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Integer programming formulations applied to optimal 
allocation in stratified sampling 

José André de Moura Brito, Pedro Luis do Nascimento Silva,  
Gustavo Silva Semaan and Nelson Maculan1 

Abstract 

The problem of optimal allocation of samples in surveys using a stratified sampling plan was first discussed by 
Neyman in 1934. Since then, many researchers have studied the problem of the sample allocation in 
multivariate surveys and several methods have been proposed. Basically, these methods are divided into two 
classes: The first class comprises methods that seek an allocation which minimizes survey costs while keeping 
the coefficients of variation of estimators of totals below specified thresholds for all survey variables of 
interest. The second aims to minimize a weighted average of the relative variances of the estimators of totals 
given a maximum overall sample size or a maximum cost. This paper proposes a new optimization approach 
for the sample allocation problem in multivariate surveys. This approach is based on a binary integer 
programming formulation. Several numerical experiments showed that the proposed approach provides 
efficient solutions to this problem, which improve upon a ‘textbook algorithm’ and can be more efficient than 
the algorithm by Bethel (1985, 1989). 

 
Key Words: Stratification; Allocation; Integer programming; Multivariate survey. 

 
 

1  Introduction 
 

A large part of the statistics produced by official statistics agencies in many countries come from 
sample surveys. Such surveys have a well-defined survey population to be covered, including the 
geographic location and other eligibility criteria, use appropriate frames to guide the sample selection, and 
apply some well-specified sample selection procedures. The use of ‘standard’ probability sampling 
procedures enables producing estimates for the target population parameters with controlled precision 
while having data from typically small samples of the populations, at a fraction of the cost of 
corresponding censuses. 

When designing the sampling strategy, the survey planner often seeks to optimize precision for the 
most important survey estimates given an available survey budget. Stratification is an important tool that 
enables exploring prior auxiliary information available for all the population units by forming groups of 
homogeneous units, and then sampling independently from within such groups. Thus stratification is very 
frequently used in a wide range of sample surveys. 

Here we focus on element sampling designs (Särndal, Swensson and Wretman 1992) where the frame 
consists of one record per population unit, and besides identification and location information, some 
auxiliary information is also available for each population unit. Stratified sampling involves dividing the 
N  units in a population U  into H  homogeneous groups, called strata. These groups are formed 
considering one (or more) stratification variable(s), and such that variance within groups is small (the 
stratum formation problem). 
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Given a sample size ,n  once the strata are defined the next problem consists of specifying how many 

sample units should be selected in each stratum such that the variance of a specified estimator is 
minimized (the optimal sample allocation problem). When interest is restricted to estimating the 
population total (or mean) for a single survey variable, the well-known Neyman allocation (see e.g., 
Cochran 1977) may be used to decide on the sample allocation. Although surveys which have a single 
target variable are rare, Neyman’s simple allocation formula may still be useful because the allocation 
which is optimal for a target variable may still be reasonable for other survey variables which are 
positively correlated with the one used to drive the optimal allocation. 

When a survey must produce estimates with specified levels of precision for a number of survey 
variables, and these variables are not strongly correlated, a method of sample allocation that enables 
producing estimates with the required precision for all the survey variables is needed. In this case, we have 
a problem of multivariate optimal sample allocation. 

According to the literature, in such cases the allocation of the overall sample size n  to the strata may 

seek one of the following goals:  
 

(i) the total variable survey cost C  is minimized, subject to having Coefficients of Variation 
(CVs) for the estimates of totals of the m  survey variables below specified thresholds; or  

(ii) a weighted sum of variances (or relative variances) of the estimates of totals for the m  survey 

variables is minimized.  
 

Note that the CV is simply the square root of the relative variance. 

This paper presents a new approach based on developing and applying two binary integer 
programming formulations that satisfy each of these two goals, while ensuring that the resulting allocation 
provides the global optimum. The paper is divided as follows. Section 2 reviews some key stratified 
sampling concepts and definitions. Section 3 describes the new approach proposed here. Section 4 
provides results for a subset of numerical experiments carried out to test the proposed approach using 
selected population datasets. Section 5 gives some final remarks and concludes the paper. Appendix A 
provides information about three populations used in the numerical experiments presented in Section 4. 

