074 574 4,067 -638 29,507
y; =10x, +¢;, with g ~ i.i.d. Student t with v=5
V(F, (1) -2,170 11,624 -1,027 2,480 -816 3,274 -1,424 2,583 -1,946 8,681
V(F (1) -1,534 11,605 -529 2,632 -148 2,975 -859 2,590 -1,151 9,015
V(F (1) -1,765 12,107 -1,108 2,529 -714 3,366 -1,318 2,660 -1,905 8,658
V(F (1) -1,062 11,948 -671 2,735 212 3,291 -762 2,785 -1,048 8,590
V(F, (1) 254 31,545 -52 3,726 136 4,152 267 3,992 35 30,264
y; =10x; +¢;, with g ~ indep. noncentral Student t with v =5 and x =15x,
V(F, (1)) -1,642 25,809 -855 3,541 -1,076 3,038 -1,081 3,030 -1,361 21,157
V(F (1) -950 25,692 -323 3,509 -597 3312 -617 3,164 -1,124 20,231
V(F (1) -1,385 26,406 -997 3,505 -1,089 3,045 -1,096 3,033 -1,310 21,393
V(F (1) -832 26,212 -292 3,556 -614 3,317 -716 3,154 -1,135 20,286
V(F, (1) 105 29,621 507 3,857 209 4,244 425 3,910 -337 29,082
y, =10x"* + &, with & ~ i.i.d. Student t with v=5
V(F, (1)) -2,465 30,612 -1,121 4,594 -1,512 3,183 -1,958 3,076 -863 19,720
V(F (1)) -1,780 28,103 -663 4,420 -1,092 3,319 -1,491 3,140 -439 18,985
V(F (1) -2,052 33,980 -1,150 4,619 -1,537 3,217 -1,948 3,127 -954 19,637
V(F (1) -1,194 33,573 -691 4,472 -1,124 3,368 -1,438 3,228 -357 19,245
V(F, (1)) -81 30,001 9 3,756 -110 3,996 -598 3,661 440 32,455
y, =10x¥* + &, with & ~ indep. noncentral Student t with v =5 and u = 15X,
V(F, (1) -1,873 29,437 -758 3,759 -621 3,476 -709 3,599 -1,298 27,679
V (F (1)) -1,267 28,511 -284 3,661 -131 3,758 -321 3,552 -1,075 26,790
V(F (1)) -1,710 30,670 -928 3,741 -628 3,510 -777 3,603 -1,245 27,972
V(F (1) -939 30,486 -270 3,764 -171 3,803 -375 3,581 -1,014 26,926
V(F, (1)) 178 29,640 599 3,816 533 4,324 590 3,874 -404 28,917
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Table 5.6

Avrtificial populations (population size N =1,000). RBIAS and RRMSE of variance estimators under Poisson
sampling with sample inclusion probabilities z; proportional to standard deviation of noncentral Student t
distribution with v =5 d.f. and with noncentrality parameter u =15x,. Expected sample size n" =100

