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A design effect measure for calibration weighting in single-
stage samples 
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Abstract 

We propose a model-assisted extension of weighting design-effect measures. We develop a summary-level 
statistic for different variables of interest, in single-stage sampling and under calibration weight adjustments. 
Our proposed design effect measure captures the joint effects of a non-epsem sampling design, unequal weights 
produced using calibration adjustments, and the strength of the association between an analysis variable and the 
auxiliaries used in calibration. We compare our proposed measure to existing design effect measures in 
simulations using variables like those collected in establishment surveys and telephone surveys of households. 

 
Key Words: Auxiliary data; Kish weighting design effect; Spencer design effect; Generalized regression estimator. 

 
 
 

1  Introduction 
 

A design effect  deff  in its general form measures the relative increase or decrease in the variance of 

an estimator due to departures from simple random sampling. Kish (1965) presented the deff  as a 

convenient way of gauging the effect of clustering on an estimator of a mean. Park and Lee (2004) review 
some of the history behind the formulation and use of deff’s.  Design effects are especially useful in 

approximating the total sample size needed in a cluster sample. Clustering usually causes some loss of 
efficiency and the variance from a simple random sample, which is easy to compute, can be multiplied by 
a deff  to approximate the variance that would be obtained from a cluster sample. This can, in turn, be 

used to determine the total sample size needed in a cluster sample to achieve a desired level of precision. 
Later work by Rao and Scott (1984) and others found that more complicated versions of deff’s  were 

useful to adjust inferential statistics calculated from complex survey data.  

A specialized version of the deff  was proposed in Kish (1965) that addressed only the effect of using 

weights that are not all equal. Kish derived the “design effect due to weighting” for a case in which 
weights vary for reasons other than statistical efficiency. On the other hand, there are sample designs and 
estimators where having varying weights can be quite efficient. An establishment survey where population 
variances of analysis variables differ markedly among industries is one example. Calibrating to population 
counts can also produce different sized weights but is an essential tool in attempting to correct for 
coverage errors in some surveys, like ones done by telephone. Spencer (2000) proposed a simple model-
assisted approach to estimate the impact on variance of using variable weights in a situation where an 
analysis variable depends on a single covariate.  

The Kish and Spencer measures, reviewed in Section 2, do not provide a summary measure of the 
impact of the gains in precision that may accrue from sampling with varying probabilities and using a 
calibration estimator like the general regression (GREG) estimator. While the Kish design effects attempt 
to measure the impact of variable weights, they are informative only under special circumstances, do not 
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account for alternative variables of interest, and can incorrectly measure the impact of differential 
weighting in some circumstances, facts noted in Kish (1992). Survey practitioners should be cautious 
when using this measure in informative sampling and estimation schemes in which there exists an 
intentional relationship between the weights and variables of interest. Spencer’s approach holds for with-
replacement single-stage sampling for a very simple estimator of the total constructed with inverse-
probability weights with no further adjustments. There are also few empirical examples comparing these 
measures in the literature. 

Calibration adjustments are often applied to reduce variances and correct for undercoverage and/or 
nonresponse in surveys (e.g., Särndal and Lundström 2005; Kott 2009). When the calibration covariates 
are correlated with the coverage/response mechanism, calibration weights can improve the mean squared 
error (MSE) of an estimator. In many applications, since calibration involves unit-level adjustments, 
calibration weights can vary more than the base weights or category-based nonresponse or 
poststratification adjustments (Kalton and Flores-Cervantes 2003; Brick and Montaquila 2009). Thus, an 
ideal measure of the impact of calibration weights incorporates not only the correlation between the 
survey variable of interest y  and the weights, but also the correlation between y  and the calibration 

covariates x  to avoid “penalizing” weights for the mere sake that they vary. 

In Section 3, we introduce a new design effect measure that accounts for the joint effect of a non-
epsem  sample design and unequal weight adjustments in the larger class of calibration estimators. It is 

assumed that a probability sample design is used and that there are no missing data problems that would 
induce a dependence between sample inclusion and the values of the ’s.y  Our summary measure 

incorporates the survey variable, using a generalized regression variance to reflect multiple calibration 
covariates. In Section 4, we apply the estimators in a simulation using variables similar to ones collected 
in establishment surveys and household surveys done by telephone and demonstrate empirically how the 
proposed estimator outperforms the existing methods in the presence of unequal calibration weights. 
Section 5 is a conclusion. 

 
2  Existing methods 
 

In this section, we specify notation and summarize the Kish and Spencer measures. The assumptions 
used to derive each of these are also presented. 

