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Abstract 

Félix-Medina and Thompson (2004) proposed a variant of link-tracing sampling to sample hidden and/or hard-
to-detect human populations such as drug users and sex workers. In their variant, an initial sample of venues is 
selected and the people found in the sampled venues are asked to name other members of the population to be 
included in the sample. Those authors derived maximum likelihood estimators of the population size under the 
assumption that the probability that a person is named by another in a sampled venue (link-probability) does 
not depend on the named person (homogeneity assumption). In this work we extend their research to the case 
of heterogeneous link-probabilities and derive unconditional and conditional maximum likelihood estimators of 
the population size. We also propose profile likelihood and bootstrap confidence intervals for the size of the 
population. The results of simulations studies carried out by us show that in presence of heterogeneous link-
probabilities the proposed estimators perform reasonably well provided that relatively large sampling fractions, 
say larger than 0.5, be used, whereas the estimators derived under the homogeneity assumption perform badly. 
The outcomes also show that the proposed confidence intervals are not very robust to deviations from the 
assumed models. 

 
Key Words: Bootstrap; Capture-recapture; Chain referral sampling; Maximum likelihood estimator; Profile likelihood 

confidence interval; Snowball sampling. 

 
 

1  Introduction 
 

Conventional sampling methods are not appropriate for sampling hidden or hard-to-reach human 
populations, such as drug users, sexual-workers and homeless people, because of the lack of suitable 
sampling frames. For this reason, several specific sampling methods for this type of population have been 
proposed. See Magnani, Sabin, Saidel and Heckathorn (2005) and Kalton (2009) for reviews of some of 
them. According to Heckathorn (2002) two types of sampling methods for hidden populations are the 
most commonly used in actual studies. One is location sampling, also known as time-and-space sampling, 
aggregation point sampling or intercept point sampling. The other is snowball sampling, also known as 
link-tracing sampling (LTS) or chain referral sampling. 

In location sampling a frame of primary units is constructed. The primary units are combinations of 
places and time segments where the elements of the population tend to gather. The frame is not assumed 
to cover the whole population. A probability sample of primary units is selected and from each sampled 
unit a sort of systematic sample of elements is drawn. Although design-based estimators of different 
parameters can be constructed, the main drawback of location sampling is that inferences are valid only 
for the part of the population covered by the frame. For reviews of this method see MacKellar, Valleroy, 
Karon, Lemp and Janssen (1996), Munhib, Lin, Stueve, Miller, Ford, Johnson and Smith (2001), 
McKenzie and Mistianen (2009), Semaan (2010) and Karon and Wejnert (2012). Location sampling has 
been used in the Young Men’s Survey to estimate HIV seroprevalence in young men who have sex with 



350 Félix-Medina et al.: Combining link-tracing sampling and cluster sampling to estimate the size of a hidden population 
 

 
Statistics Canada, Catalogue No. 12-001-X 

men. (See McKellar et al. 1996.) In this study the primary units were venues attended by young men such 
as dance clubs, bars and street locations. 

In LTS an initial sample of members of the population is selected and the sample size is increased by 
asking the sampled people to name or to refer other members of the population to be included in the 
sample. The named people who are not in the initial sample might be asked to refer other persons, and the 
process might continue in this way until a specified stopping rule is satisfied. For reviews of several 
variants of LTS see Spreen (1992), Thompson and Frank (2000) and Johnston and Sabin (2010). LTS was 
used in the Colorado Springs study on heterosexual transmission of HIV/AIDS. (See Potterat, 
Woodhouse, Rothenberg, Muth, Darrow, Muth and Reynolds 1993; Rothemberg, Woodhouse, Potterat, 
Muth, Darrow and Klovdahl 1995 and Potterat, Woodhouse, Muth, Rothenberg, Darrow, Klovdahl and 
Muth 2004.) In this research an initial non probabilistic sample of people presumably at high risk of 
acquiring and transmitting HIV was obtained and they were asked for a complete enumeration of their 
personal contacts who were also included in the sample. 

Frank and Snijders (1994) proposed a variant of LTS that allows the sampler to estimate the population 
size. In their variant they assume an initial Bernoulli sample, that is, that every element of the population 
has the same probability of being included in the sample and that the inclusions are independent. In 
addition, they assume that the probability that person i  in the initial sample refers person j  in the 
population, which we will call link-probability, is a constant, and that the referrals are independent. We 
will name the first of the additional premises the assumption of homogeneity of the link-probabilities. 
Based on these hypotheses these authors derive several estimators of the population size. They indicate 
that their method yielded reasonable estimates of the number of heroin users in Groningen. However, 
Dávid and Snijders (2002) reported an underestimate of the number of homeless in Budapest using this 
method. They indicate that the underestimation might be caused by deviations from the assumption of an 
initial Bernoulli sample. 

The problem of satisfying in actual applications of LTS the assumption of an initial Bernoulli sample 
of members of the population motivated Félix-Medina and Thompson (2004) to develop a variant of LTS 
in which the initial sample is selected by a probabilistic design. To do this they assume, as in location 
sampling, that the sampler can construct a sampling frame of sites or venues where the members of the 
population tend to gather, such as bars, parks and blocks. The frame is not assumed to cover the whole 
population, but only a portion of it. Then, a simple random sample without replacement (SRSWOR) of 
sites is selected and the members of the population who belong to the sampled sites are identified. Finally, 
as in ordinary LTS, the people in the initial sample are asked to name other members of the population. 

These authors propose maximum likelihood estimators (MLEs) of the population size derived under a 
probability model that describes the numbers of people found in the sampled sites and a model that 
regards that the link-probabilities between the elements of the population and the sampled sites are 
homogeneous, that is, that they depend on the sampled sites, but not on the potentially named people. 
Later, Félix-Medina and Monjardin (2006) consider this same variant of LTS and propose estimators of 
the population size derived also under the assumption of homogeneity, but using a Bayesian-assisted 
approach, that is, the functional forms of the estimators are obtained using the Bayesian approach, but 
inferences are made under the frequentist approach. 

Although the variant of LTS proposed by Félix-Medina and Thompson (2004) has not been used in 
any actual study, we would expect that estimators of the population size derived under the assumption of 
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homogeneity will present problems of underestimation if this hypothesis is not satisfied as occurs in 
capture-recapture studies. We think this because these estimators resemble those used in that field. 

In this paper, we extend the work by Félix-Medina and Thompson (2004) to the case in which the link-
probabilities depend on the named people, that is, we assume heterogeneous link-probabilities. The 
structure of the paper is as follows. In Section 2 we introduce the LTS variant proposed by Félix-Medina 
and Thompson (2004). In Section 3 we present a model for the link-probabilities that takes into account 
their heterogeneity and derive unconditional and conditional MLEs of the population size. In Section 4 we 
construct profile likelihood and bootstrap confidence intervals for the population size. In Section 5 we 
present a procedure for determining the size of the initial sample in order to achieve a specified value of 
the relative error of the estimation. In Section 6 we describe the results of two simulation studies, and 
finally, in Section 7 we present some conclusions and suggestions for future research. 

 
2  Sampling design and notation  
 

Since in this work we consider the variant of LTS proposed by Félix-Medina and Thompson (2004), 

we will briefly describe it. Thus, let U  be a finite population of an unknown number   of people. We 

assume that a portion 1U  of U  is covered by a sampling frame of N  sites 1 , , ,NA A  where the 

members of the population can be found with high probability. We suppose that we have a criterion that 

allows us to assign a person in 1U  to only one site in the frame. Notice that we are not assuming that a 

person could not be found in different sites, but that, as in ordinary cluster sampling, we are able to assign 

him or her to only one site, for instance, the site where he or she spends most of his or her time. Thus, we 

can consider the sites in the frame as clusters of people. Let iM  denote the number of members of the 

population that belong to the site , = 1, , .iA i N  From the previous assumption it follows that the 

number of people in 1U  is 1 1
=

N

iM   and the number of people in the portion 2 1=U U U  of U  

that is not covered by the frame is 2 1= .     

The sampling design is as follows. A SRSWOR AS  of n  sites 1 , , nA A  is selected from the frame 

and the iM  members of the population who belong to the sampled site iA  are identified, = 1, , .i n  Let 

0S  be the set of people in the initial sample. Observe that the size of 0S  is 
1

= .
n

iM M  The people in 

each sampled site are asked to name other members of the population. We will say that a person and a site 

are linked if any of the people who belong to that site names him or her. Finally, let 1S  and 2S  be the sets 

of people in 1 0U S  and 2 ,U  respectively, who are linked to some site or sites in .AS  

 
3  Maximum likelihood estimators of 1 2,   and   
 

3.1  Probability models 
 

To construct MLEs of the ’s  we need to specify models for the observed variables. Thus, as in Félix-

Medina and Thompson (2004), we will suppose that the numbers 1 , , NM M  of people who belong to 
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the sites 1 , , NA A  are independent Poisson random variables with mean 1.  Therefore, the joint 

conditional distribution of  1 1, , ,nM M M   given that 11
=

N

iM   is multinomial with probability 

mass function (pmf): 

  
 

1

1
1 1

1
1

! 1
, , , = 1 .

! !

m m

n n

i

n
f m m m

N N
m m

         
   

  (3.1) 

To model the links between the members of the population and the sampled sites we will define the 

following random variables:   = 1k
ijX  if person j  in k iU A  is linked to site iA  and   = 0k

ijX  if 

ij A  or that person is not linked to , = 1, , , = 1, , .i kA j i n   We will suppose that given the 

sample AS  of sites the   ’sk
ijX  are independent Bernoulli random variables with means   ’s,k

ijp  where the 

link-probability  k
ijp  satisfies the following Rasch model:  

       
    

    
exp

= Pr = 1 , = ,  ; = 1, , .
1 exp

k k
i jk k k

ij ij j A k ik k
i j

p X S j U A i n
  

  
   

  (3.2) 

It is worth noting that this model was considered by Coull and Agresti (1999) in the context of capture-

recapture sampling. In this model  k
i  is a fixed (not random) effect that represents the potential that the 

cluster iA  has of forming links with the people in ,k iU A  and  k
j  is a random effect that represents the 

propensity of the person kj U  to be linked to a cluster. We will suppose that  k
j  is normally 

distributed with mean 0 and unknown variance 2
k  and that these variables are independent. The 

parameter 2
k  determines the degree of heterogeneity of the  ’s :k

ijp  great values of 2
k  imply high degree 

of heterogeneity. 