t=F;'(0.05) t=F;'(0.25) t=Fy'(0.50) t=Fy'(0.75) t=F;'(0.95)
RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE
Y; = &, With g ~ i.i.d. central Student t with v=5
V(F, (1) -3,306 65,777 -4,248 8,032 -5,003 4,242 -6,258 4,844 -5,652 32,037
V(F (1) -2,048 47,035 -2,656 4,705 -2,434 3,116 -3,310 3,939 -3,092 29,380
V(F (1) -3,362 36,855 -2,488 4,409 -1,910 3,147 -2,869 3,910 -4,329 23,247
V(F" (1) -2,696 39,509 -2,076 4,450 -1,768 3,163 -2,648 3,811 -3,244 26,343
V(F, (1)) 113 129,637 259 15,120 618 6,327 193 5,429 273 6,097
y; = &, With g ~ indep. noncentral Student t with v =5 and x =15x,
V(F, (1)) -740 125975  -2,522 14,864 -5,466 3,658 -4,896 6,691 -1,551 83,262
V(F (1) -391 83,047 -1,503 8,946 -2,428 4,099 2,228 5,526 -1,154 54,680
V(F () -3,260 58,072 -2,649 7,661 -2,260 3,936 -2,795 5,011 2,116 48,739
V(R (1) -716 77,935 -2,000 7,979 -1,934 4,235 2,279 5,243 -1,243 52,531
V(F, (1)) 666 251,134 -564 26,553 -87 7,344 2 6,029 407 6,610
y; =10x, +¢;, with g ~ i.i.d. Student t with v=5
V(F, (1)) -6,801 7,898 -6,470 4,281 -1,059 22,596 -398 32,401 -1,650 72,632
V(F (1) -4,978 5,826 -2,898 4,473 -603 9,530 206 15,226 -1,157 40,466
V(F (1) -4,520 6,691 -2,710 4,213 -3,245 6,723 -1,156 12,681 -2,458 32,907
V(F (1) -4,226 6,206 -1,674 5,062 -978 7,874 55 12,781 -1,283 33,737
V(F_ (1)) -707 47,550 118 7,214 609 4,409 743 4,628 435 4,800
y, =10x, +¢,, with & ~ indep. noncentral Student t with v =5 and u =15,
V(F, (1)) -7,398 8,847 -6,235 3,667 -2,493 8,171 -1,051 16,299 -1,440 71,943
V(F (1) -4,548 9,463 -3,136 3,282 -1,187 4,246 -832 7,638 -982 45,182
V(F (1) -3,902 11,727 -2,808 3,409 2,411 3,501 -1,721 6,737 -1,671 41,389
V(F (1) -3,598 10,771 -2,610 3,462 -1,284 3,988 -852 7,008 972 43,017
V(F_ (1)) 146 57,044 -42 8,708 520 4,784 214 4,686 390 5,085
y, =10xY* +&,, with & ~ i.i.d. Student t with v=5
V(F, (1)) -7,731 8,568 -6,597 3,484 -2,442 7,775 -903 16,067 -1,967 56,480
V(F (1) -4,611 9,378 -2,990 3,252 -874 4,119 -347 7,420 -1,310 35,051
V(F (1) -4,747 11,909 -2,679 3,298 -1,896 3,272 -2,248 5,747 -3,382 27,222
V(F (1) -4,223 10,380 -2,100 3,494 -788 3,731 -550 5,975 -1,795 29,856
V(F, (1) -428 47,038 -206 7,350 641 4,504 738 4,708 487 4,943
y, =10x¥* + &, with & ~ indep. noncentral Student t with v =5 and u = 15X,
V(F, (1) -4,936 40,696 -6,111 4,579 -5,549 4,035 -1,864 14,381 -1,509 84,892
V(F (1) -3,004 29,404 -2,764 3,962 2,436 3,606 -1,234 7,357 -1,103 53,875
V(F (1) -4,328 27,704 -2,516 4,235 2,671 3,332 -2,586 5,955 -1,939 47,601
V(F" (1) -3,454 28,267 -2,263 4,160 -2,329 3,574 -1,433 6,682 -1,171 50,985
V(F, (1)) 152 98,607 663 12,879 15 5,376 20 5,080 429 5,619
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Table 5.7
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Real populations (population size N = 284). RBIAS and RRMSE of variance estimators under simple random
without replacement sampling. Sample size n =30