 
2  Stratified sampling and the optimal allocation problem 
 

In stratified sampling (Cochran 1977; Lohr 2010) a population U  formed by N  units is divided into 
H  strata 1 2, , , HU U U  having 1 2, , , HN N N  units respectively. These strata do not overlap (2.1) and 

together form the entire population (2.2) such that: 

 ,   h kU U h k    (2.1) 

 1
H
h hU U   (2.2) 

 1 2 1
.

H

H hh
N N N N N


      (2.3) 
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Once the strata are defined, and given an overall sample size ,n  an independent sample of size hn  is 

selected from the hN  units in stratum  1, ,hU h H   such that min ,h hn n N  h    where minn  is the 

smallest possible sample size in any stratum, and 1 2 1
.

H

H hh
n n n n n


      

A minimum sample size per stratum of min 2n   is considered here, but this value may be changed as 

needed to accommodate specific survey requirements. A minimum sample size of one per stratum is not 

recommended because this might lead to solutions that require using approximate methods for variance 

estimation whenever the allocated sample sizes reach this minimum. In practice, it may even be wise to 

use minn  larger than 2, because of nonresponse or for other practical reasons. 

Assuming full response, the data are collected for all units in the selected sample and used to produce 

estimates (of totals, say) for a set of m  survey variables. Let 1 2, , , my y y  denote the survey variables. 

The variance of variable jy  in stratum h  is defined as: 

  22 1

1 h
hj ij hji U

h

S y Y
N 

 
   (2.4) 

where ijy  is the value of jy  for the thi  population unit, and hjY  is the population mean for jy  in stratum 

,h  given by 

 
1

h
hj ij hj hi U

h

Y y Y N
N 

   (2.5) 

for 1, ,h H   and 1, , .j m   The population total jY  for the thj  survey variable is 

1 1
.

h

H H

j ij hjh i U h
Y y Y

  
     

Under stratified simple random sampling (STSRS), the variance of the Horvitz-Thompson (HT) 
estimator jt  of the total for the thj  survey variable (Cochran 1977) is given by: 

   2 2

1

1 1H

j h hjh
h h

V t N S
n N

  
 

  (2.6) 

where 
1 1

,
h

H H

j h h ij h hjh i s h
t N n y N y

  
     h hs U  is the set of labels of the hn  units sampled in 

stratum ,h  and hjy  is the sample mean in stratum .h  

Because the values of hN  and 2
hjS  are fixed after the strata have been defined, the variance of the HT 

estimator jt  of the total for the thj  survey variable in (2.6) depends only on the sample sizes hn  allocated 

to the strata. This allocation is important, because it is what enables the survey designer to control the 

precision of the survey estimates. 

In general, when performing the allocation, the survey planner seeks a balance between achieving the 

desired precision for each of the survey variables of interest and the cost of the survey. The importance 

and computational complexity of this problem have motivated many contributions, which consider one of 

the two goals of the allocation problem, as described in Section 1. See for example Kokan (1963), Folks 

and Antle (1965), Kokan and Khan (1967), Huddleston, Claypool and Hocking (1970), Kish (1976), 

Bethel (1985, 1989), Chromy (1987), Valliant and Gentle (1997), Khan and Ahsan (2003), García and 
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Cortez (2006), Kozak (2006), Day (2010), Khan, Ali and Ahmad (2011), Ismail, Nasser and Ahmad 

(2011), Khan, Ali, Raghav and Bari (2012).  

All of the above apply methods based on linear programming theory, convex programming, dynamic 

programming, multi-objective programming and heuristics to try and solve the multivariate optimal 

allocation problem. Here we propose two integer programming formulations to tackle the problem. 

 

Formulation A 
 

 
1

Minimize  
H

h h
h

c n

  (2.7) 

 mins.t. ,  1, ,h hn n N h H     (2.8) 

   CV   1, ,j j jV t Y j m    (2.9) 

  1, ,hn Z h H    (2.10) 

where hc  represents the unit level survey cost for sampling from stratum .h  

In this formulation, the objective function to be minimized (2.7) corresponds to the overall variable 

cost budget for the survey (which we denote by ).C  If the unit level survey costs for sampling from the 

various strata are unknown or are assumed to be the same, then hc  may all be set to one and the alternative 

objective function to minimize is 
1

,
H

hh
n n


   namely the overall sample size.  