Before we end this subsection, we will make some comments about the assumed models. First, the 

multinomial distribution of the observed ’siM  (which is the one used in the likelihood function) implies 

that people are distributed independently and with equal probability on the sites of the sampling frame. 

This assumption is difficult to satisfy in actual situations; however, as will be shown later, the likelihood 

function depends on the observed ’siM  basically through their sum M  and since NM n  is a design-

based estimator of 1 ,  that is, it is a distribution free estimator, it follows that the MLE of 1  will be also 

robust to deviations from the multinomial distribution of the ’s.iM  Nevertheless, deviations from this 

model will affect the performance of variance estimators and confidence intervals derived under this 

assumption. Second, the Rasch model given by (3.2) implies the following:  i  the link-probability  k
ijp  

depends only on two effects: the sociability of the people in cluster iA  and that of person ;k ij U A   

 ii  the two effects are additive, and  iii  for any site iA  in the frame and any person 
 , > 0.k

i ijj U A p   Model (3.2) is a particular case of a generalized linear mixed model. (See Agresti 

2002, Section 2.1, for a brief review of this type of model.) Therefore, we could incorporate the network 

structures of the people in cluster iA  and person k ij U A   to model the link-probability  k
ijp  by 

extending model (3.2) to one that includes covariates associated with person ,j  with cluster ,iA  and their 

interaction terms. However, if we used a more general model than (3.2), we would make the problem of 

inference much more difficult than that we face in this work. Thus, in spite of the relative simplicity of 
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model (3.2), we expect that it still captures the heterogeneity of the link-probabilities and allow us to make 

inferences about the ’s  at least at the correct order of magnitude. 

 
3.2  Likelihood function 
 

The easiest way of constructing the likelihood function is to factorize it into different components. One 

of them is associated with the probability of selecting the initial sample 0 ,S  which is given by the 

multinomial distribution (3.1), that is,  

 
 

  11
MULT 1

1

!
1 .

!
mL n N

m
 

  
 

 

Two other components are associated with the conditional probabilities of the configurations of links 

between the people in 0 , = 1, 2,kU S k  and the clusters ,i AA S  given .AS  To derive these factors 

we need to compute the probabilities of some events. Let       1= , ,k k k
j j njX XX   be the n  dimensional 

vector of link-indicator variables  k
ijX  associated with the thj  person in 0 .kU S  Notice that  k

jX  

indicates which clusters i AA S  are linked to that person. Let  1= , , nx xx   be a vector whose thi  

element is 0  or 1, = 1, , .i n  Because of the assumptions we made about the distributions of the 

variables   ’s,k
ijX  we have that the conditional probability, given   ,k

j  that  k
jX  equals ,x  that is, the 

probability that the thj  person is linked to only those clusters i AA S  such that the thi  element ix  of x  

equals 1, is  

        
    
    

1

=1 =1

exp
Pr = , = 1 = .

1 exp
i i

k kn n
x x i i jk k k k

j j A ij ij k k
i i i j

x
S p p

                 X x  

Therefore, the probability that the vector of link-indicator variables associated with a randomly selected 

person in 0kU S  equals x  is  

   
  
    

=1

exp
, = ,

1 exp

kn
i i kk

k k k
i i k

x z
z dz

z

      
   x α  

where     1= , ,k k
k n α   and ( )   denotes the probability density function of the standard normal 

distribution   N 0,1 .  

As in Coull and Agresti (1999), instead of using    ,k
k k x α  in the likelihood function we will use its 

Gaussian quadrature approximation    ,k
k k x α  given by 

    
  
  =1 =1

exp
, = ,

1 exp

kq n
i i k tk

k k tk
t i i k t

x z

z

      
   x α  (3.3) 
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where q  is a fixed constant and  tz  and  t  are obtained from tables. 

We are now in conditions of computing the two above mentioned factors of the likelihood function. 

Let   1= , , : = 0,1; = 1, , ,n ix x x i n    the set of all n  dimensional vectors such that each one 

of their elements is 0 or 1. For  1= , , ,nx x  x   let  kRx  be the random variable that indicates the 

number of distinct people in 0kU S  whose vectors of link-indicator variables are equal to .x  Finally, let 

kR  be the random variable that indicates the number of distinct people in 0kU S  that are linked to at 

least one cluster .i AA S  Notice that  
{ }

= ,k
kR R

 xx 0
 where 0  denotes the n  dimensional vector 

of zeros. 

Because of the assumptions we made about the distributions of the variables ( ) ’s,k
ijX  we have that the 

conditional joint probability distribution of the variables    
(1)R

x x 0
 and 1 1 ,m R    given that 

  =1= ,n
i i iM m  is a multinomial distribution with parameter of size 1 m   and probabilities 

      
1

1 1,


 x x 0
α  and    1

1 1, , 0 α  and that of the variables     
2R

x x 0
 and 2 2R   is a 

multinomial distribution with parameter of size 2  and probabilities       
2

2 2,


 x x 0
α  and 

   2
2 2, . 0 α  

Therefore, the factors associated with the probabilities of the configurations of links between the 

people in 0 , = 1, 2,kU S k  and the clusters i AA S  are  

 
 

   

   
 

   
1

1 11 1 1
1 1 1 1 1 1 1 1

1 1

!
, , , ,

!

r m rm
L

m r
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

 
                x

x 0
x 0

α α α   

and  

 
   

   
 

   
2

2 22 2 2
2 2 2 2 2 2 2 2

2 2

!
, , , , .

!

r r
L

r

 




               x

x 0
x 0

α α α   

The last component of the likelihood function is associated with the conditional probability, given ,AS  

of the configuration of links between the people in 0S  and the clusters .i AA S  To derive this factor 

firstly observe that by the definition of the indicator variables   ’s,k
ijX  the thi  element of the vector of 

link-indicator variables associated with a person in i AA S  is equal to zero. Thus, let =i  

  1 1 1, , , , , : = 0,1,  ,  = 1, , ,i i n jx x x x x j i j n      that is, the set of all  1n   dimensional 

vectors obtained from the vectors in   by omitting their thi  coordinate. For =x  

 1 1 1, , , , ,i i n ix x x x      let  iARx  be the random variable that indicates the number of distinct 

people in i AA S  such that their vectors of link-indicator variables, when the thi  coordinate is omitted, 

equal .x  Finally, let  iAR  be the random variable that indicates the number of distinct people in i AA S  

that are linked to at least one site , .j AA S j i   Notice that    
 

= ,i i

i

A AR R
  xx 0

 where 0  denotes 

the  1n   dimensional vector of zeros. Then, as in the previous cases, the conditional joint probability 

distribution of the variables     
i

i

AR
 x x 0

 and   ,iA
im R  given that   =1= ,n

i i iM m  is a multinomial 

distribution with parameter of size im  and probabilities        1 1,i

i

A i





 
 x x 0

α  and     1 1, ,iA i 0 α  

where           1 1 1 1
1 1 1 1= , , , , ,i

i i n


    α    and  
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    
  
    
1

1
1 1 1

1

exp
, = .

1 exp
i

n
j jA i

j i j

x z
z dz

z




      
   x α  

Therefore, the probability of the configuration of links between the people in 0S  and the clusters 

j AA S  is given by the product of the previous multinomial probabilities (one for each ),i AA S  and 

consequently the factor of the likelihood associated with that probability is  

 
 

    
 

    
 

0 1 1 1 1 1 1
=1

, , , ,
A Ai i

ii i

i

n
r m rA Ai i

i

L


 

 

             x

x 0
x 0

α α α   

where  

     
  
  
1

1
1 1 1

=1 1

exp
, = ,

1 exp
i

q n
j j tA i

t
t j i j t

x z

z




      
   x α  (3.4) 

is the Gaussian quadrature approximation to the probability     1 1, .iA i x α  

From the previous results we have that the likelihood function is given by  

         1 2 1 2 1 2 1 1 1 1 2 2 2 2, , , , , = , , , , ,L L L         α α  

where 

         1 1 1 1 MULT 1 1 1 1 1 0 1 1, , , , ,L L L L      α α α  

and 

     2 2 2 2 2 2 2 2, , , , .L L    α α  

In the comments at the end of Subsection 3.1 was indicated that the likelihood function depends on the 

’siM  basically through their sum .M  This can be seen by noting that only the factor 0L  depends directly 

through the ’s.iM  The factors MULTL  and 1L  depend on the ’siM  through ,M  whereas the factor  2L  

does not depend on the ’s.iM  

 
3.3  Unconditional maximum likelihood estimators 
 

Numerical maximization of the likelihood function  1 2 1 2 1 2, , , , ,L        with respect to the 

parameters yields the ordinary or unconditional maximum likelihood estimators (UMLEs)    ˆ,ˆ U U
k k   and 

 ˆ U
k  of ,k k   and , = 1, 2.k k  Consequently the UMLE of 1 2=     is      

1 2= .ˆ ˆ ˆU U U     Closed 

forms for the UMLEs do not exist; however, using the asymptotic approximation 

   ln ! ln ,k k k      we get the following approximations to  
1ˆ U  and  

2 :ˆ U  

  

        
 

      
1 2

1 21 2
1 1 2 2

ˆ ˆ=    and   = .
ˆ ˆ ˆ ˆ1 1 , 1 ,

U U
U U U U

M R R

n N


 

      0 0α α 
 (3.5) 
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Notice that these expressions are not closed forms since  ˆ U
k  and  ˆ U

k  depend on   ,  = 1, 2.ˆ U
k k  

Nevertheless, these expressions are useful to get formulae for the asymptotic variances of  
1ˆ U  and  

2 .ˆ U  

 
3.4  Conditional maximum likelihood estimators 
 

Another way to get MLEs of ,k k   and k  is by using Sanathanan’s (1972) approach, which yields 

conditional maximum likelihood estimators (CMLEs). These estimators are numerically simpler to 
compute than UMLEs. In addition, if covariates were used in the model for the link-probability   ,k

ijp  this 

approach could still be used to get estimators of ,k k   and ,k  whereas the unconditional likelihood 

approach could not since the values of the covariates associated with the non sampled elements would be 
unknown. 