t=F*(0.05) t=F"(0.25) t=Fg3*(0.50) t=F;"(0.75) t=Fg'(0.95)
RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE
MU284 population with Y =InRMT85 and X =InP85
V(F, (1)) -2,853 16,809 -1,700 3,037 -1,554 2,984 -1,100 4,633 -5,503 16,257
V (F (1) -1,110 16,374 -1,827 2,760 -1,683 2,847 -927 4,387 -3,016 18,685
V(F (1) -1,043 19,081 91 7,728 -448 9,120 -484 7,715 -1,877 65,298
V(F (1) -424 18,971 104 7,819 -382 9,110 -301 7,799 -1,058 62,968
V(F, (1) -186 29,720 -603 3,901 31 3,971 500 4,383 -74 28,418
MU284 population with Y =InRMT85 and X =InREV 84
V(F, (1)) -2,283 16,303 -1,450 3,538 -945 3,526 -1,071 4,300 -4,832 19,401
V (F, (1) -1,095 16,755 -1,427 3,181 -938 3,390 -780 4,051 -2,753 20,551
V(F (1) -1,737 14,642 -298 5,648 -546 5,282 -736 5,679 -3,564 38,344
V(F (1) -1,174 14,111 27 5,856 -422 5,452 -228 5,974 -1,433 43,923
V(F, (1) -307 28,421 -460 3,963 -344 3,850 112 4,235 -401 27,987

Table 5.8

Real populations (population size N =284). RBIAS and RRMSE of variance estimators under Poisson
sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression
of the population y, —values on the population x, — values. Expected size n" = 30

t=Fy*(0.05) t=F3'(0.25) t=F3*(0.50) t=F;'(0.75) t=F;*(0.95)
RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE RBIAS RRMSE
MU284 population with Y =InRMT85 and X =InP85
V (F (1)) -3,502 26,342 -1,841 14,037 -2,691 12,087 -3,415 9,674 -5,932 26,823
V (F, (1) -2,159 27,610 -1,782 14,010 -2,840 12,002 -3,186 10,177 -4,455 26,802
Y (If; ) -434 22,455 515 15,503 -506 31,296 -1,460 23,496 -2,649 78,527
\7( = ) -80 22,921 677 15,575 -280 33,294 -1,283 26,612 -1,597 72,166
V (F, (1) -294 361,991 522 75,891 43 48,764 -241 36,354 90 32,354
MU284 population with Y = InRMT85 and X =InREV 84
V (F, () -5,220 18,699 -3,667 8,749 -3,222 7,537 -3,018 9,279 -4,955 44,597
V(F (1) -4,254 20,765 -3,100 9,180 -3,435 7,231 -3,196 8,540 -3,461 43,206
V (F (1) -2,938 18,922 -1,110 11,828 -1,265 8,726 -1,040 10,963 -3,682 89,262
V(R (1) -1,938 19,997 -699 12,641 -1,003 9,305 -599 11,545 -1,558 98,798
V (F, (1) -143 128,401 493 33,934 -255 18,473 -91 17,904 327 16,463

As can be seen from the simulation results, the variance estimators suffer from large variability. This
problem is shared by the variance estimator for the Horvitz-Thompson estimator, which occasionally
exhibits extremely large RRMSE’s. It is further interesting to note that while the RBIAS of the variance
estimators for the generalized difference estimators is almost always negative and at times rather large in
absolute value, the RBIAS of the variance estimator for the Horvitz-Thompson estimator is in most of the
considered cases positive.
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Appendix

Let S denote a sequence of real numbers. Throughout this appendix we shall indicate by O, ; . (3)
rest terms that may depend on X; ,X; ,..., x; and that are of the same order as the sequence 4 uniformly
for iy,i,,...,i, eU. Formally, R(X, ,X, ,....x, )=0O,, . (B) if

RS PEEREEEAN

sup  [R(X,, %, ... %, )| =0(p).

ip i nix €U

Moreover, to simplify the notation, we shall write m. in place of m(x,) and o7 in place of o (x,).

Bias of the model-based Kuo estimator

E(F()-Fy (1) = E(;zzwi,j[l(gj <t-m;)-1(g St—mi)]]

igs jes

:hllzzwi,j[e(t_mjxj)—G(t—mixi)]

igs jes

1

= N%[G(zm (t—my] Xi)(mi')z -G (t—m|x)m/
~2G™ (t—m|x,)m’ +G°? (t—mi\xi)JZwi’j (x; - xi)2 +0(4%)
= 22 M2 [°T60 (m) ) (m' () G2 (£ m(x) x)m” ()

N 24,

~2G52 (£~ m ()X’ (x)+ G2 (t - m(x) x)]h, (x)dx +0(22).