 
2.1  GREG weight adjustments 
 
 

Case weights resulting from calibration on benchmark auxiliary variables can be defined with a global 
regression model for the survey variables (see Kott 2009 for a review). Deville and Särndal (1992) 
proposed the calibration approach that involves minimizing a distance function between the base weights 
and final weights to obtain an optimal set of survey weights. Specifying alternative calibration distance 
functions produces alternative estimators. Suppose that a single-stage probability sample of n  units is 

selected with i  being the selection probability of unit i  and x i  a vector of p  auxiliaries associated with 

unit .i  A least squares distance function produces the general regression estimator (GREG): 

  GREG HT HT
ˆ ˆ ˆ ˆ ,


    B T TT

y x x i i ii s
T T g y   (2.1) 
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where HT
ˆ

y i ii s
T y


   is the Horvitz-Thompson (HT 1952) estimator of the population total of 

HT
ˆ, T xx i ii s

y


   is the vector of HT estimated totals for the auxiliary variables, 
1

T x
N

x ii
   is 

the corresponding vector of known totals, 1 1 1B̂ A X V Π yT
s s ss s s
    is the regression coefficient, with 

1 1 ,A X V Π XT
s s ss s s

   X T
s  is the matrix of x i  values in the sample,  diagVss iv  is the diagonal of 

the variance matrix specified under the working model  , ~ 0, ,x βT
i i i i iy v     and 

 diag .Πs i   In the second expression for the GREG estimator in (2.1), 

  1 1
HT

ˆ1 T T A x
T

i x x s i ig v     is the “gweight,” such that the case weights are i i iw g   for 

each sample unit .i  

The GREG estimator for a total is model-unbiased under the associated working model. The GREG is 
consistent and approximately design-unbiased when the sample size is large (Särndal, Swensson and 
Wretman 1992). When the model is correct, the GREG estimator achieves efficiency gains. If the model is 
incorrect, then the efficiency gains will be dampened (or nonexistent) but the GREG estimator is still 
approximately design-unbiased. Relevant to this work, the variance of the GREG estimator can be used to 
approximate the variance of any calibration estimator (Deville and Särndal 1992; Deville, Särndal and 
Sautory 1993) when the sample size is large. This allows us to produce one design effect measure 
applicable to all estimators in the family of calibration estimators. 
 
 

2.2  The direct design-effect measures for single-stage samples 
 

For a given non epsem  sample   and estimator T̂  for the finite population total ,T  one definition 

for the direct design effect (Kish 1965) is 

      srswr srswr
ˆ ˆ ˆDeff Var VarT T T   (2.2) 

where srswrT̂  is the estimator of a total based on a simple random sample selected with replacement 

 srswr .  We refer to this as a “direct” population quantity since it uses theoretical variances in the 

numerator and denominator. The design effect in (2.2) measures the size of the variance of the estimator 

T̂  under the design ,  relative to the variance of the estimator of the same total if a srswr  of the same 

size had been used. 

In large samples, we can approximate the variance of any calibration estimator calT̂  using the 

approximate variance of the GREG (GREG AV, Särndal et al. 1992; Deville et al. 1993), such that the 
design effect is  

      cal GREG srswr srswr
ˆ ˆ ˆDeff Var Var .T T T   (2.3) 

To estimate these design-effects, we use the appropriate corresponding sample-based variance estimates. 
Estimates of both measures (2.2) and (2.3) can be produced using conventional survey estimation 
software. Our proposed design effect is a model-assisted approximation to (2.3). 
 
 

2.3  Kish’s “Haphazard-sampling” design-effect measure for unequal weights  
 

Kish (1965, 1990) proposed the “design effect due to weighting” as a measure to quantify the loss of 

precision due to using unequal and inefficient weights. For  1, , ,w T
nw w   this measure is 
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    2

2

2

deff 1 CV

                         

,



 


  




w wK

ii s

ii s

n w

w

  (2.4) 

where     21 2CV w ii s
n w w w


   is the coefficient of variation of the weights with 

1 .ii s
w n w


   Expression (2.4) is derived from the ratio of the variance of the weighted survey mean 

under disproportionate stratified sampling to the variance under proportionate stratified sampling when all 
stratum unit variances are equal (Kish 1992). With equal stratum variances, sampling with a proportional 
allocation to strata is optimal, which leads to all units having the same weight. 

Kish referred to (2.4) as a measure that is appropriate for “haphazard” weighting in which unequal 
weights are inefficient. Kish (1992) and Park and Lee (2004) give examples of informative sampling 
where this measure does not apply. Park and Lee (2004) also demonstrate this measure may not apply 
equally well to estimators of means and totals. 
 