The idea in Sanathanan’s approach is to factorize the pmf of the multinomial distributions of the 
frequencies  kRx  of the different configurations of links as follows: 

      
  

    
     

 

   
   

 

 
 

       

   

1

1 1 1

1
1 1 1 1 1 1 1 1 1

1
1 1 1 1 1 1 1 1

1
1 1 1 1 1

1 1 1 11
1 11 1

11 1 1 12 1 1 1

, , , , , ,

, , , , , , ,

, !
1 , ,

!1 ,

, , ,

i

i i

r
r m r

L f r m r m

f r m r f r m

m

m r

L L





  



       

    

    
                   

   


x

x x 0

x x 0

x
0 0

x 0 0

α α

α α

α
α α

α

α α


 



 

and 

       
    

     

 

   
   

 

 
       

   

2

2 2 2

2
2 2 2 2 2 2 2 2 2{ }

2
2 2 2 2 2 2 2 2

2
2 2 2 2 2

2 2 2 22
2 22 2

21 2 2 22 2 2 2

, , , , , ,

, , , , , , ,

, !
1 , ,

!1 ,

, , , .

i

i i

r
r r

L f r r m

f r m r f r m

r

L L





 



      

    

   
                  

   


x

x x 0

x x 0

x
0 0

x 0 0

α α

α α

α
α α

α

α α


 



 

Observe that in each case the first factor  1 ,k k kL α  is proportional to the conditional joint pmf of the 
   ,kR

x x 0
 given that  1= n

i iM m  and = ,k kR r  which is the multinomial distribution with parameter 

of size kr  and probabilities     1 ,k k


    x 0 x 0
   and that this distribution does not depend on .k  

Notice also that the second factors  12 1 1 1, ,L  α  and  22 2 2 2, ,L  α  are proportional to the 

conditional pmfs of 1R  and 2 ,R  given that  1= ,n
i iM m  which are the distributions 

  1
1Bin ,1m    0  and   2

2Bin ,1 ,   0  respectively, where  Bin ,   denotes the Binomial 

distribution with parameter of size   and probability .  
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The CMLEs  ˆ C
kα  and  ˆ C

k  of kα  and , = 1, 2k k  are obtained by maximizing numerically  

      11 1 1 0 1 1 21 2 2, ,    and   ,L L L  α α α  (3.6) 

with respect to  1 1,α  and  2 2, ,α  respectively. Note that the factors in (3.6) do not depend on 

, = 1, 2.k k   

Finally, by plugging the estimates  ˆ C
kα  and  ˆ C

k  into the factors of the likelihood function that depend 

on , = 1, 2,k k  and maximizing these factors, that is, maximizing       12 1 1 1 MULT 1ˆ, , ˆC CL L  α  and 
    22 2 2 2ˆ, , ,ˆC CL  α  with respect to 1  and 2 ,  respectively, we get that the CMLEs  

1ˆ C  and  
2ˆ C  of 1  

and 2  are given by (3.5) but replacing  ˆ U
kα  and  ˆ U

k  by  ˆ C
kα  and   , = 1, 2.ˆ C

k k  Observe that these 

expressions for  
1ˆ C  and  

2ˆ C  are closed forms. The CMLE of   is      
1 2= .ˆ ˆ ˆC C C     

 
4  Confidence intervals 
 

We will consider two types of confidence intervals (CIs) for the population sizes: profile likelihood 
and bootstrap CIs. 
 

4.1  Profile likelihood confidence intervals 
 

Several authors such as Cormack (1992), Evans, Kim and O’Brien (1996), Coull and Agresti (1999) 
and Gimenes, Choquet, Lamor, Scofield, Fletcher, Lebreton and Pradel (2005) have indicated that, in the 
context of capture-recapture sampling, profile likelihood confidence intervals (PLCIs) perform better than 
traditional Wald CIs when the sample size is not large. Some factors that affect the performance of Wald 
CIs are biases in the estimators of the population size, biases in the estimators of the variances and 
asymmetries in the distributions of the estimators of the population size. Besides, a Wald CI for the 
population size might present the drawback that its lower bound might be less than the number of captured 
elements. Notice that, with the exception of the first listed factor, none of the others affect the 
performance of PLCIs. Furthermore, Evans et al. (1996), based on Ratkowsky (1988), indicate that the 
nonlinear nature of the capture-recapture estimators is approximated by likelihood-based CIs better than 
by Wald CIs. 

Since the proposed estimators resemble those used in capture-recapture sampling and based on the 

previous comments, we should expect that also in our case PLCIs performance better than Wald CIs. It is 

worth noting that if we wanted to use Wald CIs, we would need to compute estimators of the variances of 

the proposed estimators. One alternative is to construct estimators of their asymptotic variances by using 

Sanathanan’s (1972) results; however, for n  large, say 20 or greater, obtaining these type of estimator is 

computationally very expensive because for each estimator is required the construction of a 

( 1) ( 1)n n    symmetric matrix whose elements are sums of 2 n  terms. 

To get PLCIs for 1 2,   and   we will follow Coull and Agresti’s (1999) approach. Thus, for fixed 

values 1 2,   and   of the population sizes, let 10 20,r r  and 00r  be non-negative real numbers such that 

1 1 10 2 2 20= , =m r r r r      and 1 2 00= ,m r r r     where 1,m r  and 2r  are the observed values 

of the random variables 1,M R  and 2 .R  Then  100 1 %   PLCIs for 1 2,   and   are defined as the 
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following sets:    2
1 1 10 1 10 1,1= : 2 ln ,m r r r            2

2 2 20 2 20 1,1= : 2 lnr r r        and 

   2
1 2 00 00 1,1= : 2 ln ,m r r r r          respectively, where 

         

         
1 1

2 2

1 10 1 10 1 1 1 1 11 1
,

2 20 2 20 2 2 2 2 22 2
,

ˆmax  , , ˆ , , ˆ ,

ˆmax  , , ˆ , , ˆ

r L m r r L

r L r r L

 

 

        

       
 

and 

   
10 1 2 1 2

00 1 10 2 00 10 1 2 1 2 1 2 1 2 1 2
, , , ,

ˆ ˆ( ) max , , , , , , , , , , ,ˆ ˆ ˆ ˆ
r

r L m r r r r r L
   

                 

ˆ,ˆ k k   and ˆ k  are either the UMLEs or CMLEs of ,k k   and , = 1, 2,k k  and 2
1,1  is the 

  th100 1    quantile of the chi-square distribution with 1 degree of freedom. 

Although PLCIs for 2  are not affected by a possible extra-Poisson variation of the ’siM  [or strictly 

speaking extra-multinomial dispersion of  1 , , ]nM M  because they are obtained from the likelihood 

function    2 2 2 2, ,L  α  which does not depend on these variables, we do not expect that the PLCIs for 

1  and   be robust to extra-Poisson variation of the ’s;iM  therefore we will consider adjusted PLCIs for 

1  and   that take into account this extra variation. Following the suggestion of Gimenes et al. (2005), 

the adjusted PLCIs are constructed as the previous ones but replacing the value 2
1,1  by the value 

 2
1, 1,1 ,M ns m F    where =m m n  and    22

1
= 1

n

M is m m n   are the sample mean and variance 

of the ’s,im  and 1, 1,1nF    is the   th100 1    quantile of the F  distribution with 1 and 1n   degrees of 

freedom. Observe that 2
Ms m  is obtained by dividing by 1n   the value of the Pearson chi-square test 

statistic to test the hypothesis that the conditional distribution of the observed ’s,iM  given that 

1
= ,

n

iM m  is multinomial with parameter of size m  and vector of probabilities  1 , ,1 .n n  The 

adjusted PLCIs should be used if the null hypothesis of the conditional multinomial distribution of the 

’siM  were rejected at the 100 %  level of significance, that is, if  2 2
1,1> 1 ,M ns m n    otherwise 

the unadjusted PLCIs should be used. 

It is worth noting that the calculation of PLCIs is a computationally expensive task; therefore, efficient 

numerical algorithms need to be used, such as the one proposed by Venzon and Moolgavkar (1988). 

 

4.2  Bootstrap confidence intervals 
 

We will present a variant of bootstrap to construct CIs for the population sizes 1 2,   and   based on 

either the UMLEs or the CMLEs. The proposed variant is obtained by combining the bootstrap version for 

finite populations proposed by Booth, Butler and Hall (1994) and the parametric bootstrap variant (see 

Davison and Hinkley 1997, Chapter 2). This version of bootstrap is an extension of the one used by Félix-

Medina and Monjardin (2006) in the case of homogeneous link-probabilities. 