Bias of the generalized difference Kuo estimator

Write

F(t)-F, (1) :;{ZZwi,j[l(gj <t-m)-l(g <t-m)]

igs jes

+Z(1—7i

ies

jzwi,j[u(gj <tom)-1 (e St—mi)]}.

i/ jes

Similar steps as those seen for F (t) show that
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N—=n 4,

2 s L2 (760 (- m(x)[x)(m'(x))’ -6 (t=m(x)x)m" (x)

E(F()-Fy (1) =

2G™ (t=m(x)x)m’'(x) + G (t—=m(x)[x) |h(x)dx +0(2?),

where

h(x):=h, () + 1=z (X))h, (x).

Variance of the model-based Kuo estimator

var (F (t) - Fy (1)) =var( D> w1 (e <t- .)—Zl(y,<t))

igs jes 1£S

ZZZWMWIZJ[G( m;|x;)=G* (t—m;|x;)]

ihesi,es jes

Z[G(t ‘Xi)_Gz(t_mi‘Xi)]

igs

:A1+A21
where
= e DT, (O m ) -6 (t-m )]
- e Zlo-mx)-G* t-m )] T, |
=f11£N|\Inj J:[G(t—m(x)\x)—ez(t—m(x)\x)][hg(X)/hs(x)]hg(x)dx
O((n1)"a)
and
NZZ[G(t— ) =G (t—mj|x)]
- Nl_n(Nl\Tnj2 J‘:[G(t_m(x)‘x)_Gz(t—m(X)\X)]hg(x)dXJrO(n‘la)_
Thus,
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var(F(t) Fy (1)) 1( j j [G(t—=m(x)| x)=G?(t—=m(x)| x) ][, (x) /h, (x)]h, (x)dx

+N1—n(NnIn) [.TeE-m()/x)-G*(t-m(x)| )], () dx+0((n2)* a).

Variance of the generalized difference Kuo estimator

Note that

()R 0= 4 {200, <0 T, -, (57357 -3)] - D10 <)

igs igs
so that

var (E (0~ F, (1) -var[ i, )[zw.,+(,r _1)- gwi'j(zil—l)D

1S

+var£ DIy, < t))

igs
=B+ A,
where A, is the same as in the variance of F (t), and where

o, s=var 0y, <0 T+ 71~ o 1)

igs

igs ies

:WE[G(t—mj\xj)—Gz(t—mj\ Xj)]{ZWu +(”i_1_1)_zwi,i(”i_l_l)}2
= NZZ[G (t=mj|x;)=G*(t-m; XJ]{ZWH +(7 _1)(1_§Wiviﬂz +0(an”)

1£S

") [T me01x)-67 =m0 ][0, 00/, 09]n, (0

+0((nA) " a+an™)
=A+0((nA)"a+an™).

Thus,

var (F (t) - Fy (1)) = var (F (t) - Fy (1) +O((n2) " a + An).

Bias of the model-based estimator with modified fitted values

Let m, ::Zkeswivkmk, ¢, :=1-w,,+w, and
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d;; :=C1{(1—ci,j)(t—mi)+(n:11.—mj)—(rﬁi—mi)+ > (Wj’k—Wiyk)gk:|.

ij kes k#j
Observe that w; ; =0, ; ((n2)™) so that
y, —m, <t-m,
is (asymptotically, as soon as ¢, ; > O) equivalent to
g;<t-m +d; ;.
Since d; ; does not depend on ¢;, it follows that
E(I(y,-m; <t-m)) =
(E(1(g; st-m +d; ;)|& k= ])) (A1)

Now, using the fact that

di; = (1_C"j)(t_mi)+(rﬁi _mi)_(rﬁi -m)+ X _(Wj,k —w )& +R(d; ), (A2)
where
E1/4<‘R(di,j)‘4)=oi,j (’1”_1"‘(”1)73/2): (A.3)

E
=G(t-m|x;)+G* (t-m|x,)E(d; ;) (A.4)
+;G(2'°) (t=m|x;)E(d?))+0;(4*+(nA)7).

