7. Discussion

Cyril Favre Martinoz, David Haziza et Jean-François Beaumont

Précédent

Dans cet article, nous avons proposé une méthode de détermination du seuil pour des estimateurs winsorisés. Cette méthode a l’avantage d’être simple à mettre en oeuvre en pratique et peut être utilisée pour des plans de sondage à probabilités inégales. Nous avons également proposé une méthode de calage permettant de satisfaire une relation de cohérence entre les estimations winsorisées obtenues au niveau des domaines et une estimation winsorisée au niveau de la population. Bien que nous n'ayons appliqué cette méthode que dans le cas d’estimateurs winsorisés, cette dernière peut être utilisée pour n’importe quel type d’estimateur robuste.

Remerciements

Les auteurs remercient un éditeur associé ainsi que deux arbitres pour leurs commentaires et suggestions qui ont grandement contribué à améliorer la qualité de l’article. Les travaux de recherche de David Haziza ont été financés par une bourse du Conseil de recherches en sciences naturelles et en génie du Canada.

Annexe

On veut montrer qu’il existe une solution à l’équation

Δ ( K ) = j S a j max ( 0, d j y j K ) = B ^ min + B ^ max 2 = t ^ t ^ R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHsislcq qHuoardaqadaqaaiaadUeaaiaawIcacaGLPaaacqGH9aqpdaaeqbqa aiaadggadaWgaaWcbaGaamOAaaqabaaabaGaamOAaiabgIGiolaado faaeqaniabggHiLdGcciGGTbGaaiyyaiaacIhadaqadaqaaiaaicda caaISaGaamizamaaBaaaleaacaWGQbaabeaakiaadMhadaWgaaWcba GaamOAaaqabaGccqGHsislcaWGlbaacaGLOaGaayzkaaGaeyypa0Za aSaaaeaaceWGcbGbaKaadaWgaaWcbaGaaeyBaiaabMgacaqGUbaabe aakiabgUcaRiqadkeagaqcamaaBaaaleaacaqGTbGaaeyyaiaabIha aeqaaaGcbaGaaGOmaaaacqGH9aqpceWG0bGbaKaacqGHsislceWG0b GbaKaadaWgaaWcbaGaamOuaaqabaaaaa@60A6@

sous les conditions π i j π i π j 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IaeqiWda3aaSbaaSqa aiaadMgaaeqaaOGaeqiWda3aaSbaaSqaaiaadQgaaeqaaOGaeyizIm QaaGimaaaa@4549@  et 1 2 ( B ^ min + B ^ max ) 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcbaWcba GaaGymaaqaaiaaikdaaaGcdaqadaqaaiqadkeagaqcamaaBaaaleaa caqGTbGaaeyAaiaab6gaaeqaaOGaey4kaSIabmOqayaajaWaaSbaaS qaaiaab2gacaqGHbGaaeiEaaqabaaakiaawIcacaGLPaaacqGHLjYS caaIWaGaaiOlaaaa@474A@

Ordonnons tout d’abord les unités de la plus petite à la plus grande selon la valeur de b i = d i y i , i S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamizamaaBaaaleaacaWGPbaa beaakiaadMhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyAaiabgI GiolaadofacaaISaaaaa@4450@  de telle sorte que l’unité 1 devient celle qui a la plus petite valeur de b i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadMgaaeqaaaaa@3A5B@  et l’unité n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbaaaa@394D@  devient celle qui a la plus grande valeur. Considérons en premier le cas : 1 2 ( B ^ min + B ^ max ) = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcbaWcba GaaGymaaqaaiaaikdaaaGcdaqadaqaaiqadkeagaqcamaaBaaaleaa caqGTbGaaeyAaiaab6gaaeqaaOGaey4kaSIabmOqayaajaWaaSbaaS qaaiaab2gacaqGHbGaaeiEaaqabaaakiaawIcacaGLPaaacqGH9aqp caaIWaGaaiOlaaaa@468A@  Il faut résoudre l’équation Δ ( K ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHsislcq qHuoardaqadaqaaiaadUeaaiaawIcacaGLPaaacqGH9aqpcaaIWaaa aa@3EC6@  et on peut facilement observer que cette équation est satisfaite pour tout K b n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey yzImRaamOyamaaBaaaleaacaWGUbaabeaakiaac6caaaa@3DB2@