Since our proposed version of bootstrap is a parametric variant, we need to have estimates of all the 

parameters associated with the assumed models. Until now, the only parameters that have not yet been 
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estimated are the random effects   ’s.k
j  We will now derive a predictor of   .k

j  Thus, given the subset 

0kU S  or i AA S  that contains the element ,j  the conditional joint pdf of  k
jX  and  k

j  is 

              
 

 
 

 
  

0 0

1 2 2

=1

0

, , Pr = ,  ,

1 exp 2

if  ,  = 1, 2,

k k
ij ij

k k k k k k
j j k A j j j k A j

n
x xk k k

ij ij j k
i

k

f j U S S j U S S f

p p

j U S k



       

             

 



x X x

 

or 

      
 

 
 

  
1 11 21 1 1 1 1 2

1, , 1 exp 2

if  ,  = 1, , .

x ij ij

n
x x

j j A A ij ij ji
i i

Ai

f j A S S p p

j A S i n








                

 




 

We will use as a prediction or estimate of  k
j  the value  ˆ k

j  that maximizes the conditional joint pdf of 
 k
jX  and  k

j  with the parameters k  and k  set at either their UMLEs or their CMLEs. This procedure 

yields that  ˆ k
j  is given as the solution to the following equation: 

 
   

   
 

02
1 1

ˆexp 1
= 0 if  ,  = 1, 2,

ˆ1 exp ˆ

k kn n
i jk k

ij j kk k
i i i j k

x j U S k
 

        
      

   

or 

 
   

   
 

1 1
1 1

1 1 2
1

ˆexp 1
= 0 if   ,  = 1, , ,

ˆ1 exp ˆ

n n
i j

ij j Ai
i i i i i j

x j A S i n
  

         
     

    

where  ˆ k
i  and ˆ k  denote either the UMLEs or the CMLEs of  k

i  and , = 1, , ; = 1, 2.k i n k   Note 

that this equation implies that the predictor  ˆ k
j  of  k

j  depends on the number of clusters that are linked 

to the element ,j  but not on the particular clusters to which that element is linked. Thus, if two persons j  

and j  in 0kU S  are linked to the same number of clusters in ,AS  the predictors  ˆ k
j  and  ˆ k

j  are equal 

one another. The same happens for two persons in .i AA S  

Hereinafter, we will denote by   ,ˆ k  the nearest integer to ,ˆ k  where ˆ k  denotes either the UMLE or 

the CMLE of , = 1, 2.k k  The steps of the proposed bootstrap procedure are the following. (i) Construct 

a population vector Bootm  of N  values of ’sim  by repeating N n  times, assuming that N n  is an 

integer, the observed sample of n  cluster sizes  1= , , .s nm mm   If N n  is not an integer, that is, if 

= ,N an b  where a  and , < ,b b n  are positive integers, then repeat a  times sm  and add to this set a 

SRSWOR of b  values of ’sim  selected from .sm  (ii) For each = 1, 2,k  construct a population vector 
 
Bootˆ k  of dimension N  whose elements are the estimates  ˆ ’sk

i  of the   ’sk
i  associated with the clusters 

whose sizes ’sim  are in Boot .m  (iii) Construct a population vector  0
Boot̂  whose elements are the estimates 

 1ˆ ’sj  of the  1 ’sj  associated with the people who belong to the clusters whose sizes ’sim  are in Boot .m  

Observe that the dimension of this vector is not necessarily  1 ,̂  but it equals the sum of the ’sim  in 

Boot .m   iv  Construct a population vector  1
Boot̂  of dimension  1̂  whose first m  elements are the 
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estimates  1ˆ ’sj  of the  1 ’sj  associated with the people in 0 ;S  the remaining  1ˆ m   elements are the 

1r  estimates  1ˆ ’sj  of the  1 ’sj  associated with the people in 1S  and the  1 1ˆ m r    estimates  1ˆ ’sj  of 

the  1 ’sj  associated with the non sampled people in 1 .U  These  1ˆ m   elements  1ˆ ’sj  are randomly 

placed after the first m  elements  1ˆ
j  of  1

Boot
ˆ .   v  Construct a population vector  2

Boot̂  of dimension 

 2̂  whose first 2r  elements are the estimates  2ˆ ’sj  of the  2 ’sj  associated with the people in 2S  and 

the remaining  2 2ˆ r   elements are the estimates  2ˆ ’sj  of the  2 ’sj  associated with the non sampled 

people in 2 .U  (vi) Select a SRSWOR of n  values im  from Boot .m  Let  Boot
1= , ,A nS i i  be the set of 

indices of the ’sim  in the sample. In addition, let  1Boot

1 1
= ,

i i

i t tt t
A m m



 
    be the set of indices 

j  associated with the elements in the cluster whose index is Boot ,Ai S  where tm  is the tht  element of 

Bootm  and   is the set of the integer numbers. Finally, let Boot

Boot Boot
0 = .

A
ii S

S A
  (vii) For each Boot

Ai S  

and   21, , ˆj    generate a value  2
ijx  by sampling from the Bernoulli distribution with mean  2ˆ ijp  

given by (3.2), but replacing  2
i  and  2

j  by their estimates  2ˆ i  and  2ˆ .j  Similarly, for each Boot
Ai S  

and    Boot
11, , ˆ ij A    generate a value  1

ijx  by sampling from the Bernoulli distribution with mean 
 1 ,ˆ ijp  where the value of  1ˆ

j  that is used to compute  1ˆ ijp  is obtained from  0
Boot̂  if Boot

0 ,j S  and from 
 1
Boot̂  otherwise. (viii) Compute the estimates of 1 2,   and   using the same procedure as that used to 

compute the original estimates 1 2,ˆ ˆ   and .̂   ix  Repeat the steps    vi viii  a large enough number B  

of times. Let Boot Boot
1, 2,,ˆ ˆb b  and Bootˆ b  be the estimates obtained in the thb  bootstrap sample, = 1, , .b B  

The final step of our proposed bootstrap variant consists in constructing the CIs for the population 

sizes. There exist several alternatives to do this. One is to construct them without assuming any 

distributions for the estimators 1 2,ˆ ˆ   and .̂  As examples of this alternative are the basic and the 

percentile method. (See Davison and Hinkley 1997, Chapter 5, for descriptions of these methods.) In the 

basic method a  100 1 %   CI for   is Boot Boot
1 / 2 /22 , 2 ,ˆ ˆ ˆ ˆ          and in the percentile method the CI 

is Boot Boot
2 1 2, ,ˆ ˆ      where Boot

2ˆ   and Boot
1 2ˆ   are the lower and upper 2  points of the empirical distribution 

obtained from Boot , = 1, , .ˆ b b B   Although this type of alternative has good properties of robustness, it 

requires a large number B  of bootstrap samples, say = 1,000,B  and this might be a serious problem if ̂  

is costly to compute. 

Another alternative to construct CIs is to assume a distribution for ̂  and use the bootstrap sample to 

estimate the parameters of that distribution. In this case the number B  of required bootstrap samples is not 

so large, say 50 200B   is generally enough. Examples of this alternative are the assumption that ̂  

is normally distributed and the one that ̂    is lognormally distributed, where   is the number of 

sampled elements. In the first case a  100 1 %   CI for   is the well known Wald CI given by 

 /2
ˆ ,ˆ ˆz V    whereas in the second case the CI is     ˆ ,  ˆ ,c c            where 

    2
/2

ˆ= exp ln 1 ,ˆ ˆc z V         /2z  is the upper 2  point of the standard normal 

distribution and  ˆ ˆV   is an estimate of the variance of .̂  (See Williams, Nichols and Conroy 2002, 

Section 14.2, for a description of this type of CI.) It is worth noting that in the lognormal based CIs for 

1 2,   and   the values of   are 1 2,m r r  and 1 2 ,m r r   respectively. 
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An estimator  ˆ ˆV   of the variance of ̂  could be computed using the sample variance of the bootstrap 

sample Boot , = 1, , .ˆ b b B   However, this estimator is not robust to extreme values of Boot ,ˆ b  which are 

likely to occur with the proposed estimators when the sampling rates are not large enough. Therefore, to 

use a robust estimator of  ˆV   is a better strategy. One possibility is to use Huber’s proposal 2 to jointly 

estimate the parameters of location and scale from the bootstrap sample. (See Staudte and Sheather 1990, 

Section 4.5, for a description of this method.) In particular, the estimate of the parameter of scale is an 

estimate of the standard deviation  ˆ ˆV   of .̂  

 

5  Sample size determination  
 

We will present a procedure to determine the initial sample size .n  This procedure is based on 

stringent assumptions, but, as was indicated by one of the reviewers of the paper, it could nevertheless be 

very useful for researchers who want to apply this sampling design. 

The first step is to compute the asymptotic variances of the proposed estimators. Although the 

variances depend on several unknown parameters, we can simplify them by assuming that the effects  k
i  

of the sampled sites are homogeneous, that is,    = , = 1, , ; = 1, 2.k k
i i n k    Under this premise, the 

probabilities  k x  and  iA x  that the vectors of link-indicator variables associated with randomly selected 

persons from 0kU S  and 0 ,S  respectively, equal x  depend only on the number of 1’s  that appear in 

the vector .x  Thus, their Gaussian quadrature approximations, given by (3.3) and (3.4), are simplified to  

         
  
  =1

exp
= , = ,  = 0,1, , ,

1 exp

kq
k tk k k k

x x k tnk
t k t

x z
x n

z

        
     

θ    

and 

         
  
  

1
11

1 1
=1 1

exp
= , = ,  = 0,1, , 1,

1 exp

q
tA k A

x x tn
t t

x z
x n

z

         
     

θ     

where          1 2= , = , .k k k k
k   θ  

Following Sanathanan’s (1972) procedure we get that the asymptotic variances of the proposed 
estimators are given by 

         1
1 2ˆ = ,  = 1, 2,   and  ˆ = ˆ ˆ ,k k k k k kV D k V V V      B A B  

where  = k
k ija  A  is a 2 2  matrix whose  k

ija  element is  

    
         

    
    

 

    
 

    
    

 

    
 

1 1 1 1

(1) (1)1 1
0

1 11
( )

1 1 1
0

2 2 2 2

2 2 2 2
0

1
1

1 1
= if = 1

1
if = 2

n
x x

x i jx

A An
x xk

ij A
x x i j

n
x x

x x i j

nn

N x

nn
a k

N x

n
k

x









                    

      
           

     
          







θ θ

θ

θ θ

θ

θ θ

θ

 


 


 


,













 

kB  is a bi-dimensional vector whose elements are 
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            
0 0= ( ),  = 1, 2k k k k k k

i ib i     θ θ   

and kD  is a real number given by  

             

         

1 1 1 1
0 0

2 2 2 2
0 0

1 1 1 if  = 1

=

1 if  = 2.
k

n N n N k

D

k

          

     

θ θ

θ θ

 

 
 

It is worth noting that in the derivation of the asymptotic variances we have made the assumptions that 

, = 1, 2, , = 1, , ,k ik m i N       and N  and n  are fixed numbers. 