Thus,

E(F'(t)-F, (1) = E(;ZZW” (1(y; =, <t—m) =1 (y, St))j

1
= NZZW‘J [G(t-m]|x;)-G(t—mx)]
w60 (- mx (S, 89

+ZLZZWHG(2’°) (t—m xj)E(df,j)+o(/14 +(n/1)’l)

igs jes

:=C, +C, +C, +0(4* +(n4)7).
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Consider first C, and note that

—ZZW,J[G( m|x;)-G(t—mx)]

ZG(“)(t m\x)Zw,J(x ~x,)" +0(2?)
AZNN n,uz.[ G (t—m(x)|x)h, (x)dx +0(4?).

Consider next C,. (A.2) and (A.3) imply that

E(d,,) =(1—ci’j)(t—mi)+(r?1j —mj)—(rﬁi -m,)+0, (/?Ln‘l +(M)’3/2)
= (Wj,j _Wi,j)(t_ mi)+m;, ij,k (Xk _Xj)2 _miﬂzwi,k (Xk _Xi)2
+0,;(4%)+0; (}tn‘1 + (n}t)'s/z)
= (W —w ) (t=m;)+(m] —m)kZWJk( )
+miﬂ(zwj,k (Xk _Xj)2 _zwi,k (% _Xi)zj
+0,;(4%)+0, ; (An"+(n2)¥?)
so that
C,=C,, +C,, +Cyo +0(4%)+0(An +(n2)*?),
where
-*ZZW.JG“" (t=m|x; ) (w;; —w; ;) (t-m)
ZG(” mi\xi)(t—mi)Zwi,j(wjvj —Wivj)+O(n‘1)
n1/1NI\InK((L) Kleo)(t m(x)\x)(t—m(x))[h (x)/h, (x)]dx

O((nA)* A e +n™)

with x = _|'_11K2 (u)du,

*ZZW. iGUO (t=my|x; ) (mf —m) 2w, (%, _Xj)z

igs jes kes

=0(4?)
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and

—ZZW, G (t—mx;)m i”(ij,k (X =%,)" =D w,, (% —xi)zj

igs jes kes kes

ZG(“’)(t mx)m"(Zw,JZij( ) = > Wiy (X = %) J+o(/12)

igs jes kes kes

=0(2%).

Consider finally C,. Note that from (A.2) and (A.3)

E(d)=Y (W, ~w,) o2 +0;, (2*+(n2)?) (A.6)

kes

so that

ZZW, GO (t—m %)Y (W, —w,, ) o7 +0(A* +(n2)?)

igs jes kes
ZNZG(ZO) (t-m/x)o’ > w > (w; Wi,k)2+o((n/1)’l)+0(/14)
igs jes kes

_1N-nk-0

N [/ (t-m(x)|)o* ()[h, (x)/h, (x)]dx+0((n2) ) +O(2?)

with 6 := j:llK (v)j.le (u+Vv)K (u)dudv.

Substituting the above expansions for C,,C, and C, into (A.5) yields finally

E(F'(t)-Fy (1)) - 2N-n “Zj G2 (t—m(x)| x)h, (x)dx

L1 N—n[K(O) SEEEGR (- m(x) | x)(t - m(x))h;* (x)h, (x)dX

ni N y7,
<7165 - m00 0 (9 (9, (x|
+0(A% +(n2) ™).

Bias of the generalized difference estimator with modified fitted values

Let d be the design-weighted counterpart of d; ; and observe that

F ' ()-F, (1) = {ZZW,J( (6, <t—=m +d, ;)= 1(y; <t))

igs jes

(A7)

(e, (e, <t-m +d, )- 10y, gt))}.

ies jes
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Adapting the proof that leads to (A.4), it is seen that the asymptotic expansion in (A.4) holds also with di' i
in place of d; ;. Adapting the remaining part of the proof finally leads to

N —

E(F () -Fy (1) =47 ””Zje<°2>(t m(x)| x)h(x)dx

+n];1NI\Tn{K(Z)O’(I G (t—m(x)| x)(t—=m(x))h;* (x)h(x)dx

' (t-m(x)|x)o? (x)h.* (x) h(x)dx}
+0(4%+(n4)7),
where

h(x):=h, (X)+(1-7"(X))h, (x).