Constraint (2.8) ensures that at least minn  units are allocated to each stratum, and that the sample size 

will not exceed the population size for the stratum.  

Constraint (2.9) ensures that the CV of the HT estimator of total for each survey variable is below a 

pre-specified threshold  CV 1, ,j j m   called target CV. Finally, constraint (2.10) ensures that all the 

allocated sample sizes are integers. 

Note that the constraints (2.9) may be rewritten as: 

 2 2

( )
1 , 1, , .

 CV
j

j j

V t
j m

Y
    (2.11) 

Now replacing the numerator in (2.11) by equation (2.6), leads to: 

 
2 2 2

2 2 2 21
1,   1, , .

CV CV

H h hj h hj

h
h j j j j

N S N S
j m

n Y Y


  

 
   (2.12) 

Defining  

 
2

2 2CV
h hj

hj
j j

N S
p

Y
  (2.13) 

the constraints (2.12) may be written as: 
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1

 
1,   1, , .

H h hj
hjh

h

N p
p j m

n

    
 

   (2.14) 

 

Formulation B 
 

 2 2
21 1

1 1 1
Minimize   

m H

j h hjj h
j h h

w N S
Y n N 

      
   (2.15) 

 mins.t. ,   1, ,h hn n N h H     (2.16) 

 
1

H

h h
h

c n C


  (2.17) 

  1, ,hn Z h H    (2.18) 

 
1

0 1    and  1
m

j jj
w j w


     (2.19) 

where jw  are variable-specific weights, set a priori to represent the relative importance of the survey 

variables. The variable-specific weights jw  are set by subject matter experts or the survey designers. If 

they are not specified, equal relative weights could be assigned to all the survey variables considered. 

In this formulation, the objective function (2.15) to be minimized corresponds to a weighted sum of the 

relative variances of the estimates of total for the m  survey variables. We use relative variances because 

different survey variables may be measured in different units, and thus summing variances is not 

meaningful. Examining (2.15) it is clear that its minimum is achieved when 

 2 2
21 1

1 1
  

m H

j h hjj h
j h

w N S
Y n 

  
    

    

is minimum, since the last term  

 2 2
21 1

1 1
  

m H

j h hjj h
j h

w N S
Y N 

      
    

does not depend on the stratum sample sizes. Hence the objective function (2.15) may be rewritten: 

 
2

2
21 1

1
Minimize  .

m H h
j hjj h

j h

N
w S

Y n 




 
   (2.20) 

Constraint (2.16) is the same as constraint (2.8) applied in Formulation A. Constraint (2.17) ensures 

that the total variable cost of the survey will not exceed the allocated budget .C  Like constraint (2.10) in 

Formulation A, constraint (2.18) ensures that all the allocated sample sizes are integers. Constraint (2.19) 

ensures that the importance weights are adequate for aggregating the relative variances of the estimated 

totals for each of the survey variables. 
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When the unit level survey costs hc  per stratum are not known or may be assumed to be equal, 

constraint (2.17) may be replaced by 
1

H

hh
n n


  where n  is the (maximum) overall sample size. 

Both formulations A and B present non-linearity: constraint (2.9) or (2.14) in Formulation A, and the 

objective function in Formulation B. Therefore a first alternative one could use to resolve the non-linearity 

problem in these two Formulations would be one of the methods of non-linear programming or convex 

programming (Bazaraa, Sheralli and Shetty 2006; Luenberger and Ye 2008) that can deal with constraints, 

as for example penalty based methods or multiplier methods, amongst others. Nevertheless, application of 

such methods tends to produce solutions (sets of samples sizes to allocate in the strata) that, in general, are 

non-integers. In addition, when such solutions are rounded to obtain feasible sample sizes, there’s no 

guarantee to obtain a global optimum (Wolsey 1998) in terms of minimizing the corresponding objective 

functions. 

Alternatively, given that the solutions (sample sizes) must be integers, one could consider applying 

integer programming methods, such as Branch and Bound  (Land and Doig 1960; Wolsey 1998; 

Wolsey and Nemhauser 1999). However, the non-linearity present in both formulations prevents the 

immediate application of such methods. 