To obtain numerical values of the variances we need to specify values for  , ,k
k k   and .n  One way 

to do this is to assign values to ,k k   and to the proportion  
1
k
  of people in kU  who are linked at least 

to a particular site ,iA  which is common to all the sites and it is easier to specify than   .k  Then, for a 

given ,n  the value of  k  is the solution to the equation  

      1
=1

1
, = 0.

1

n
k k k

x k
x

n

x


 
       

   

Once   , = 1, 2,k k  is obtained for a given ,n  we can compute the numerical values of the variances 

 ˆ kV   and   ;ˆV   the square roots of the relative variances   2ˆ k kV    and   2 ,ˆV    and the 

sampling fractions      1 2
1 0 2 0= 1 1 ,  = 1f n N f       and  1 1 2 2= .f f f       If the values 

of the square roots of the relative variances were not satisfactory, we could try different values of n  until 

we get satisfactory values. 

We have programmed this procedure in the R software programming language and it is available to the 

interested readers by requesting to the authors. To illustrate the procedure, let us suppose that we have a 

sampling frame of = 150N  sites and we assign the values 1 = 1,200,  2 1 2= 400, = = 1,    
 1
1 = 0.05  and  2

1 = 0.04,  then for = 15n  we get that  1 = 4,780.8,ˆV    2 = 11,525.3,ˆV   

  = 16,306.1,ˆV    1 1 = 0.06,ˆV     2 2 = 0.27,ˆV    ( ) = 0.08,ˆV    1 = 0.50,f  

2 = 0.38f  and = 0.47.f  

 
6  Monte Carlo studies  
 
6.1  Populations constructed using artificial data 
 

We constructed four artificial populations; a description of each one is presented in Table 6.1. Notice 

that in Populations I, III and IV the = 150N  values of the ’sim  were obtained by sampling from a 

Poisson distribution, whereas in Population II by sampling from a zero truncated negative binomial 

distribution. In addition, in Populations I and II, the link-probabilities  k
ijp  were generated by the Rasch 

model (3.2). In Population III they were generated by that model but the random effects  k
j  were 

obtained by sampling from a scaled Student’s T distribution with six degrees of freedom and unit-variance 
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instead of by sampling from the standard normal distribution. Finally, in Population IV, the   ’sk
ijp  were 

generated by the following latent class model proposed by Pledger (2000) in the context of capture-

recapture studies:                       = exp 1 exp ,k kk k k k k k k
ij i j i jij ijp                       

= 1, , ; = 1, 2,i n j  and = 1, 2.k  In this model the people in kU  is divided into two latent classes 

 = 1, 2j  according to their propensities to be linked to the sampled clusters. The probability that a 

randomly person in kU  is in class j  is  k
jp  and the   ’sk

ijp  are the same for all the people in the class .j  

The simulation experiment was carried out by repeatedly selecting r  samples from each population by 

using the sampling design described in Section 2 with initial sample size = 15.n  Thus, each time that the 

value im  was included in an initial sample, the value  k
ijx  was obtained by sampling from the Bernoulli 

distribution with mean   .k
ijp  Because of the values assigned to n  and to the parameters that appear in the 

expression of   ,k
ijp  the resulting sampling rates were 1 0.5f   and 2 0.4.f   It is worth noting that the 

characteristics of the populations and samples considered in this study were not motivated by the ones of 

an actual study since this sampling design has not been applied yet. Thus, the populations and samples 

were constructed only with the purpose of analyzing the performance of the proposed point and interval 

estimators. 

 

Table 6.1 
Parameters of the simulated populations 
 

       
       

1 1 1 1

= 150 = 150 = 150 = 150

Poisson Zero trunc. neg. binomial Poisson Poisson

= 8 = 8 = 8 = 8

   

= 8 = 24 = 8 = 8

= 1,209 = 1,208 = 1

 

,209 = 1,

i i i i

i i i i

i i i i

N N N N

M M M M

E M E M E M E M

V M V M V M V M

   

Population I Population II Population III Population IV

   

       

2 2 2 2

1 4 1 4 1 4 1 2

(1) (2)
1 1 1

( ) (
2 2 2 1 2

209

= 400 = 400 = 400 = 400

= 1,609 = 1,608 = 1,609 = 1,609

12
= = = =

0.001 0.001 0.001 0.001

= 5.45 = 5.45 = 5.45 = 1.1; = 1.2

= 5.85 = 5.85 = 5.85 = 1.5;

k k kk k k k
i i i i

i i i i

k

c c c

M M M M

c c c

c c c

   

   


   

   

      

    
               

   

)

2
6

1 2

= 0

0,1 0,1 2 3 0,1.25

= 0.3 = 1

k

kk k k
j j j ij

k k

N N T N

p p

   



   

 

 

From each sample the following estimators of 1 2,   and   were considered: the proposed UMLEs 
   
1 2,ˆ ˆU U   and   ;ˆ U  the proposed CMLEs    

1 2,ˆ ˆC C   and   ;ˆ C  the MLEs 1 2,    and   proposed by Félix-

Medina and Thompson (2004) and derived under the assumption of homogeneous link-probabilities, and 

the Bayesian-assisted estimators 1 2,    and   proposed by Félix-Medina and Monjardin (2006), derived 

also under the homogeneity assumption and using the following initial distributions for 1 2,   and 
      = ln 1 ,k k k
i i ip p     where  k

ip  is given by (3.2), but setting       1

1 1 1 1= 0 : !k
j N       
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and    1 1
1 1 1 1exp ;a b         2

2 2 2 2 !       and    2 1
2 2 2 2exp ,a b       and 

      2 2exp 2k k
i k i k k

            and     2 2exp 2 ,k k k k           where 1 = 1.0,a  

1 2 2= 0.1, = 6.0, = 0.01, = 3.5kb a b    and 2 2= = 9.0.k k   These values assigned to the parameters 

of the initial distributions made them practically non-informative. The Gaussian quadrature 

approximations (3.3) and (3.4) to the probabilities    ,k
k k x α  and    1 1,iA i x α  were computed using 

= 40q  terms. 

The performance of an estimator ̂  of ,  say, was evaluated by means of its relative bias (r bias), 

the square root of its relative mean square error  r mse ,  and the medians of its relative estimation 

errors (mdre) and its absolute relative estimation errors (mdare) defined by    
1

r bias = ,ˆ
r

i r     

   2 2

1
r mse = ,ˆ

r

i r        mdre = median ˆ i     and   mdrae = median ,ˆ i     

where ˆ i  was the value of ̂  obtained in the thi  sample, which in the case of the point estimators was 

10,000. 

We also considered the following 95% CIs for the ’s :  the proposed PLCIs and adjusted for extra-

Poisson variation PLCIs; the proposed bootstrap CIs based on = 100B  bootstrap samples and 

constructed assuming a lognormal distribution for ̂    and estimating  ˆ ˆV   by Huber’s proposal 2 

estimator of scale with tuning value = 1.5;d  the design-based Wald CIs obtained from the MLEs 1 2,    

and   and proposed by Félix-Medina and Thompson (2004), and the design-based Wald CIs obtained 

from the Bayesian estimators 1 2,    and   and proposed by Félix-Medina and Monjardin (2006). It is 

worth noting that the PLCIs and adjusted PLCI were computed using the Venzon and Moolgavkar’s 

(1988) method or an algorithm based on the definition of a PLCI when the first method failed to find the 

endpoints of the intervals. 

The performance of a CI was evaluated by its coverage probability (cp), the mean of its relative lengths 

(mrl) and the median of its relative lengths (mdrl) defined as the proportion of samples in which the 

parameter was contained in the interval and the the mean and the median of the lengths of the intervals 

divided by the value of the parameter, respectively. Since carrying out a simulation study on the CIs using 

a large number of replicated samples is a very time consuming task, we evaluated the performance of the 

PLCIs for 1  and 2  using 1,000r   samples; that of the PLCIs for   using 500r   samples and that 

of the bootstrap CIs using 250r   samples. The performance of the CIs based on the estimators derived 

under the homogeneity assumption was evaluated by using 10,000r   samples. The numerical study 

was carried out using the R software programming language [R Development Core Team (2013)]. 

The results of the study on the estimators of the population sizes are shown in Table 6.2 and in Figures 

6.1 and 6.2. The main outcomes are the following. The distributions of the estimators UMLE  
1ˆ U  and 

CMLE  
1ˆ C  were more or less symmetrical about 1 ;  thus, the two measures of bias (r bias and mdre) 

showed similar values, as well as the two measures of variability ( r mse  and mdare). Both of these 

estimators performed acceptably well, except in Population III where the estimator  
1ˆ U  presented 

moderate problems of bias and  
1ˆ C  showed something more serious problems of bias. The distributions of 

the estimators  
2ˆ U  and  

2ˆ C  were skewed to the right with very long tails. This caused that the values of 

their r bias  and r mse  tended to be large. However, in terms of the medians of their relative errors 
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(mdre), these estimators presented moderate problems of bias in Populations I and III and serious 

problems in Population IV. In terms of the medians of their absolute relative errors (mdare) these 

estimators showed moderate problems of instability in the first three populations and serious problems in 

the fourth population. The distributions of the estimators  ˆ U  and  ˆ C  were similar to those of the 

estimators  
2ˆ U  and  

2 ;ˆ C  thus, the quantities r bias  and r mse  were more sensitive to large values 

than the quantities mdre and mdare. Both of these estimators performed acceptably well in Populations I, 

II and IV; although in this last population the values of their r mse  were large because of the reasons 

previously indicated. In Population III both estimators presented problems of bias. 