Considérons maintenant le cas : 1 2 ( B ^ min + B ^ max ) > 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcbaWcba GaaGymaaqaaiaaikdaaaGcdaqadaqaaiqadkeagaqcamaaBaaaleaa caqGTbGaaeyAaiaab6gaaeqaaOGaey4kaSIabmOqayaajaWaaSbaaS qaaiaab2gacaqGHbGaaeiEaaqabaaakiaawIcacaGLPaaacqGH+aGp caaIWaGaaiOlaaaa@468C@  Notons d’abord que la fonction Δ ( K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHsislcq qHuoardaqadaqaaiaadUeaaiaawIcacaGLPaaaaaa@3D06@  est continue et linéaire par morceaux pour 0 K b n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaIWaGaey izImQaam4saiabgsMiJkaadkgadaWgaaWcbaGaamOBaaqabaGccaGG Uaaaaa@4010@  Les morceaux sont définis par les intervalles [ b j 1 , b j [ , j = 1 , ... , n , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWabaqaai aadkgadaWgaaWcbaGaamOAaiabgkHiTiaaigdaaeqaaOGaaGilaiaa dkgadaWgaaWcbaGaamOAaaqabaGcdaWabaqaaiaaiYcacaWGQbGaey ypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaiaa cYcaaiaawUfaaaGaay5waaaaaa@4944@  où b 0 = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6caaaa@3CA3@  Notons aussi que Δ ( 0 ) = j = m n a j b j > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHsislcq qHuoardaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaaeWaqa aiaadggadaWgaaWcbaGaamOAaaqabaGccaWGIbWaaSbaaSqaaiaadQ gaaeqaaaqaaiaadQgacqGH9aqpcaWGTbaabaGaamOBaaqdcqGHris5 aOGaeyOpa4JaaGimaiaacYcaaaa@4A50@  où m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGTbaaaa@394C@  est le plus petit indice tel que b m 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaad2gaaeqaaOGaeyyzImRaaGimaiaac6caaaa@3D9B@  Par le théorème de la valeur intermédiaire, il existe une solution à l’équation (4.7) si on peut montrer que

Δ( b n )=0< 1 2 ( B ^ min + B ^ max )Δ( 0 )= j=m n a j b j .(A.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHsislcq qHuoardaqadaqaaiaadkgadaWgaaWcbaGaamOBaaqabaaakiaawIca caGLPaaacqGH9aqpcaaIWaGaaGjbVlaabYdacaaMe8+aaSaaaeaaca aIXaaabaGaaGOmaaaadaqadaqaaiqadkeagaqcamaaBaaaleaacaqG TbGaaeyAaiaab6gaaeqaaOGaey4kaSIabmOqayaajaWaaSbaaSqaai aab2gacaqGHbGaaeiEaaqabaaakiaawIcacaGLPaaacqGHKjYOcqGH sislcqqHuoardaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpda aeWbqaaiaadggadaWgaaWcbaGaamOAaaqabaGccaWGIbWaaSbaaSqa aiaadQgaaeqaaaqaaiaadQgacqGH9aqpcaWGTbaabaGaamOBaaqdcq GHris5aOGaaGOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiik aiaabgeacaqGUaGaaeymaiaacMcaaaa@6CFF@

La première inégalité découle directement de la condition 1 2 ( B ^ min + B ^ max ) > 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcbaWcba GaaGymaaqaaiaaikdaaaGcdaqadaqaaiqadkeagaqcamaaBaaaleaa caqGTbGaaeyAaiaab6gaaeqaaOGaey4kaSIabmOqayaajaWaaSbaaS qaaiaab2gacaqGHbGaaeiEaaqabaaakiaawIcacaGLPaaacqGH+aGp caaIWaGaaiOlaaaa@468C@  Pour montrer la deuxième inégalité, on note d’abord que 1 2 ( B ^ min + B ^ max ) B ^ max . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcbaWcba GaaGymaaqaaiaaikdaaaGcdaqadaqaaiqadkeagaqcamaaBaaaleaa caqGTbGaaeyAaiaab6gaaeqaaOGaey4kaSIabmOqayaajaWaaSbaaS qaaiaab2gacaqGHbGaaeiEaaqabaaakiaawIcacaGLPaaacqGHKjYO ceWGcbGbaKaadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaakiaac6 caaaa@4A5B@  Si on utilise l’estimateur (2.2) du biais conditionnel et la condition π i j π i π j 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IaeqiWda3aaSbaaSqa aiaadMgaaeqaaOGaeqiWda3aaSbaaSqaaiaadQgaaeqaaOGaeyizIm QaaGimaaaa@4549@  alors on observe que B ^ max ( d k 1 ) y k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGcbGbaK aadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaakiabgsMiJoaabmaa baGaamizamaaBaaaleaacaWGRbaabeaakiabgkHiTiaaigdaaiaawI cacaGLPaaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaaaa@45FF@  l’indice k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGRbaaaa@394A@  étant associé à l’unité qui a le plus grand biais conditionnel estimé. Pour l’estimateur winsorisé de Dalén-Tambay, cette dernière inégalité peut être réécrite comme suit : B ^ max a k b k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGcbGbaK aadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaakiabgsMiJkaadgga daWgaaWcbaGaam4AaaqabaGccaWGIbWaaSbaaSqaaiaadUgaaeqaaO GaaiOlaaaa@42B6@  Il en résulte que a k b k Δ ( 0 ) = j = m n a j b j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaS baaSqaaiaadUgaaeqaaOGaamOyamaaBaaaleaacaWGRbaabeaakiab gsMiJkabgkHiTiabfs5aenaabmaabaGaaGimaaGaayjkaiaawMcaai abg2da9maaqadabaGaamyyamaaBaaaleaacaWGQbaabeaakiaadkga daWgaaWcbaGaamOAaaqabaaabaGaamOAaiabg2da9iaad2gaaeaaca WGUbaaniabggHiLdGccaGGSaaaaa@4E5C@  ce qui complète la preuve d’existence d’une solution à l’équation (4.7). Pour l’estimateur winsorisé standard, on peut aussi facilement montrer que B ^ max a k b k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGcbGbaK aadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaakiabgsMiJkaadgga daWgaaWcbaGaam4AaaqabaGccaWGIbWaaSbaaSqaaiaadUgaaeqaaa aa@41FA@  et donc qu’une solution existe. De plus, si les y i , i S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaaGilaiaadMgacqGHiiIZcaWGtbGaaGil aaaa@3F32@  sont tous positifs alors la fonction Δ ( K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHsislcq qHuoardaqadaqaaiaadUeaaiaawIcacaGLPaaaaaa@3D06@  est monotone décroissante pour 0 K b n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaIWaGaey izImQaam4saiabgsMiJkaadkgadaWgaaWcbaGaamOBaaqabaaaaa@3F54@  et la solution est unique.