With these issues in mind, in the next section we propose two new formulations for integer 

programming that circumvent these problems and are equivalent to the Formulation A, defined jointly by 

(2.7), (2.8), (2.9) and (2.10), and Formulation B, defined jointly by (2.20), (2.16), (2.17), (2.18) and 

(2.19). More specifically, from the resolution of these new formulations it is possible to obtain integer 

sample sizes  hn  for the sample allocation which satisfy the constraints established for each problem and 

also lead to a global optimum (Wolsey 1998) either for the objective function defined in (2.7), or for the 

objective function defined in (2.20), respectively. 

 
3  Proposed formulations 
 

From an optimization point of view, solving the problems defined by (2.7)  (2.10) or by (2.16) 
(2.20) consists of determining 1 2, , Hn n n  chosen from the sets defined by  min , , ,h hA n N   

1, , ,h H   that the constraints in each of these problems are satisfied and the corresponding objective 

function is minimized. As already indicated, a standard minimum sample size per stratum of min 2n   is 

considered here to define the sets ,hA  but this value may be changed as needed to accommodate specific 

survey requirements. 

Taking this approach, a new formulation may be considered where the decision variables are indicator 

variables of which elements of the sets  1, ,hA h H   will be chosen. For this purpose, we introduce 

the binary variable hkx  taking the value 1 if the sample size hk A  is allocated to stratum ,h  and value 0 

if this sample size is not allocated to stratum , 1, , .h h H   

Considering the formulations previously presented and these new binary variables, we may write two 

integer programming formulations where the decision variables (i.e., the unknowns to be determined) are 

of the 0 1  type, therefore configuring a binary integer programming problem (Wolsey and Nemhauser 

1999). The formulation equivalent to Formulation A is given by: 
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Formulation C 
 

  
min1

Minimize  hH N

h hkh k n
c k x

    (3.1) 

 
min

s.t. 1 1, ,hN

hkk n
x h H


     (3.2) 

 
min

1 1
 1,   1, ,

hN
H Hhk

h hj hjh h
k n

x
N p p j m

k 



  

 
     (3.3) 

   min0,1 ,   , , , 1, , .hk hx k n N h H     (3.4) 

In Formulation C, constraint (3.2) ensures that, for each of the strata, there will be exactly one hkx  

variable taking the value one. This is equivalent to ensuring the choice of only one value k  (the sample 

size) from each set  1, , .hA h H   Constraint (3.3) is equivalent to constraint (2.9) or its equivalent 

(2.14) in Formulation A. This formulation contemplates potentially varying unit survey costs for the 

various strata. If this is not necessary, the objective function in (3.1) may be redefined as  

 
min1

Minimize  .hH N

hkh k n
k x

    (3.5) 

In order to help with the understanding of the proposed formulation, consider the following example.  
 

Example 1: Suppose that there are three population strata  3H   with 1 23, 5N N   and 3 4,N   

that the unit survey costs are the same across strata (say 1 )hc h   and only one survey variable 

 1 .m   Formulation C would then look like: 

 

 11 12 13 21 22 23 24 25 31 32 33 34Minimize 1 2 3 1 2 3 4 5 1 2 3 4 x x x x x x x x x x x x            (3.6) 

 11 12 13s.t. 1x x x    (3.7) 

 21 22 23 24 25 1x x x x x      (3.8) 

 31 32 33 34 1x x x x     (3.9) 

 
   

 
1 11 11 12 13 11 2 21 21 22 23 24 25 21

3 31 31 32 33 34 31

1 1 1 1 1 1 1    1     
2 3 2 3 4 5

1 1 1 1    1
2 3 4

N p x x x p N p x x x x x p

N p x x x x p

         

    
 (3.10) 

  11 12 13 21 22 23 24 25 31 32 33 34, , , , , , , , , , , 0,1 .x x x x x x x x x x x x   (3.11) 

Formulation B may also be translated to this new approach of using the binary variables as follows. 
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Formulation D 
 

 
min

2 2
21 1

1
Minimize hm H N hk

j h hjj h k n
j

x
w N S

Y k  


 
 

    (3.12) 

 
min

s.t. 1 1, ,hN

hkk n
x h H


     (3.13) 

  
min1

 hH N

h hkh k n
c k x C

 
   (3.14) 

   min0,1 ,  , , , 1, , .hk hx k n N h H     (3.15) 

In Formulation D the objective function (3.12) is equivalent to the objective function (2.20). Constraint 

(3.13) is equivalent to constraint (2.16). Constraint (3.14) is equivalent to constraint (2.17) and ensures 

that the total variable cost of the survey will not exceed the allocated budget .C  In case we do not have 

information on unit survey costs per strata, or wish to consider that they are the same across the strata, we 

replace constraint (3.14) by 

 
min1

.hH N

hkh k n
k x n

 
   (3.16) 

In order to illustrate the proposed formulation, consider the following example.  