Variance of the model-based estimator with modified fitted values
Write

F()-Fy (=" (ZZwljl(g <t-m+d;;)- Zl(gist—mi)j

igs jes igs

and observe that
var(F(t)—F, (1)) =D, + D, + D,,

where

ZZZWIJ Cicov(l(g;<t—m +d, ;). I(g; <t-m_+d, ;)),

ijgsi,es jes

2' NZZZZ Z W'111 'szXCOV(I((9 <t_m +d'1l) (5 <t_m +d'zlz))

S iy es jes jres, %y

and where D, := A, from the variance of the model-based Kuo estimator.
Consider D,. Observe that

cov(l(g;<t—m, +d, ;). 1(g;<t-m_+d, ;) =E(G(t-m, +d, ; at—m, +d; |x;))
—E(G(t-m, +d, ;|x;))E(G(t—-m, +d, ;

(A8)

X;))-

Since

(t=m, +d jat=m, +d, ;)= (t-m, At-m, )|<

d,;|+|d

ig,] "
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it follows from (A.6) that

E(G(t—-m, +d;, ; at—m,_+d,

X)) =G(t-m at-m |x;) +0,, (2*+(n)™*). (A9

iy,
Moreover, from (A.1), (A.4) and (A.6) it follows that
E(G(t-m +d,;[x;)) =G(t-mx;)+0,;(2* +(n4)™?). (A.10)

Using (A.9) and (A.10) to get an asymptotic expansion for the covariance in (A.8), and substituting the
outcome into the definition of D, yields

ZZZWI W, jcov(l (g <t-m +d; ;)1 (g <t-m, +d, ;))

ijgsiygs jes

ZZZWH W, [E(G(t-m, +d, ;At-m, +di2vj‘ X;))

ijgsiygs jes

X;))E(G(t-m, +d, ;

~E(G(t-m, +d, x;))]
1 %;)=G(t—-m,|x;)G(t—m,

Nzéé,ze;w“ Haloltom At ' )] (A11)
+O(}tzn Ly (na)? n‘l)

W L6 ()-8 )] S, | +o(an )

jes igs

=i[N:§ nJ [Te-m(91x)-6* (t-m(x)| )] [h, (x)/h, ()]h, (x)dx
O((n2)*a+n*2+n*(nA)™?).
Consider next

ZZZ Dow,w, xcov(l(g, <t-m +d, )0 (g, <t-m +d; ).

|1es IZES ]165 jZES JZ¢Jl

Since

cov(l(ghgt—mi1+dil, ), I(g <t-m, +d.212))=0

i i.i,.j,» Whose contribution to the above covariance is of order
O i (,B) for some sequence 3 that goes to zero, contribute to D, a term of order O (44). Now, let

— A1
bi:hvjz T Civh (thjz - Wivjz)’

a ., =t-m+d; -b; €,
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and note that

t-m+d; =a,; , +b; &,

Since a; ; ; doesnotdependon &; and ¢; , it follows that
EU(g.St—m.+d..ﬁ(g.<t—m.+d..»
(I (8 - a'1 I +b'1 s Jz Jz)l (8 - a'z J20J1 +bi2vj2!j18j1)

=E(E
=EUﬁ“mG +b,

£k # i, Jp))

iy, 02,0 12, ijjlg

x, )G (¢ |x, )j A
: xh)dG(ngz)j
X3, )G (s, | X3,)):

CE[[ i, b

iy, 1 J2 USR]
E(G( '1 iy 012

where

a

iy iy 1-b

* iy 1 d2 +a'2vj2vj1bi1vj1vj2

i dudz Tha b2

Note that the two expectations in the third and fourth lines in (A.12) are the same if i, and j, are
interchanged with i, and j,, respectively. Thus it suffices to analyze the first expectation. Using the fact
that