 

2.4  Spencer’s model-assisted measure for PPSWR sampling 
 

Spencer (2000) derives a design-effect measure to more fully account for the effect on variances of 
weights that are correlated with the survey variable of interest. The sample is assumed to be selected with 
varying probabilities and with replacement (denoted as PPSWR  sampling here). A particular case of this 

would be ,i ip x  where ix  is a measure of size associated with unit i  and ip  is the one-draw 

probability of selecting unit .i  Suppose that ip  is correlated with iy  and that a linear model holds for 

:iy .i i iy p       If the entire finite population were available, then the ordinary least squares 

estimates of   and   are A Y BP   and       2 ,i i ii U i U
B y Y p P p P

 
      where 

,Y P  are the finite population means for iy  and .ip  The finite population variance of the residuals, 

  ,i i ie y A Bp    is      22 2 1 2 21 1 ,e yp i yp yi U
N y Y


          where 2

y  is the finite 

population variance of y  and yp  is the finite population correlation between iy  and .ip  The estimated 

total studied by Spencer is referred to as the pwr estimator or Hansen-Hurwitz (1943) estimator (Särndal 

et al. 1992, Section 2.9) and is defined as 1
pwr 1

ˆ ,
n

i ii
T n y p


   with design-variance  pwr

ˆVar T   

  21
i i ii U

n p y p T


  in single-stage sampling. For use below, define   1 .i iw np   Spencer 

substituted the model-based values for iy  into the pwr estimator’s variance and took its ratio to the 

variance of the estimated total using srswr  to produce the following design effect for unequal weighting 

(see Appendix in Spencer 2000): 

   2 2
2

2
2 2 2

2
Deff 1 1

                
w ew e we w e

S yp
y y y

nA nW nW An

N N N N
  (2.5) 

where   11 1i ii U i U
W N w nN p

 
    is the average weight in the population, 2e w

  and ew  are 

the finite population correlation of the 2 ’sie  with the ’siw  and the ’sie  with the ’s,iw  respectively; 2
2

e
  
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and 2
w  are the finite population variances of the 2 ’sie  and ’s.iw  In skewed populations, the correlation 

ew  in (2.5) may be negligible but 2e w
  can be large and negative if units with larger ,x y  values have 

larger residuals but small weights. We found empirically in the simulations reported in Section 4 that 2e w
  

was generally negative and larger in relative size than .ew  

Assuming that the correlations in the last two terms of (2.5) are negligible, Spencer approximates (2.5) 
with 

  
2

2Deff 1 1 ,
             

S yp
y

nW A nW

N N
  (2.6) 

A similar expression is given by Park and Lee (2004; expression 4.7). Spencer proposed estimating 
measure (2.6) with 

         22 ˆdeff 1 deff ˆ deff 1 ,     w wS yp K y KR   (2.7) 

where 2 ˆ and ypR   are the R squared and estimated intercept from fitting the model i i iy p       

with survey weighted least squares,   22 ˆˆ y i i w ii s i s
w y y w

 
     with ˆ

w i i is s
y w y w    is 

the estimated population unit variance. Spencer’s estimator (2.7) assumes that the population size N  is 

large.  

When yp  is zero and y  is large, measure (2.7) is approximately equivalent to Kish’s measure (2.4). 

However, Spencer’s method does incorporate the survey variable ,iy  unlike (2.4), and implicitly reflects 

the dependence of iy  on the selection probabilities .ip  We can explicitly see this by noting that when N  

is large, 1 ,A Y BN Y    and (2.6) can be written as 

  2
2

1
Deff 1 1 ,

CV
      
 

S yp
Y

nW nW

N N
  (2.8) 

 where 2 2 2CV yY Y   is the population-level unit coefficient of variation (CV). We estimate (2.8) with  

       2
2

1
deff 1 deff deff 1 ,

cv
   w wS yp K K

y

R   (2.9) 

where 2 2 2ˆcv .ˆy y wy   Note that cv y  is not the standard CV produced in conventional survey estimation 

software, since it estimates the population unit CV of .y  

 
3  Proposed design-effect measure 
 

We extend Spencer’s (2000) approach in single-stage sampling to produce a new weighting design 
effect for a calibration estimator. While Spencer’s assumed ,i i iy p       we model iy  as 

,x β x βT T
i i i i iy          where  1x xi i  and   .β β   Denote the full finite population 

estimators of   and β  by XBA Y   and   1
B X X X YT T
  where X  is the N p  matrix of 

auxiliaries for the N  units in the finite population and Y  is the N  vector of y  values. The finite 

population residuals are defined as  x B x BT T
i i i i ie y A y       where   .B BA  
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Producing the design effect proposed below involves four steps: (1) constructing a linear 
approximation to the GREG estimator; (2) obtaining the design-variance of this linear approximation; (3) 
substituting model-based components into the GREG variance; and (4) taking the ratio of this model-
assisted variance to the variance of the pwr estimator of the total under srswr.  Since steps    1 4  

produce the theoretical design effect for an estimator, we add the final step: (5) plug-in sample-based 
estimates for each theoretical design effect component. 