 

Example 2: Suppose that there are two population strata  2H   with 1 3N   and 2 4,N   with two 

survey variables  2 ,m   equal unit survey costs for both strata, importance weights jw  equal to 1
2  for 

both survey variables and a total sample size of 5.n   Formulation D would then look like: 
 

 

2 2 2 2 2
1 1 1 11 12

11 12 13 2 2
1 2

2 2 2 2 2 2
2 2 2 2 21 22

21 22 23 24 2 2
1 2

1Minimize   
1 2 3 2

1     
1 2 3 4 2

N N N S S
x x x

Y Y

N N N N S S
x x x x

Y Y

          

          

 (3.17) 

 11 12 13s.t. 1x x x    (3.18) 

 21 22 23 24 1x x x x     (3.19) 

 11 12 13 21 22 23 241 2 3 1 2 3 4 5x x x x x x x        (3.20) 

  11 12 13 21 22 23 24, , , , , , 0,1 .x x x x x x x   (3.21) 

In this paper, these two formulations were resolved applying a method of implicit enumeration called 

.Branch and Bound  Branch and Bound  (Wolsey 1998, Wolsey and Nemhauser 1999) methods 

obtain the optimal solution for binary integer programming problems efficiently, by considering the 
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resolution of a subset of problems associated with the feasible region for the problem. These methods 

were developed from the pioneer work of Land and Doig (1960). 

The solutions for both Formulations C and D of the approach, labelled BSSM (the initials for Brito, 

Silva, Semaan and Maculan), were obtained using the R package .Rglpk  The R code we developed is 

available on request. The package Rglpk  contains a set of procedures that can be applied for solving 

linear and integer programming problems.  

For comparison purposes in the case of our Formulation C, we also considered in our numerical 

illustrations an algorithm proposed by (Bethel 1985 and 1989) which is available in the R package 

.SamplingStrata  This algorithm relies on the Kuhn-Tucker Theorem, and uses the Lagrange multipliers 

(Bazaraa, et al. 2006). In the case of our Formulation D, we compared our approach with a ‘textbook 

method’ proposed in Cochran (1977, Section 5.A.4), as suggested by the Associate Editor. 

 
4  Numerical results 
 

This section provides results for the application of the selected multivariate optimum allocation 
approaches to a set of population datasets. The approaches considered include: 
 

 The BSSM algorithms developed to solve Formulations C and D provided in Section 3; 
 An improved version of Bethel’s algorithm (Bethel 1989) developed by Ballin and Barcarolli 

(2008); 
 The textbook method proposed in Cochran (1977, Section 5.A.4). 

 

Eleven population datasets were used for the numerical illustration, but for space considerations, here 

we report only the results for three of these populations. The three selected populations are described in 

tables A1 through A6 in Appendix A. Table A1 provides a brief description of each survey population and 

provides the list of the corresponding survey variables. Table A2 provides information about how each 

population was stratified prior to determining the optimum allocation. In particular, for the survey dataset 

called MunicSw  the strata had been previously defined. The other two populations were stratified using a 

stratification algorithm available in the R package stratification  or a classic meansk   clustering 

method available in the base  R package. 

Table A3 presents the number of population strata   ,H  the number of survey variables   ,m  and the 

population size  N  for each of the populations considered. Tables A4 through A6 provide the population 

counts, means, and standard deviations per stratum for the survey variables considered in each of the three 

survey populations considered. 

The results of all the numerical experiments reported here were obtained using the R packages and 

functions mentioned, and using a Windows 7 desktop computer with 24GB of RAM and with eight i7 

processors of 3.40GHz. Processing time ranged from miliseconds (for the relatively small MunicSw  

population) to less than 4 seconds (for the larger SchoolsNortheast  population, under formulation C). 