Although the deviation from the assumed Poisson distribution of the ’siM  increased the variability of 

all the proposed estimators, the increments were not large so that we consider that they have some robust 

properties against deviations from this assumption. The proposed estimators of 1  and   were in addition 

robust to the deviation from the assumed Rasch model for the  1 ’sijp  (although the values of the r mse  

of the estimators of   were large, those of the median of their absolute relative errors were not). The 

deviation from the assumed normal distribution of the effects  k
j  caused that all the proposed estimators 

presented problems of overestimation. Neither of the two types of proposed estimators UMLEs and 

CMLEs performed uniformly better than the other, but the UMLEs performed in a greater number of cases 

slightly better than the CMLEs. 
 

Table 6.2  
Relative biases, square roots of relative mean square errors and medians of relative errors and absolute 
relative errors of the estimators of the population sizes 
  

Population  I II III IV 
Sampling 
rates 

 
1f  2f  1f  2f  1f  2f  1f  2f  

 0.51 0.40 0.50 0.40 0.51 0.40 0.51 0.40 
Estimator  r 
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Uncond.   
1ˆ U  -0.01 0.06 -0.01 0.04 -0.00 0.08 -0.00 0.05 0.10 0.11 0.10 0.10 0.20

6-0.04  0.08 -0.03 0.05
heter.   

2ˆ U  -0.06 0.26 -0.11 0.17 0.060.02 0.35 -0.01 0.16 0.16 0.43 0.07 0.18 15
20.04  2.2 -0.19 0.25

MLEs   ˆ U  -0.02 0.08 -0.03 0.05 0.010.02 0.10 0.01 0.06 0.11 0.15 0.10 0.10 15
7-0.02  0.55 -0.6 0.08

Cond.   
1ˆ C  -0.00 0.07 -0.01 0.05 0.01 0.07 0.00 0.05 0.18 0.19 0.17 0.17 -0.051.6 0.09 -0.05 0.07

heter.   
2ˆ C  -0.04 0.26 -0.09 0.17 0.09 0.38 0.01 0.16 0.18 0.46 0.10 0.18 21

20.12  2.4 -0.14 0.23
MLEs   ˆ C  -0.1 0.08 -0.02 0.05 0.03 0.11 0.01 0.06 0.18 0.22 0.16 0.16 23

2-0.00  0.61 -0.06 0.08

Homo-  1  -0.28 0.28 -0.28 0.28 -0.31 0.31 -0.31 0.31 -0.30 0.30 -0.30 0.30 -0.18 0.19 -0.18 0.18
geneous  2  -0.40 0.40 -0.40 0.40 -0.40 0.40 -0.40 0.40 -0.40 0.40 -0.40 0.40 -0.30 0.32 -0.32 0.32
MLEs    -0.31 0.31 -0.31 0.31 -0.33 0.33 -0.33 0.33 -0.32 0.33 -0.32 0.32 -0.21 0.22 -0.21 0.21

Homo-  1
  -0.28 0.28 -0.28 0.28 -0.31 0.31 -0.31 0.31 -0.30 0.30 -0.30 0.30 -0.18 0.19 -0.18 0.18

geneous  2
  -0.39 0.39 -0.39 0.39 -0.39 0.40 -0.39 0.39 -0.39 0.40 -0.39 0.39 -0.27 0.30 -0.29 0.29

BEs    -0.31 0.31 -0.31 0.31 -0.33 0.33 -0.33 0.33 -0.32 0.32 -0.32 0.32 -0.20 0.21 -0.20 0.20

Notes Results based on 410  samples. A superscript number indicates the percentage of samples in which the estimator was not
computed because of numerical convergence problems and a subscript figure indicates the number of values of the
estimator that exceeded 510  and that were not used to compute its r bias  and r mse.  Upper bounds for the Monte 
Carlo errors of the estimates of the r bias  and the r mse  of the estimators of the ’s  were the following: 

1 : 0.001  and 20.0 :01 4;  0.00  and 0.011  in Pops. I III,  and 0.027 and 0.39 in Pop. IV; : 0.001  and 0.002  in 
Pops. I III,  and 0.007 and 0.095 in Pop. IV. 
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Figure 6.1 Boxplots for the values of the estimators of 1 2,   and   in Populations I and II. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 Boxplots for the values of the estimators of 1 2,   and   in Populations III and IV. 
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With regard to the estimators derived under the assumption of homogeneous   ,k
ijp  both the MLEs 

1 2,    and   and the Bayesian assisted estimators 1 2,    and   showed very similar behavior which was 

characterized by serious problems of bias that deteriorated their performance. 

Notice that the percentages of samples in which the proposed estimators were not computed because of 

numerical convergence problems, as well as the number of samples in which the values of the estimators 

exceeded 510  and that not were used in calculating the reported results of r bias  and r mse  because 

they would have been seriously affected, were not large, except in Population IV. As was indicated by a 

reviewer, computing the r bias  and r mse  of an estimator using only its available values lower than 
510  favors the proposed estimators. We agree with that observation and for this reason we also reported 

measures of the performance of the estimators based on the medians of the relative errors and absolute 

relative errors which are robust to large values of the estimators. Thus, if we supposed that any time that 

an estimator was not computed its value had been very large and we computed the values of the measures 

of the performance of the estimators that are based on the medians using the complete set of observations 

the results would not have been different from those reported in Table 6.2, and our conclusions based on 

these measures would not have changed. 

The results of the simulation study on the 95% CIs are shown in Table 6.3. The main outcomes are the 

following. All the PLCIs and adjusted PLCIs for 1 :  the ones based on the UMLE  
1ˆ U  and those based 

on the CMLE  
1 ,ˆ C  showed good values of the cp in Population I. The adjusted PLCIs presented also 

good values of the cp in Population II, but not the unadjusted PLCIs whose values of the cp were 

relatively low. In Population III the values of the cp of all the PLCIs and adjusted PLCIs for 1  were low, 

whereas in Population IV the values were only slightly low. A good characteristic of these CIs was that 

they showed pretty acceptable values of their mrl and mdrl in each of the situations that were considered. 

The PLCI for 2  based on  
2ˆ U  and the one based on  

2ˆ C  presented acceptable values of the cp in all the 

populations, except in Population IV, where the values were something low. However, in all the cases the 

mrl and mdrl of these CIs were so large that they were not useful for making reasonable inferences. Both 

PLCI for :  the one based on the UMLE  ˆ U  and that based on the CMLE   ,ˆ C  performed acceptably 

well in Populations I and II, although the means of their relative lengths were large in Population II 

because this measure is not robust to great values of the lengths of the intervals. In the other populations 

these CIs showed problems of low coverage and/or large relative lengths; thus their performance was not 

good. Both types of adjusted PLCIs performed well only in Population I, in the other populations they 

presented large values of their relative lengths. Neither of the two types of CIs: the ones based on the 

UMLEs and those based on CMLEs performed uniformly better than the other, but those based on the 

UMLEs performed in a greater number of cases slightly better than those based on the CMLEs. 

With respect to the bootstrap CIs, we have that each of the two types of CIs for 1 :  the one based on 
 
1ˆ U  and that based on  

1ˆ C  performed well in Populations I, II and IV, although in this last population the 

values of their cp were slightly low. In Population III the values of their cp were very low because of the 

biases of the point estimators of 1.  The two types of bootstrap CIs for 2  performed badly in all the 

populations because the values of their relative lengths were large. Finally, the two types of CIs for   

performed in general well. Notice that the values of their mrl tended to be large because this measure is 

not robust to great values of the lengths, whereas the values of their mdrl were acceptable. Neither of the 
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two types of bootstrap CIs performed uniformly better than the other, but the CIs based on the UMLEs 

performed in most cases better than those based on the CMLEs. 

 
Table 6.3 
Coverage probabilities and means and medians of relative lengths of the 95% confidence intervals for the 
population sizes 
 

Population I II III IV 

Sampling rates 1f  2f  1f  2f  1f  2f  1f  2f  

0.51 0.40 0.50 0.40 0.51 0.40 0.51 0.40 

Conf. interval cp mrl mdrl cp mrl mdrl cp mrl mdrl cp mrl mdrl 

PLCI-  
1ˆ U  0.95 0.22 0.22 0.85 0.22 0.22 0.61 0.24 0.24 0.891.6 0.23 0.24 

Adj-PLCI-  
1ˆ U  0.94 0.24 0.24 0.98 0.42 0.41 0.69 0.27 0.26 0.901.6 0.25 0.26 

PLCI-  
2ˆ U  0.94 1.4 0.98 0.95 2.82 1.3 0.95 2.6 1.6 0.7719 7.16 1.4 

PLCI-  ˆ U  0.95 0.66 0.59 0.97 0.91 0.65 1.0 1.0 0.79 0.8621 2.11 0.65 

Adj-PLCI-  ˆ U  0.92 0.75 0.62 1.07.0 5.833 2.1 1.00.20 1.71 0.87 0.9022 2.74 0.78 

Bootstr-CI-  
1ˆ U  0.94 0.23 0.23 0.94 0.33 0.31 0.59 0.25 0.25 0.890.40 0.24 0.25 

Bootstr-CI-  
2ˆ U  0.87 1.4 0.86 0.97 3.9 1.6 0.97 4.7 2.1 0.8313 4.63 0.90 

Bootstr-CI-  ˆ U  0.93 0.38 0.28 0.99 0.97 0.49 0.98 1.1 0.52 0.8913 1.23 0.31 

PLCI-  
1ˆ C  0.96 0.24 0.23 0.91 0.25 0.24 0.76 0.31 0.29 0.902.1 0.25 0.25 

Adj-PLCI-  
1ˆ C  0.95 0.26 0.25 0.99 0.44 0.42 0.81 0.33 0.32 0.902.1 0.27 0.27 

PLCI-  
2ˆ C  0.94 1.4 0.98 0.95 2.72 1.3 0.95 2.5 1.6 0.8525 7.54 1.7 

PLCI-  ˆ C  0.95 0.64 0.54 0.941.6 1.2 0.62 0.862.0 3.11 0.74 0.9330 2.91 0.84 

Adj-PLCI-  ˆ C  0.96 0.82 0.59 1.07.6 7.233 2.6 0.903.8 3.66 1.2 0.9432 2.95 0.90 