 

Step 1. A linearization of the GREG estimator (Expression 6.6.9 in Särndal et al. 1992) is  

 
 GREG HT HT

ˆ ˆ ˆ
                      



 

  
T T B

T B





T

y x x

T
x i ii s

T T

e
  (3.1) 

where i ii s
e


  is the HT estimator of the population total of the ,ie  .U ii U

E e


   To obtain a 

simple variance formula in step 2, we treat the case of with-replacement sampling and replace 

i ii s
e


  with the pwr estimator 1

1
.

n

i ii
n e p

  Next, define i  to be the number of times that unit 

i  is selected for the sample. Since   ,i iE np    the second component in (3.1) has design-expectation 

 1

1
.

n

i i Ui
E n e p E

 
  

 

Step 2. From step 1 with the assumption of with-replacement sampling, GREG
ˆ T

xT  T B   
1

1
,

n

i ii
n e p

  with design-variance  

 
   

 

1
GREG 1

21

ˆVar Var

.


  






 




T B  nT
x U i ii

i i i Ui U

T n e p

n p e p E
  (3.2) 

 

Steps 3 and 4. We follow Spencer’s approach and substitute model values in variance (3.2) to 
formulate a design-effect measure. However, we substitute in the model-based equivalent to ,ie  not .iy  

Substituting the GREG residuals ie  into the variance and taking its ratio to the variance of the pwr
estimator in simple random sampling with replacement,   2 2

srswr srswr
ˆVar ,yT N n   where 

 22 1

1
,

N

y ii
N y Y


    will produce our approximate design effect due to unequal calibration 

weighting. We can simplify things greatly by defining ,i iu A e   where ,x BT
i i iu y   which 

implies .UU A E A    The resulting design effect (see Appendix) is  

  2 2

2

2 2Deff 2
  

         

u w
H uw uu w u

y y

nW n
A

N N
  (3.3) 

where     2

2 22 1 2 1

1 1
, ,

N N

u i y i u wi i
N u U N y Y 

 
         is the finite population correlation 

between 2
iu  and 2

2,i u
w   is the variance of 2

iu  and uw  is the correlation between iu  and .iw  
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The first component in (3.3) is  1 ;O  the factor nW N  is related to the Kish deff  as described 

below. The factor 2 2
u y   is an adjustment based on the effectiveness of the covariates in predicting .y  

The second component in (3.3) is  O n N  and incorporates terms related to the strength of the 

relationship between the calibration covariates and the weights. 

Note that the derivation of (3.3) assumes with-replacement (WR) sampling was used. Although 
without replacement (WOR) sampling is more common in practice, the WOR variance of an estimated 
total is complicated since it involves joint selection probabilities. The WR variance formula is simple 
enough to provide insights into the effect of calibration on a deff.  In cases where there are gains in 

precision from using WOR sampling, an ad hoc finite population correction factor can be incorporated in 
(3.3), i.e.,  1 Deff .Hn N  
 
 
 

Step 5. To estimate (3.3), we use   

    2 2

2

2 2

ˆ ˆ
ˆ ˆ ˆdeff deff ˆ 2 ˆ ,

ˆ ˆ

 
      

 
w u w

H K uw uu w u
y y

n

N
  (3.4) 

where the model parameter estimate ̂  is obtained using survey-weighted least squares, 2ˆ y  was defined 

in Section 2.3,   22 ,ˆ ˆu i i w ii s i s
w u u w

 
     ˆˆ , ,ˆ ˆ x βT

w i i i i i ii s i s
u w u w u y

 
     and ˆ β  

  1T T
s s s s


X WX X Wy  is the survey-weighted least-squares estimate of ,β  with  1diag , , ,nw wW   

and other terms defined in Section 2.1.  

If the correlations in (3.3) are negligible or the sampling fraction n N  is small, the first term 

dominates and we obtain  

 

2

2Deff ,u
H

y

nW

N

 
      

which can be estimated with  

   2 2deff deff ˆ ˆ .  wH K u y   (3.5) 

Note that in samples without calibration weight adjustments, we have ˆˆ x βT
i i i iu y y    and 2 2 .u y    

In this case expression (3.5) becomes Deff ,H nW N  which we estimate with Kish’s measure 

  2deff 1 CV .wK    However, when the relationship between the calibration covariates x  and y  is 

stronger, the variance 2
u  should be smaller than 2 .y  In this case, measure (3.5) is smaller than Kish’s 

estimate. Variable weights produced from calibration adjustments are thus not as “penalized” (shown by 
overly high design effects) as they would be using the Kish and Spencer measures. However, if we have 
“ineffective” calibration, or a weak relationship between x  and ,y  then 2

u  can be greater than 2 ,y  

producing a design effect greater than one. The Spencer measure only accounts for an indirect relationship 
between x  and y  if there was only one x  and it was used to produce .ip  This is illustrated in Section 4. 