This demonstrates that the proposed formulations provide a feasible and efficient alternative for 

multivariate optimum allocation problems of small and medium size, for populations of sizes  N  in 

thousands and even tens of thousands.  
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Tables 4.1 through 4.3 provide the target coefficients of variation  CVj  for each of the survey 

variables, the sample sizes obtained using the algorithm to solve proposed Formulation C  BSSMn  and 

Bethel’s algorithm  Bethel ,n  and the achieved coefficients of variation for the estimators of totals of the 

survey variables considered in each population under the two algorithms compared. 

 

Table 4.1 
Results for the CoffeeFarms  population 
 

 Algorithm for Formulation C Bethel’s Algorithm 

CVj  

 %  

BSSMn   1CV t  

 %  

 2CV t  

 %  

 3CV t  

 %  

Betheln   1CV t  

 %  

 2CV t  

 %  

 3CV t  

 %  

5 2,545 1.24 5.00 2.92 2,546 1.23 5.00 2.91 
10 754 3.30 10.00 7.01 755 3.30 9.99 7.07 
15 347 5.21 15.00 11.01 349 5.11 14.95 10.85 

 

Table 4.2 
Results for the SchoolsNortheast  population 
 

 Algorithm for Formulation C Bethel’s Algorithm 

CVj  

 %  

BSSMn   1CV t  

 %  

 2CV t  

 %  

Betheln   1CV t  

 %  

 2CV t  

 %  

2 1,624 2.00 1.79 1,628 2.00 1.78 
5 294 5.00 4.31 299 4.96 4.23 

10 80 9.93 8.24 83 9.72 8.13 
 

Table 4.3 
Results for the MunicSw  population 
 

 Algorithm for Formulation C Bethel’s Algorithm 

CVj  

 %  

BSSMn   1CV t  

 %  

 2CV t  

 %  

 3CV t

 %  

 4CV t

 %  

Betheln   1CV t

 %  

 2CV t  

 %  

 3CV t  

 %  

 4CV t

 %  

5 1,527 2.01 3.88 5.00 4.41 1,529 2.00 3.88 4.99 4.40 
10 761 3.61 7.27 9.99 8.77 763 3.60 7.25 9.97 8.75 
15 439 5.01 10.22 14.98 13.07 441 4.95 10.16 14.94 13.03 

 

As expected, in all cases the sample sizes obtained by solving Formulation C were smaller than (bold) 

or equal to those obtained using Bethel’s algorithm. However, the improvements were generally not 

substantial. Nevertheless the proposed algorithm managed to improve upon the current best method in the 

nine scenarios considered (three populations times three levels for the target CVs). The improvements 

appeared to be a bit larger for the SchoolsNortheast  Population, where the number of strata is also 

larger. Similar results (not shown here for conciseness but available from the authors on request) were 

obtained for the other eight populations considered in an initial version of the paper. 

Tables 4.4 to 4.6 provide the results of applying Formulation D and the textbook method proposed in 

Cochran (1977, Section 5.A.4) to the same three survey populations. Now the goal is to minimize the 

weighted relative variance of the HT estimates of total, while keeping the overall sample size or cost. The 

first line in each of these tables contains the total sample sizes considered for the allocation. These sample 

sizes correspond to sampling fractions of 10%, 20% and 30% of the corresponding population sizes  N  
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respectively, as indicated in the second line in each of the tables. The subsequent lines provide the 

allocation of the total sample into the strata, the coefficients of variation achieved for the HT estimates of 

totals of the survey variables considering the allocation, and the sum of the coefficients of variation 

  CV ,it  which is a summary measure of efficiency across all survey variables. 

The importance weights were taken as equal across all survey variables, and the unit survey costs were 

taken as equal across all strata, in each population, for these applications. 