Bootstr-CI-  
1ˆ C  0.96 0.29 0.29 0.98 0.31 0.31 0.48 0.40 0.39 0.891.6 0.31 0.30 

Bootstr-CI-  
2ˆ C  0.90 1.5 1.0 0.98 4.7 1.7 0.97 5.5 2.4 0.9424 3.46 1.3 

Bootstr-CI-  ˆ C  0.95 0.44 0.34 1.0 1.1 0.49 0.96 1.3 0.62 0.9425 0.886 0.43 

Wald-CI- 1  0.00  0.09 0.09  0.00  0.08 0.08 0.00  0.08 0.08 0.08 0.13 0.13 

Wald-CI- 2  0.00  0.17 0.16 0.00  0.17  0.16 0.00  0.16 0.16 0.18 0.34 0.31 

Wald-CI-   0.00  0.08 0.08 0.00  0.07 0.07 0.00  0.07 0.07 0.03 0.13 0.13 

Wald-CI- 1
  0.00 0.09  0.09  0.00  0.09  0.09  0.00  0.08 0.08 0.11 0.15 0.15 

Wald-CI- 2
  0.00  0.17  0.17  0.00  0.17  0.17  0.00  0.17  0.17  0.25 0.36 0.33 

Wald-CI-   0.00  0.08 0.08 0.00  0.08 0.08 0.00  0.08 0.07 0.04 0.15 0.14 

Notes A superscript number indicates the percentage of samples in which the confidence interval (CI) was not computed 
because of numerical convergence problems and a subscript figure indicates the number of values of the relative 
length of the CI that exceeded 510  and that were not used to compute its mrl. An upper bound (UB) for the Monte 
Carlo errors (MCEs) of the cps was 0.03. UBs for the MCEs of the estimates of the mrl were the following: PLCIs and 
adj. PLCIs for 1 :  0.003;  PLCIs for 2 :  0.78;  PLCIs and Adj. PLCIs for :  0.07  in Pop. I and 0.56 in Pops. 
II IV;  Bootstrap CIs for 1 :  0.005;  Bootstrap CIs for 2 :  0.1  in Pop. I and 1.5 in Pops II IV;  Bootstrap CIs 
for :  0.02  in Pop. I and 0.37 in Pops. II IV.  
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With regard to the CIs based on the point estimators derived under the homogeneity assumption, all of 

them showed null values of the cp, except in Population IV where the values were different from zero, but 

still too low. The bad performance of these CIs in terms of the cp was a result of the large biases of the 

point estimators. Thus, despite of the very small values of the r ml  of these intervals the very low values 

of their cp did not allow making reasonable inferences. 

Observe that in the first three populations the percentages of samples in which the proposed CIs were 

not computed because of numerical convergence problems as well as the number of samples in which the 

values of their relative lengths exceeded 510  and that not were used in calculating the reported results of 

the mrl because they would have been seriously affected, were not large (less than 4%), except in the case 

of the adjusted PLCIs based on  ˆ U  and on  ˆ C  which in Population II were not computed in about 7% of 

the samples and the means of their relative lengths were computed without using 33 values greater than 
510 .  However, in Population IV some percentages were close to 20% and others close to 30%. The large 

values of these percentages were, in part, consequence of the relatively large values of the percentages of 

samples in which the corresponding point estimators were not computed. It is clear that computing the 

measures of performance of a CI using only the cases in which the interval was obtained or computing the 

rml using only the samples in which the relative lengths were lower than 510  favors the proposed CIs. 

However, notice that practically in all cases in which those percentages were large, say larger than 5%, 

both the mrl and the mdrl of the intervals were large enough that those intervals were not useful for 

making inferences. Therefore, if the performance of these CIs was not good under this favorable 

assessment, it will not be good under a fairer evaluation. The exceptions to this pattern were the PLCI 
based on  

1 ,ˆ U  and the two types of bootstrap CIs for   which showed acceptable performance and large 

percentage of samples in which were not computed. So, the results of these CIs should be taken with 

reserve. 

 
6.2  Population constructed using data from the Colorado Springs study on 

HIV/AIDS transmission 
 

In this simulation study we constructed a population using data from the Colorado Springs study on 

heterosexual transmission of HIV/AIDS. As was indicated in the introduction to this paper, this 

epidemiological research was focused on a population of people who lived in the Colorado Springs 

metropolitan area from 1982 1992  and who were at high risk of acquiring and transmitting HIV. That 

population included drug users, sex workers and their personal contacts, defined as those persons with 

whom they had close social, sexual or drug-associated relations. In that study, 595 initial responders were 

selected in a non-random fashion through a sexually transmitted disease clinic, a drug clinic, self-referral 

and street outreach. The responders were asked for a complete enumeration of their personal contacts and 

a total of 7,379 contacts who were not in the set of the initial responders were named and included in the 

study. In our simulation study the set 1U  was defined as the set of the 595 initial responders and, as in 

Félix-Medina and Monjardin (2010), they were grouped into = 105N  clusters of sizes ’sim  generated 

by sampling from a zero-truncated negative binomial distribution with parameter of size 2.5 and 
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probability 2 3.  The sample mean and variance of the 105 values ’sim  were 5.67 and 15.03, 

respectively. It is worth noting that most of the people who were assigned to the same cluster came from 

the same original source of recruitment. A person was defined to be linked to a cluster if he or she was a 

personal contact of at least one element in that cluster. Since, approximately 95% of the 7,379 contacts of 

the initial responders were linked to only one cluster, and this could affect the performance of the 

proposed estimators, in our study we defined the set 2U  as the subset of the 7,379 contacts formed by the 

415 persons who were linked to at least two clusters plus the 379 sex workers who were linked to only one 

cluster. Thus, 1 2= 595, = 794   and = 1,389.  It is worth noting that this population is the same as 

the one called “reduced population” by Félix-Medina and Monjardin (2010). 

We set the sizes of the initial samples selected from the population to = 25.n  This value of n  yielded 

the sampling rates: 1 = 0.46f  and 2 = 0.37.f  The simulation experiment was carried out as the previous 

one, except that each time that the value im  was contained in an initial sample, all the people linked to 

cluster i  were included in the sample. We used the same number of replications r  and the same number 

B  of bootstrap samples as those used in the previous study. In addition, the values of the parameters of 

the initial distributions that were used to construct the Bayesian-assisted estimators k
  and the value of q  

used to compute the Gaussian quadrature formulas (3.3) and (3.4) were the same as those used in the 

previous study. 

The results of the simulation study are shown in Table 6.4. We can see that among the proposed 

estimators of the population sizes, only the estimators of 1  did not present problems of bias nor problems 

of instability. The estimators of 2  and   exhibited serious problems of bias, particularly the estimators 

of 2 ,  which affected their performance. As a result of the performance of the point estimators, only the 

adjusted PLCIs and bootstrap CIs for 1  performed acceptably well, although the values of the cp of the 

bootstrap CIs were slightly low. The unadjusted PLCIs for 1  showed low values of the cp because of the 

deviation from the assumed Poisson distribution of the ’s.iM  The PLCIs and bootstrap CIs for 2  and   

presented very large values of the mrl and mdrl that these intervals were not useful. Observe that the 

percentages of samples in which the proposed point and interval estimators of 1  were not computed 

because of numerical convergence problems were small (less than 1.2%). Therefore, they were virtually 

not favored by the evaluation procedure. In the case of the proposed point and intervals estimators of 2  

and   those percentages were large. However, if their performance was not good under this favorable 

assessment, it will not be good under a fairer evaluation. 

With regard to the point estimators derived under the homogeneity assumption, we have that the MLEs 

1  and 2  showed problems of bias which affected their performance; however, the estimator   did not 

show problems of bias and its performance was acceptable. The small bias exhibited by this estimator 

might be explained by the fact that the negative bias of 1  was canceled out by the positive bias of 2 .  

The Bayesian-assisted estimators performed similarly to the previous ones, although in this case the 

estimator 2
  of 2  showed only mild problems of bias. The Wald CIs based on the MLEs and on the 

Bayesian-assisted estimators showed low values of the cp. However, since the values of the r ml  of 

these intervals were acceptable, the intervals for 2  and   might provide some information about these 

parameters. 
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Table 6.4  
Simulation results obtained for estimators and confidence intervals in a population constructed using data 
from the Colorado Springs study 
 