. st=m +d,; +b o (t-m, -2, ) +R(s

giixinhvh '1 iy, dps Jz)

where

E1/4 (‘R( '1 i2,J1 Jz)

4) =0, 55 (A0 +(nA) 77,

it is seen that

E(rjiz’h'jze (a,.5,.5 0,558 %5, )dG (g]x;, ))
m, [X;,)G(t—m,

[} ij)
+G (t—m, |x; )G(t—m,

o X )[E(dy; )+ (E-m,)]

le ) E (dizsz ) + G(l’O) (t - miz ij )bizvjz:jl J._t;milgdG (8 ‘ Xh) (A13)

:G@_

+G (t—m,

,)G(t-m

[l

+ig<2,0) (t—m, X;,)E(d; h)+;G(ZO) (t=m, |x;,)G(t—m, [x; )E(d? ;,)

,)G(t-m,
+G (t—m, |x, )G*7 (t—m,

L 1%, )E(d; ;. dy, )
0,4, (A1 H(02)7),

and that
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X;,)G (&5 i

x; )G (t-m,

12

X))
X, )

+G (t-m, |x;)G(t—m,

I

E(G (‘9;,&,11,12

=G(t—mil

Xi, )LE(di ;) +by 5, (E=m,)]
X, )LE(dy, ;,)+, 5,5 (E=m, )]

£GE -, [x, )6(-m,

1 (A.14)
#5850 (t=m, [x, )6 (t-m, [x, )E(@2,)
+ ;G(m) (t=m, |x;,)G(t-m, |x, )E(d? )
+G0 (t-m, [x; )G (t-m, |x; JE(d, ;d; ;)
+0,, ;5 (A1 +(A)7).
Using the asymptotic expansions in (A.4), (A.13) and (A.14) yields
cov(l (e, <t-m, +d; ;)1 (s), <t-m, +d; ;)
=G (t-m, [x, )b, ;7,5 + GO (t=my % )by 7,
(A.15)
+G (t-m, [x; )G (t-m, [x;,)cov(d, ;.d; ;)
+0,,5., (47 +(02)7),
where
Vi = j_:migdG(g\xj).
Now observe that
b, Wi, =W, 01, ((”’1)_2)
and that
1
Cov(dilvh'dibjz) = c Z (le,k _Wilvk)(wjzvk _Wink)O-kZ
i,y iy dp kesik= g,y
= 2 (Wi =Wy ) (W, — W o Oy ((M)iz)
kes
so that
D, =2D,, +D,, +0(2° +n), (A.16)
where
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1
D, :ZWZZZ 2w W, G (t-m,

s i es jes jres, %

ijgsi,es jjes jres

X; )Wy, =W 5 )7,

X, )W, 5, =W, )7, +O(n 7 (0A) )

. , (A17)
=WZGM) (t=mj, [x,) 75, Zle,szWil,jlzwiz,jz _(thjzj }
jres jres i es ipes igs
+0(n*A+n*(nA)7)
=0((nA)"a+n?A+nt(n2)?)
and
1
D,y :=W§§JZSJ_ ; J_Wil,nWiz,iZG(l'O) (t-m, [x; )G (t-m, |x;,)
XD (Wi = Wiy ) (W, =W, ) o
kes
1
= Wéé% J_stil,hwiz,jze(l'o) (t-m, [x; )G (t-m, |x;,)
XkZ(Wn,k ~W, ) (W, — W, oy +O(n" (nA)”) (A.18)
2
- N1220k2 [G* (t—m, |X, )]2 (ZZWM (w;, - Wi'k)j +0 (n’l/i +n?t (n/i)’l)
kes igs jes

= N1220k2 [G* (t—m, |X, )]2 (ZWLKZWU - Zwi’kj +0(n*a+n*(na)7)

kes jes igs igs

=0((nA)"a+n4).