 

Table 4.4 
Results for the CoffeeFarms  population 
 

n  2.047 4.094 6.142 
Sampling fraction  10% 20% 30% 

Result  BSSM-D Textbook BSSM-D Textbook BSSM-D Textbook 

1n  1,174 1,124 2,483 2,340 3,792 3,625 

2n  662 737 1,400 1,544 2,139 2,306 

3n  211 186 211 210 211 211 

 1CV t  1.02 1.14 0.62 0.62 0.42 0.42 

 2CV t  5.78 5.79 3.62 3.65 2.61 2.63 

 3CV t  2.86 2.98 1.73 1.73 1.19 1.17 

 CV it  9.66 9.91 5.97 6.00 4.22 4.22 

 
Table 4.5 
Results for the SchoolsNortheast  population 
 

n  7,508 15,017 22,525 
Sampling fraction  10% 20% 30% 

Result  BSSM-D Textbook BSSM-D Textbook BSSM-D Textbook 

1n  82 58 82 60 82 66 

2n  36 33 62 53 53 62 

3n  7 6 7 6 7 6 

4n  206 214 465 433 771 611 

5n  1,083 1,000 2,091 1,962 2,671 2,121 

6n  447 452 891 914 1,428 1,436 

7n  361 371 711 750 1,182 1,175 

8n  2,995 2,989 5,963 6,055 9,088 9,634 

9n  976 1,023 1,965 2,069 3,078 3,229 

10n  399 419 800 849 1,331 1,338 

11n  797 813 1,742 1,647 2,596 2,612 

12n  119 130 238 219 238 235 

 1CV t  0.86 0.98 0.54 0.69 0.39 0.54 

 2CV t  0.73 0.72 0.47 0.47 0.35 0.34 

 CV it  1.59 1.70 1.01 1.16 0.74 0.88 
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Table 4.6 
Results of formulation D for the MunicSw  population 
 

n  290 579 869 
Sampling fraction  10% 20% 30% 

Result  BSSM-D Textbook BSSM-D Textbook BSSM-D Textbook 

1n  67 59 134 118 202 182 

2n  68 77 136 153 206 233 

3n  40 35 80 70 120 107 

4n  58 47 116 93 171 128 

5n  32 43 65 85 97 129 

6n  16 21 31 43 47 65 

7n  9 8 17 17 26 25 

 1CV t  5.93 5.40 4.01 3.61 3.10 2.75 

 2CV t  12.53 12.24 8.36 8.12 6.36 6.14 

 3CV t  19.49 20.19 12.46 13.01 8.95 9.56 

 4CV t  16.91 17.45 10.85 11.27 7.84 8.30 

 CV it  54.86 55.28 35.68 36.01 26.25 26.75 

 
As expected, in all three cases the sum of the coefficients of variation obtained by solving 

Formulation D were smaller than (bold) those obtained using the textbook algorithm. However, the 

textbook algorithm provided smaller CVs for some of the survey variables, in particular for the MunicSw  

population. The improvements were generally not very large, but again were slightly larger for the 

SchoolsNortheast  population. In this comparison, however, the allocations are quite different between 

the two methods. 

 
5  Final remarks 
 

In this paper we provided two new formulations leading to the achievement of the global minimum in 

multivariate optimum allocation problems. These exact integer programming formulations can be 

efficiently implemented using off the shelf free software (namely the Rglpk  R package). In addition, the 

proposed formulations enable the definition of minimum sample sizes per strata, something which is 

clearly of interest in practice to avoid allocations with sample sizes less than 2, for example, which would 

lead to difficulties regarding variance estimation. Such minimum sample sizes may be set at larger values 

(say 5, 10, 30 or some other number) to ensure that the samples are large enough to tolerate some 

nonresponse or to ensure estimation is feasible for each stratum, if the strata are used as estimation 

domains. 

The proposed approach improves upon the existing methods by tackling the allocation problem 

directly, and dealing with the non-linearity of either the objective function or the constraints, as well as the 

requirement that the solution provides only integer sample sizes for the strata. In the literature, previously 
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existing methods tackle the problem with approaches which are not guaranteed to reach the global 

optimum, or that produce real-valued allocations that must be rounded to integer-values. 

In practice, finding real-valued allocations is not a big problem, unless the stratum population sizes hN  

are very small or when there is a very large number of strata. In the first case, sampling one unit more, or 

less, can make a big change in the sampling fractions, which can cause some large impacts in the 

variances. In the second case, rounding the allocated sample sizes can make a difference in the total 

sample size .n  When all the stratum population sizes hN  are relatively large, and the number of strata is 

reasonable, rounding non-integer sample sizes will not create a problem.  