Point estimators Confidence intervals 

Estimator r bias  r mse  mdre mdare Conf. interval cp mdre mdare 
      PLCI-  

1ˆ U 0.75 0.24 0.24 

  
1ˆ U  0.03

1-0.00  0.10 -0.01 0.07 Adj-PLCI-  
1ˆ U 0.95 0.41 0.41 

Uncond.      PLCI-  
2ˆ U 0.398.3 1018 3.7 

heter.  
2ˆ U  3.5

161.7  4.5 0.79 0.79 PLCI- ( )ˆ U 0.838.6 5.76 2.1 

MLEs       Adj-PLCI- ( )ˆ U 0.9921 1147 7.5 

 ( )ˆ U  3.5
170.95  2.6 0.46 0.46 Bootstr-CI-  

1ˆ U 0.91 0.37 0.37 

      Bootstr-CI-  
2ˆ U 0.863.2 1129 3.6 

      Bootstr-CI- ( )ˆ U 0.883.2 6.328 2.0 

      PLCI-  
1ˆ C 0.811.2 0.30 0.27 

  
1ˆ C  0.010.57 0.12 0.01 0.08 Adj-PLCI-  

1ˆ C 0.971.2 0.45 0.44 

Cond.      PLCI-  
2ˆ C 0.3910 9.617 3.6 

heter.  
2ˆ C  4.7

101.7  4.5 0.80 0.80 PLCI-  ˆ C 0.8920 6.29 2.6 

MLEs      Adj-PLCI-  ˆ C 1.027 1432 9.3 

  ˆ C  5.2
100.96  2.6 0.46 0.46 Bootstr-CI-  

1ˆ C 0.861.2 0.35 0.35 

      Bootstr-CI-  
2ˆ C 0.908.0 9.735 3.9 

      Bootstr-CI-  ˆ C 0.919.2 5.934 2.2 

 
1  -0.22 0.23 -0.22 0.22 Wald-CI- 1 0.06 0.16 0.16 

Homo-         
geneous 

2  0.21 0.34 0.16 0.18 Wald-CI- 2 0.71 0.60 0.53 

MLEs         
   0.02 0.17 -0.00 0.10 Wald-CI-  0.73 0.35 0.31 
 

1
  -0.22 0.23 -0.22 0.22 Wald-CI- 1


0.13 0.22  0.22 

Homo-         
geneous 

2
  0.12 0.22 0.10 0.13 Wald-CI- 2


0.72 0.45 0.43 

BEs         
   -0.02 0.13 -0.04 0.09 Wald-CI-  0.70 0.27 0.26 

Notes A superscript number indicates the percentage of samples in which the estimator or confidence interval (CI) was not 
computed because of numerical convergence problems. A subscript figure indicates the number of values of the 
estimator or the relative length of a CI that exceeded 510  and that were not used to compute the r bias  and 

r mse  of the estimator or the mrl of the CI. Upper bounds (UBs) for the Monte Carlo errors (MCEs) of the 
estimates of r bias  and r mse  of the estimators of the ’s  were the following: 1 : 0.001  and  0.001;  

2 : 0.05  and  0.31,  and : 0.03  and  0.18.  An UB for the MCEs of the estimates of cp was 0.02.  UBs for the 
MCEs of the estimates of the mrl were the following: PLCIs and adj. PLCIs for 1 : 0.003;  PLCIs for 2  and 

: 0.59;  adj PLCIs for : 0.93;  Bootstrap CIs for 1 2,   and : 0.005, 1.5  and  0.88,  respectively. 

 
   

7  Conclusions and suggestions for future research  
 

The results of the simulation studies carried out in this research indicate that the two proposed 

estimators of  
1 1: ˆ U   and  

1 ,ˆ C  perform reasonably well in different situations. This evidences their 

robustness to several types of deviations from the assumed model. (Although  
1ˆ C  seems to be sensitive to 

deviations from the assumed normal distribution of the   ’s.)k
j  On the other hand, the two proposed 
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estimators of  
2 2: ˆ U   and  

2 ,ˆ C  present problems of bias and especially problems of instability if the 

sampling fraction in 2U  is not large enough, say it is not larger than 50%. In addition, small sampling 

fractions along with deviations from the assumed model for the link-probabilities increase the risk of 

numerical convergence problems. The two proposed estimators of  : ˆ U   and   ,ˆ C  perform similarly to 

the estimators  
1ˆ U  and  

1ˆ C  if 1  is much greater than 2  (as in the case of the artificial populations), 

perform similarly to the estimators  
2ˆ U  and  

2ˆ C  if 2  is much greater than 1  (as in the case of the 

Colorado Springs population), and perform as a combination of the performance of the estimators of 1  

and 2  if the values of these parameters are not very different from each other. Finally, the estimators 

derived under the assumption of homogeneous link-probabilities present serious problems of bias if this 

assumption is not satisfied. 

It is worth noting that our conclusion about the proposed estimators of 2  is based on the results of 

several small simulation studies that we carried out using sampling fractions greater than those used in the 

Monte Carlo studies reported in this paper. In one study carried out with the artificial populations, we 

increased the values of the link-probabilities  k
ijp  so that their average values were  1 0.088ijp   and 

 2 0.071ijp   and kept the sizes of the initial samples at = 15.n  These changes yielded the sampling 

fractions 1 0.65f   and 2 0.55.f   In another study also with the artificial populations, we reduced the 

values of the  k
ijp  so that    1 2= 0.016ij ijp p   and increased the sizes of the initial samples to = 78n  in 

Populations I III  and to = 67n  in Population IV. These changes yielded the sampling fractions 

1 0.78f   and 2 0.55.f   In both studies the estimators  
2ˆ U  and  

2ˆ C  performed acceptably well. (The 

results are not shown.) These outcomes indicate that these estimators also seem to have properties of 

robustness to deviations from the assumed models provided that large sampling fractions be used. 

However, in a study with the Colorado Springs population using initial samples of sizes = 42n  which 

yielded sampling fractions 1 0.64f   and 2 0.56,f   the estimators  
2ˆ U  and  

2ˆ C  presented serious 

problems of bias r bia( .s 1 0   and 0m re )d .85  which affected the values of their r mse  

 r mse 1.0   and mdare  mdare 0.85 .  Why these estimators did not perform well even with large 

sampling fractions? We think that the bad performance of these estimators is consequence of the very 

small average value of the     2 2’s 0.018ij ijp p   and the way the Monte Carlo studies were carried out. 

To clarify this statement, note the following. When  2
ijp  is very small, say less than 0.02, the expected 

number of elements in 2U  that are linked to at least one site in the frame is much less than 2 .  For 

instance, in Population I when  2 = 0.015,ijp  this expected number was about 2300 < 400 = .  

Therefore, if the sampling fraction 2f  is large enough, the estimates  
2ˆ U  and  

2ˆ C  will be close to 2  and 

will be much greater than the expected number of elements linked to at least one site in the frame. Thus, if 

we supposed that the Colorado Springs population was generated by a random process, then the 794 

contacts linked to at least one site in the frame, and which we used as the value of 2 ,  would be a much 

smaller value than the actual size of 2 .U  Consequently, the performance of  
2ˆ U  and  

2ˆ C  as estimators of 

the assumed value 794 of 2  would be very bad. This explanation was suggested and confirmed by the 

results of a small simulation study in which we considered Population I (in which every one of the 
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assumptions is satisfied), but instead of carrying the study as is described in Subsection 5.1, we generated 

the complete set of values  2
ijx  of  2

ijX  by sampling from the Bernoulli distributions with means 
 2 , = 1, , ; = 1, , 400ijp i N j   and we kept them fixed. Then, we defined the value of 2  as the 

number of elements of 2U  linked to at least one site in the frame. We considered two cases: large values 

of     2 2 = 0.071ij ijp p  and small values   2 = 0.015 .ijp  In the first case 2 = 388,  whereas in the 

second one 2 = 300.  To have comparable results the sizes of the initial samples were set to = 15n  in 

the first case and to = 78n  in the second case, so that in both cases the number of sampled elements 

were about 220. The results of the numerical study showed that in the case of large values of  2
ijp  the 

estimators  
2ˆ U  and  

2ˆ C  performed well (because 388 400),  whereas in the case of small values of 
 2
ijp  these estimators performed badly (because 300 << 400).  We think that the results obtained in the 

last case are illustrative and explain the ones obtained in the Colorado Springs population. 

With respect to the two types of proposed CIs: profile likelihood and bootstrap CIs, we can conclude 

that they need larger sample sizes than the point estimators to perform reasonably well. They are more 

sensitive to deviations from the assumed models than the point estimators. In addition, if small sampling 

fractions are used and deviations from the assumed model for the  k
ijp  are present, the occurrence of 

numerical convergence problems will be greater than in the case of point estimators. 

From the previous observations we can conclude that in actual applications of this sampling 

methodology, a good strategy is to construct a sampling frame that covers the largest possible portion of 

the target population. This way, 1  would be close to ,  and the estimates of 1  could be used as 

estimates of .  The advantage of this strategy is that the estimators  
1ˆ U  and  

1ˆ C  perform better than the 

estimators  
2ˆ U  and  

2ˆ C  because the first ones incorporate the information about the cluster sizes .im  

Furthermore, this strategy makes possible to use the design-based estimator 
1

n

iN m n  as an estimator 

of .  The other factor that must be taken into account to have good estimates is to use large sampling 

fractions, say larger than 0.5. This suggestion is in agreement with the result reported by Xi, Watson and 

Yip (2008), who in the context of capture-recapture studies indicate that in presence of heterogeneous 

capture probabilities, a population size between 300 and 500, and a number of sampling occasions 

between 10 and 20, the minimum sampling fraction to have reliable estimates is at least 60%. Since the 

estimation of 2  is basically the same problem as that of estimating the population size in a capture-

recapture study, we think that this conclusion also applies to our situation. In this line, we have developed 

a method to determine the size of the initial sample in order to have desired values of 

  2 , = 1, 2ˆ k kV k   and   2 .ˆV    Although this procedure is based on stringent assumptions such 

as the homogeneity of the effects   ’sk
i  associated with the sites and the necessity of large values of the 

’s,im  the results seem to be satisfactory. For instance, the situation illustrated at the end of Section 5 

correspond to that of the artificial populations considered in the Monte Carlo study and we can see that the 

results obtained by our procedure are very close to those reported for Populations I and II (Table 6.2), 

where the estimators of 2  and   performed acceptably. 
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Finally, despite the drawbacks of the proposed point and interval estimators, they are a better 

alternative for making inferences about the population size than those based on the assumption of 

homogeneous link-probabilities. Obviously, our proposal need to be improved. The two major problems 

that need to be considered in future research are the instability of the estimators of 2  when the sampling 

fraction is not large enough and the not satisfactory performance of the confidence intervals. A possible 

solution to both problems is to use the Bayesian approach to construct estimators that incorporate 

information prior to sampling that the researcher has about the parameters. The point and interval 

estimators obtained by this approach might be more stable than those proposed in this paper because of the 

additional information used to construct them. Other possible solution to the problem of lack of robustness 

of the confidence intervals is to replace the assumption of the Poisson distribution of the ’siM  by a more 

flexible distribution such as the negative binomial, and the assumption of the normal distribution of the 

effects  k
j  by one of the distributions ordinarily used to increase the robustness of the estimators such as 

a mixture of normal distributions or a Student’s T distribution. 
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