We also examine the extent to which the correlation components in our proposed design effect (3.3) are 
large enough to influence the exact measure. Calculation of (3.3) requires only the sample y values, 

covariates, and calibration weights. This measure can, thus, be produced more quickly than measure (2.3), 
whose components are often available later in data processing after a variance estimation system is set up. 
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4  Empirical evaluation 
 

We conducted two simulation studies using data that mimic single-stage sampling. The first utilizes 
publically-available data from tax returns and continuous variables of interest, while the second examines 
the performance of the alternative measures for a binary outcome measure in a single-stage survey. 
 

4.1  Establishment data simulation study 
 

Here a sample dataset of tax return data is used to mimic an establishment survey setup. The data come 
from the Tax Year 2007 Statistics of Income (SOI) Form 990 Exempt Organization (EO) sample. This is a 
stratified Bernoulli sample of 22,430 EO tax returns selected from 428,719 filed with and processed by the 
IRS between December 2007 and November 2009. This sample dataset, along with the population frame 
data, is free and electronically available online (Statistics of Income 2011). These data make a candidate 
“establishment-type” dataset for estimating design effects, in which Kish’s design effect may not apply.  

The SOI EO sample dataset is used here as a pseudopopulation for illustration. Four variables of 
interest are used: Total Assets, Total Liabilities, Total Revenue, and Total Expenses. Returns that were 
sampled with certainty or that had “very small” assets (defined by having Total Assets less than 
$1,000,000, including zero) were removed, leaving 8,914 units. We then randomly replicated and 
perturbed the data to create a pseudopopulation of 50,000 units. We used simple random sampling with 
replacement to select more observations, then the additional data values were perturbed using the jitter 

(Chambers, Cleveland, Kleiner and Tukey 1983) function in R. 

Figure 4.1 shows a pairwise plot of the pseudo-population, including plots of the variable values 
against each other in the lower left panels, histograms on the diagonal panels, and the correlations among 
the variables in the upper right panels. This plot mimics establishment-type data patterns. From the 
diagonal panels, we see that the variables of interest are all highly skewed. From the lower left panels, 
there exists a range of different relationships among them. The Total Assets variable is less related to 
Total Revenue and Total Expenses (with moderate correlations of 0.41 0.44);  Total Revenue and Total 

Expenses are highly correlated. 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
Figure 4.1  Pseudopopulation values and loess lines for design effect evaluation. 
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Three sizes of samples were selected  100; 500;1,000n   without replacement from the 

pseudopopulation using the square root of Total Assets as a measure of size. This type of sampling is 
referred to as ps  sampling subsequently. The HT weights were then calibrated using the “linear” 

method in the calibrate function in the survey package for R (corresponding to a GREG estimator, 

Lumley 2012) to match the totals of an intercept, Total Assets and Total Revenue. The analysis variables 
are Total Liabilities and Total Expenses. (Note that we follow the common practice of developing 
procedures in the previous sections using formulas for with-replacement sampling but empirically 
evaluating them in without-replacement samples, which are the type used in applications.)  

Eight design effects estimates are considered: 
 

 Estimates of the design effect measures (2.2) and (2.3). Expression (2.2) reflects the efficiency 
of ps  sampling and use of the HT estimator. Expression (2.3) reflects gains (if any) of ps  

sampling combined with GREG estimation; 

 The Kish measure (2.4) computed using the GREG weights; 

 Three Spencer measures computed using the GREG weights: (i) the exact measure that 
estimates (2.5), (ii) the approximation (2.7) assuming zero correlation terms, and (iii) the large-
population approximation (2.9). The Spencer measures are designed to reflect gains due to 
PPSWR  sampling and use of the pwr estimator. It does not account for any gains due to 

calibration. 

 Two proposed measures: (i) the exact proposed single-stage design effect (3.4) and (ii) the zero-
correlation approximation (3.5). Both of these are meant to show the precision gains (if any) of 
PPSWR  sampling combined with GREG estimation.  

 

Note that neither the Spencer nor the proposed measures account for any reduction in variances due to 
sampling a large fraction of the population.  

We selected ten thousand samples to further understand the empirical behavior of the alternative 
design effect estimators. The empirical relbiases and ratio of the mean square errors (MSE’s) of the totals 
are 

 

   
   
   

1

HT GREG

2 2

HT, GREG,1 1

ˆ ˆrelbias 100

ˆ ˆMSE ratio MSE MSE

ˆ ˆ

S

ss

S S

s ss s

T T T T

T T

T T T T



 

  



  



    

where ˆ
sT  is an estimated total from sample s  (either HT or GREG), 10,000S   is the number of 

samples selected, and HT,
ˆ

sT  and GREG,
ˆ

sT  are the estimated HT and GREG totals from sample .s  The 

empirical deff  of an estimated total is computed as      21
srswr srswr1

ˆ ˆ ˆ ˆempdeff Var
S

ss
T S T T T


   

where 1

1
ˆ ˆS

ss
T S T


   and   2 2

srswr srswr
ˆVar .yT N n  

The results for relbiases and MSEs are shown in Table 4.1. Both estimators of totals are approximately 
unbiased. The GREG is also more precise than the HT estimator, especially for Total Expenses, as 
evidenced by the MSE ratios larger than one.  
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Table 4.1 
Simulation results of HT and GREG totals, 10,000 ps  samples drawn from the SOI 2007 pseudopopulation 
EO data 
 