In this paper we carried out some limited numerical work, aimed essentially at demonstrating the 

feasibility of the proposed approach. The results obtained using Formulation C of the proposed approach 

are comparable to those achieved using the Bethel method, while providing integer-valued allocations that 

correspond to the global optimum. But given that only little differences were found between the two 

methods (BSSM and Bethel) in the applications considered, there may be little incentive to move to the 

BSSM method. The results obtained under Formulation D showed modest improvements over the 

textbook method used in the comparison.  

Further research is needed to test the approach for larger problems and to assess its merits compared to 

other methods under other practical scenarios. An important advantage of the proposed approach is that 

both formulations can be implemented using off the shelf software, as indicated. 
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Appendix A 
 

Description of the survey populations considered in the numerical experiment 

 
Table A1 
Description of the populations 
 

Population Description  Survey Variables  y  

CoffeeFarms Coffee farms in the state of Paraná, Brazil, from 1996 
Agricultural Census. 

Number of Coffee Trees 
Total Farm Area 
Coffee Production 

SchoolsNortheast Data from the 2012 census of schools, by school, for schools 
in the Northeast region of Brazil. 

Number of classrooms 
Number of employees 

MunicSw Information about Swiss municipalities from the package 
.SamplingStrata  

Area of Farming 
Industrial Area 
Number of Households 
Population 
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Table A2 
Stratification of the populations 
 

Population Stratification 

CoffeeFarms Stratified considering the Number of Coffee Trees variable, using the Kozak algorithm 
available in the Stratification  package. 

SchoolsNortheast Twelve strata were formed considering: school type (4 classes), and school size - number of 
students (3 classes). School size stratification was performed using meansk   clustering 
algorithm within each school type. 

MunicSw This population is available from the SamplingStrata  package and the strata correspond to 
regions of Switzerland.  

 
Table A3 
Number of strata, number of survey variables and total size for the survey populations considered 
 

Population H  m N  

CoffeeFarms 3 3 20,472 
SchoolsNortheast 12 2 75,084 
MunicSw 7 4 2,896 

 
Table A4 
Population summaries per stratum CoffeeFarms  
 

Summary  Stratum  
 1h   2h   3h   

hN  17,821 2,440 211 

1hY  4,291 26,688 218,712 

2hY  22 84 488 

3hY  2,671 13,204 129,033 

1hS  2,873 15,541 193,366 

2hS  69 262 583 

3hS  4,611 24,704 200,447 

 
Table A5 
Population summaries per stratum SchoolsNortheast  
 

Stratum hN  1hY  2hY  1hS  2hS  

1h   82 45.1 54.0 309.2 24.9 
2h   63 23.9 146.3 14.4 92.6 
3h   7 80.9 700.4 29 342.5 
4h   783 16.2 95.7 6.4 49.5 
5h   2,676 10.9 57.7 21.6 23.7 
6h   3,958 6.1 26.7 4.2 17.9 
7h   2,172 13.6 76.8 5.7 27.9 
8h   45,243 2.5 9.3 3 8.8 
9h   9,674 7.7 38.0 3.2 17.9 

10h   1,743 17.3 49.1 9.2 36.7 
11h   8,445 7.3 15.3 4.1 13.5 
12h   238 37.7 140.8 18.4 88.9 
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Table A6 
Population summaries per stratum MunicSw  
 

 Statum 

Summary 1h   2h   3h   4h   5h   6h   7h   

hN  589 913 321 171 471 186 245 

1hY  262.5 367.2 262.7 438.0 429.5 668.9 47.0 

2hY  5.5 5.3 9.7 13.3 7.9 11.0 4.1 

3hY  963.9 782.1 1,345.2 3,319.1 906.0 1,465.2 550.7 

4hY  2,252.5 1,839.4 3,099.5 7,297.7 2,226.0 3,675.8 1,252.4 

1hS  220.5 342.4 173.2 290.2 414.2 568.7 65.3 

2hS  15.1 13.0 19.4 29.7 14.9 15.5 8.2 

3hS  4,600.9 2,794.7 5,003.5 14,610.0 2,178.6 2,802.1 1,197.5 

4hS  9,540.3 5,621.6 9,764.5 28,589.4 4,759.4 5,914.5 2,514.9 
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