Putting everything together finally yields

var(lf*(t) —Fy (1) = i(N,\I n) Jj[G (t—m(x)[x)=G*(t—m(x)|x)][hs (x) /h, () ]h, (x)dx

+N1_n(N|\Inj J‘:[G(t—m(x)‘x)—GZ(t—m(X)‘x)]hg(x)dX_i_o(/%s+n_1).

Variance of the generalized difference estimator with modified fitted values
In view of (A.7), we shall show that
var (F'(t) - Fy (1)) = var (F"(t)- F, () +o(n ") (A.19)

by showing that
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var(N D=7 w (e <t—m +d, ;)= 1(y, st))jzo(nl). (A.20)

ies jes

To prove (A.20) observe that the variance on the left hand side may be written as

E,+E,+E,—2E, - 2E

51

where

E,:= ZZZZ LW (1 )(1—7ri;1)xcov(l(g <t-m +d, ) (¢, <t-m +d, ))

iesies jes

= NZZZZ 2 W W, (-7 ) (- m ) xcov(I (e, <t-m +d, )0 (e, <t-m, +d; ),

ijesiyes jies jyes,j,#

1

E3:N2

(1-7z )var(l(gist—mi)),

ies

£, = s XY (1) (1 oo (1 (5, <t-m +d, )1 (s <t-m)),

ies jes

and finally

E,:= szz Dow (-7 )(1-7t) xcov(l (g, <t—m +d; )1 (g, <t-m,)).

ijesiyes jes, j#i,

To begin with, consider E, and E,. Observe that except for (i) the fact that the summation indexes i,
and i, range over s instead of the complement of s in U, (ii) the presence of the factors (1—7;‘1) and (iii)
the fact that the w; ;’s and the d, ;’s are substituted by their design-weighted counterparts W, ; and d; i
E, and E, are the same as D, and D, from var(lf*(t)— Fy (t)), respectively. Adapting the proofs that
lead to the asymptotic expansions for D, and D, shows thus that

N,\_l HJZ I:[G (t—m(x)|x)-G*(t—-m(x)|x)][1-7"" (x)]2 h, (x)dx+o(n™")
and that

E, =0(2°+n™).
As for E, it is immediately seen that

E,=E +o(n?),
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while in order to deal with E, and E, we shall need asymptotic expansions for
cov(l(e; <t-m, +d, ;). 1(s, <t-m, ) (A.21)

for the case when j =i, and the case when j #1i,. In the former case we may employ arguments similar to
those for proving (A.9) and (A.10), which lead to

cov(l(g;<t-m +d, ;).1(¢; <t—m;))

=G(t-m At—m|x;)-G(t-m,

I

X;)G(t—m;|x;)+O(A +(n2)™?).

When j=i,, on the other hand, the covariance in (A.21) is different from zero only if \xj - xiz\ <A or
X, — X, |< 4, and adapting (A.12) it can be shown that

E(1(e; <t-my +d,;)1(5, <t-m,))
=E E(| («9,- <q ji, +6‘1vi»izgiz)| (&, St—miz)‘gk,kii, J))
Xi)dG(g\Xiz))

X,)+G(t-m, |x,)G"" (t-m, |x;,)E(d, ;)

X;)E(di ;)

- it J i

= E( t7mizG (a + Bil,j,izg

=G(t—-m,[x;)G(t—m,

Iz

X )buin7, +}G(t -m,

+GO (t-m,
t 2

X, )G (t—m,

(1

+0,; (4" +(n2)7),

iz, ]

where & ;, and bij« are the design-weighted counterparts of a4 and b, ;,, respectively. Adapting also
(A.4) to account for the design-weights, it is seen that

cov(l(g;<t-m +d, ;). 1(s <t-m)) =G*9(t—-m,

X )biii 7, +0, (A1 + (1))
=G (t—m X, )(W,, W, )7, + 0.5 ; (/14 + (n/l)‘l)
so that (cfr. the steps that lead to the asymptotic expansions of the terms D, and D, in the variance of the
model-based two-step estimator)
E,=E,+o(n™)
and
E;=0(4°+n™).

This completes the proof of (A.20) and thus (A.19) follows.
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