 Variable of Interest 
 Total Liabilities 

(weakly correlated with X)  
Total Expenses 

(strongly correlated with X)  

Estimates 100n   500n   1,000n   100n   500n   1,000n   

Percent relbias(HT) -0.13 0.07 0.03 -0.64 0.05 0.07 
Percent relbias(GREG) 0.37 0.27 0.14 -0.12 -0.01 0.00 
MSE ratio 1.17 1.20 1.19 34.89 50.11 48.26 
Note A small number of samples were dropped in which either the matrix to be inverted for the GREG was singular or the 

GREG produced negative weights. The percentages of samples dropped were 3.6% for 100,n   1.2% for 500,n   and 
0.5% for 1,000.n   

 

We also computed the biases of the various estimated design effects across the 10,000 samples. The 
relbiases of the Kish, Spencer, and proposed design effect estimates are computed as 

 
      HT HT

ˆ ˆrelbias deff 100 deff edeff edeff ,KK y yT T  
  

 
      HT HT

ˆ ˆrelbias deff 100 deff edeff edeff ,SS y yT T  
  

and 

 
      GREG GREG

ˆ ˆrelbias deff 100 deff edeff edeffHH T T  
  

where deff ,K  deff ,S  and deff H  are the average Kish, Spencer, and proposed deff’s  over all samples. 

The terms  HT
ˆedeff yT  and  GREG

ˆedeff T  are computed in two ways: (1) as the simulation empdeff  of 

 HT GREG
ˆ ˆor ,yT T  and (2) as the average over all samples of the deff’s  of HT

ˆ
yT  computed from the 

survey package. The survey package’s default method of estimating the deff  from a particular 

sample uses a with-replacement variance estimate in the numerator. This corresponds to the sample design 
used to derive deff .H  Results are displayed in Table 4.2. 

For both variables of interest, we see large positive biases for the Kish design effect, and the design 
effects involving approximations. Thus, ignoring correlation components accounted for in the ‘exact’ 
Spencer and proposed design effects would lead to over-estimating the design effects.  

The proposed estimator is closer to the survey package design effects than to the empirical 

simulation deff’s  of the GREG. Although the relbiases of deff H  are fairly large for Total Expenses when 

computed with respect to edeff,  the empirical deff’s  themselves are small. We highlight the small 

magnitude of the Total Expenses  2y  variable deff  of 0.02 to put the relbiases into context. For 

example, the relbias of 12.9% for the exact version of our proposed estimator for 500n   for 2y  

corresponds to a difference in the third decimal place. Specifically, in this scenario, on average we over-
estimate the deff  by 0.003. 

We can understand why calibration is more efficient for Expenses than for Liabilities by examining the 
distributions of iy  and iu  in one particular sample. Figures 4.2 and 4.3 show boxplots of iu  and iy  for 

each variable and sample size. 
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Table 4.2 
Relative bias of design effect estimates, 10,000 ps  samples drawn from the SOI 2007 pseudopopulation EO 
data 
 

 Variable of Interest 
 Total Liabilities 

(weakly correlated with X)  
Total Expenses 

(strongly correlated with X)  

 100n   500n   1,000n   100n   500n   1,000n   

Empirical deff’s*       
 HT 0.51 0.50 0.50 0.56 0.65 0.64 
 GREG 0.43 0.42 0.42 0.02 0.02 0.02 

Relative biases w.r.t. empirical deff’s 

 Kish** 158.7 158.3 158.3 132.8 101.7 104.7 
 Spencer**       
   Exact 2.6 2.0 1.8 9.9 -4.5 -2.2 
   Zero-corr. approx. 96.1 98.0 98.4 91.2 70.1 73.7 
   Large N  approx. 96.7 98.9 99.3 101.7 78.1 81.7 
 Proposed***       
   Exact  -6.3 -1.6 0.2 25.3 12.9 8.1 
   Zero-corr. approx. 83.4 94.0 98.2 129.9 116.6 108.7 

Relative biases w.r.t. average of survey package deff’s 

 Kish** 219.7 211.3 209.4 6,400.5 7,786.2 8,287.2 
 Spencer**       
   Exact 3.1 0.8 0.5 3.5 -1.0 -1.5 
   Zero-corr. approx.  97.1 95.8 95.8 80.1 76.2 74.8 
   Large N  approx. 97.7 96.7 96.7 90.0 84.5 82.8 
 Proposed***       
   Exact  -0.9 -0.2 -0.1 11.3 -0.4 -0.1 
   Zero-corr. approx. 94.0 96.8 97.6 104.2 91.0 93.0  

* Averages across the simulated samples; 
** relative to the average of empirical HT deff’s; 
*** relative to the average of empirical GREG deff’s. 

 
 
 
 

 

 

 

 

 

 

 

 

Figure 4.2 Boxplots of iy  and iu  values from ppswr  samples from the 2007 SOI EO data, total liabilities 

variable (weakly correlated with X ).  
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Figure 4.3 Boxplots of iy  and iu  values from ps  samples from the 2007 SOI EO data, total expenses 

variable (strongly correlated with X ).  

 
The iu  values in all of these samples have shorter ranges of values and less variation than ,iy  

particularly for the Total Expenses variable. This occurs since the Total Expenses variable is highly 
correlated with the calibration variable Total Revenue (see Figure 4.1) and explains why the direct and 
proposed design effect measures are so much smaller for Total Expenses. 
 

 
4.2  Simulation study with a binary variable 
 

The second simulation study illustrates the performance of the proposed estimator when estimating the 
total of a binary variable in a single-stage survey that uses poststratification.  

We use the nhis.large population, which has 21,588N   units, from the PracTools 

R package (Valliant, Dever and Kreuter 2015) to gauge the impact of poststratification weighting 
adjustments. The binary variable used is whether or not a person received Medicaid or not. Receipt of 
Medicaid, which is a social welfare program in the US, is an example of a variable that is collected in 
some telephone surveys. Missing values of Medicaid recipiency were recoded to be “no” responses. There 
is a fairly strong relationship between race-ethnicity, age, and whether Medicaid is received, as shown in 
Table 4.3 or Table 14.1 in Valliant, Dever and Kreuter (2013). The 15 age  race-ethnicity cells in the 
table will be used as poststrata, which is a typical procedure in telephone surveys. 
 
 
 
 
 

 
Table 4.3 
Population percentages of persons receiving medicaid, by age group and Hispanic status 
 

Hispanic Status 

Age Group Hispanic Non-Hispanic White Non-Hispanic Black or Other 

< 18 years 31.8 12.9 30.9 
18-24 10.5 6.5 12.2 
25-44 7.5 3.8 8.6 
45-64 2.4 3.0 6.2 
65+ 26.8 3.7 16.2 
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In our simulation, we selected 10,000 simple random samples without replacement from the NHIS 
population. The HT estimator for the total number of persons receiving Medicaid is ,sNy  where sy  is the 

proportion in sample s  that receives Medicaid. Due to the relatively large number of poststrata and 

varying number of persons receiving Medicaid by poststratum, we include results only for samples of size 
500 and 1,000n   since no collapsing of poststrata within a given particular sample was needed for 

these sample sizes.  

The base weights for the HT estimator are simply .iw N n  The variance of the poststratified 

estimator is 91% of that of sNy  in samples of 500n   and 88% in samples of 1,000.n   Since the 

base weights are constant, Spencer’s design effects are not computable in this example. Therefore, only 
results for the Kish and proposed design effects are shown in Table 4.4. 

 
Table 4.4 
Relative bias of design effect estimates, 10,000 pps  samples drawn from the NHIS pseudopopulation data 
 

 Number of Persons Receiving Medicaid 
 500n   1,000n   

Empirical deff’s*   
   HT 0.97 0.95 
   GREG 0.91 0.88 
  w.r.t. 

empirical deff 
w.r.t.  

survey deff 
w.r.t.  

empirical deff 
w.r.t.  

survey deff 
Relative biases (percent)     
   Kish** 6.0 17.5 7.0 17.6 
   Proposed***     
      Exact -1.4 3.2 -0.9 5.0 
      Zero-corr. approx. -1.5 2.9 -1.2 4.7 
*  Averages across the simulated samples; 
**  relative to the average of empirical HT deff’s; 
*** relative to the average of empirical GREG deff’s. 
 

 
The Kish design effect has positive biases of 17.5% and 17.6% when computed with respect to the 

empirical deff’s.  The exact proposed design effects are positively biased with respect to the survey 
deff  (3.2 and 5.0%), but much less so than the Kish estimator. In this example, the zero-correlation 

approximation is very similar to the exact version of the proposed estimator. The correlation components 
were negligible for these weighting adjustments within three decimal places.  

 
5  Discussion, limitations, and conclusions 
 

We propose a new design effect that gauges the impact of calibration weighting adjustments on an 
estimated total in single-stage sampling. Two existing design effects are the Kish (1965) “design effect 
due to weighting” and one due to Spencer (2000). Both of these are inadequate to reflect efficiency gains 
due to calibration. The Kish deff  is a reasonable measure if equal weighting is optimal or nearly so, but 
does not reveal efficiencies that may accrue from sampling with varying probabilities. The Spencer deff  
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does signal whether the HT (or pwr)  estimator in varying probability sampling is more efficient than srs.  

But, the Spencer deff  does not reflect any gains from using calibration.  

The proposed design effect measures the impact of both sampling with varying probabilities and of 
using a calibration estimator, like the GREG, that takes advantage of auxiliary information. As we 
demonstrate empirically, the proposed design effects do not penalize unequal weights when the 
relationship between the survey variable and calibration covariate is strong. We also demonstrated 
empirically that the correlation components in the Spencer measure and our proposed measure can be 
important in some situations. It is not overly difficult to calculate these components, and these should be 
incorporated when possible to avoid over estimates of the design effects. However, the high correlations 
between survey and auxiliary variables that we observed in our establishment pseudopopulation data may 
be unattainable for some surveys that lack auxiliary information. In cases where the auxiliary information 
is ineffective or is not used, the proposed measure approximates Kish’s deff.  The measure presented here 

is applicable to single-stage sampling but can be extended to more complex sample designs, like cluster 
sampling.  

Our measure uses the model underlying the general regression estimator to extend the Spencer 
measure. The survey variable, covariates, and weights are required to produce the design effect estimate. 
Since the variance (3.2) is approximately correct in large samples for all calibration estimators, our design 
effect should reflect the effects of many forms of commonly used weighting adjustment methods, 
including poststratification, raking, and the GREG estimator. Although design effects that do account for 
these adjustments can be computed directly from estimated variances, it is important for practitioners to 
understand that the existing Kish and Spencer deff’s  do not reflect any gains from those adjustments. The 
deff  introduced in this paper, thus, serves as a corrective to that deficiency. 

For practical consideration, the deff in (3.4) is available in the deffH function in the R PracTools 

package; see Valliant et al. (2015) for documentation and examples.  
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Appendix 
 
Proposed design effect in single-stage sampling 
 

The appendix sketches the derivation of the proposed deff.  Most notation was defined in the previous 

sections of the paper. The average population one-draw probability is 1

1
.

N

ii
P N p


   Assume that the 

design satisfies 1.P N   Consider the model .x βT
i i iy       If the full finite population were 

available, then the least-squares population regression line would be 

 ,  x BT
i i iy A e   (A.1) 
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where A  and B  are the values found by fitting an ordinary least squares regression line in the full finite 

population. That is, ,BXA Y     1
,B X X X yT T

  where X  is the N p  population matrix of 

auxiliary variables, 1

1

N

ii
Y N y


   is the population mean, and X  is the vector of population means of 

the ’s.x  The ’sie  are defined as the finite population residuals, ,x BT
i i ie y A    and are not 

superpopulation model errors. Denote the population variance of the 2’s, ’s, ,y e e  and weights as 

2

2 2 2 2, , , ,y e we
     e.g.,   22 1

1
,

N

y ii
N y Y


    and the finite population correlations between the 

variables in the subscripts as , ,yp ew   and 2 .
e w

  The GREG theoretical design-variance in with-

replacement sampling is 

 
   

 
21

GREG 1

1 2 2

1

ˆVar

,







 

 




N

i i i Ui

N

i i Ui

T n p e p E

n e p E
   (A.2) 

where 
1

.
N

U ii
E e


   Using the model in (A.1) produces a design effect with several complex terms, 

many of which contain correlations that cannot be dropped as in Spencer’s approximation. The design 
effect can be simplified using an alternative formulation: ,i iu A e   where .x BT

i i iu y   First, we 

rewrite the population total of the ’sie  as 
1

,
N

U ii
E e NU NA


    where 1

1
.

N

ii
U N u


   From 

this,    2 22 22 .UE NU NA N UA    Second, using   1 ,i iw np   or   1 ,i ip nw   we rewrite the 

component 2

1

N

i ii
e p

  as 
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2
2

11 1

2 2

1 1 1
2 .
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i

N N N
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u A
e p

nw
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  (A.3) 

Subtracting 2
UE  from (A.3) and dividing by n  gives 
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  (A.4) 

Following Spencer’s approach using the covariance substitutions, the first and fifth terms in (A.4) can be 

rewritten as  2 2

2 2 2

1

N

i i uu w ui w
w u N NW U


        and 

1
.
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i i uw u wi
w u N NWU


      

Plugging these back into the variance (A.4) gives 
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  (A.5) 
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The variance of the pwr estimator under simple random sampling with replacement, where 1 ,ip N   

reduces to   2 2
srswr pwr

ˆVar .yT N n   Taking the ratio of (A.5) to the pwrvariance gives the following 

design effect: 
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   (A.6) 

Since , ,i iu A e U A    (A.6) becomes 
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   (A.7) 

We estimate measure (A.7) with 

      2 2
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y y
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   (A.8) 

where the model parameter estimates are defined in Sections 2.3 and 3. 
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