Pour trouver la solution K opt , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaab+gacaqGWbGaaeiDaaqabaGccaGGSaaaaa@3CEC@  on trouve le plus grand indice l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGSbaaaa@394B@  tel que Δ ( b l ) 1 2 ( B ^ min + B ^ max ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqGHsislcq qHuoardaqadaqaaiaadkgadaWgaaWcbaGaamiBaaqabaaakiaawIca caGLPaaacqGHLjYSdaWcbaWcbaGaaGymaaqaaiaaikdaaaGcdaqada qaaiqadkeagaqcamaaBaaaleaacaqGTbGaaeyAaiaab6gaaeqaaOGa ey4kaSIabmOqayaajaWaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqaba aakiaawIcacaGLPaaacaGGSaaaaa@4C78@  pour l n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGSbGaey izImQaamOBaiaac6caaaa@3CA5@  La solution peut ensuite être obtenue par interpolation linéaire entre les points b l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadYgaaeqaaaaa@3A5E@  et b l + 1 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaS baaSqaaiaadYgacqGHRaWkcaaIXaaabeaakiaacUdaaaa@3CC4@  c’est-à-dire

K opt = b l Δ ( b l + 1 ) Δ ( K opt ) Δ ( b l + 1 ) Δ ( b l ) + b l + 1 Δ ( K opt ) Δ ( b l ) Δ ( b l + 1 ) Δ ( b l ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaab+gacaqGWbGaaeiDaaqabaGccqGH9aqpcaWGIbWaaSba aSqaaiaadYgaaeqaaOWaaSaaaeaacqqHuoardaqadaqaaiaadkgada WgaaWcbaGaamiBaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaGa eyOeI0IaeuiLdq0aaeWaaeaacaWGlbWaaSbaaSqaaiaab+gacaqGWb GaaeiDaaqabaaakiaawIcacaGLPaaaaeaacqqHuoardaqadaqaaiaa dkgadaWgaaWcbaGaamiBaiabgUcaRiaaigdaaeqaaaGccaGLOaGaay zkaaGaeyOeI0IaeuiLdq0aaeWaaeaacaWGIbWaaSbaaSqaaiaadYga aeqaaaGccaGLOaGaayzkaaaaaiabgUcaRiaadkgadaWgaaWcbaGaam iBaiabgUcaRiaaigdaaeqaaOWaaSaaaeaacqqHuoardaqadaqaaiaa dUeadaWgaaWcbaGaae4BaiaabchacaqG0baabeaaaOGaayjkaiaawM caaiabgkHiTiabfs5aenaabmaabaGaamOyamaaBaaaleaacaWGSbaa beaaaOGaayjkaiaawMcaaaqaaiabfs5aenaabmaabaGaamOyamaaBa aaleaacaWGSbGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaacqGH sislcqqHuoardaqadaqaaiaadkgadaWgaaWcbaGaamiBaaqabaaaki aawIcacaGLPaaaaaGaaGilaaaa@78CD@

Δ ( K opt ) = 1 2 ( B ^ min + B ^ max ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqqHuoarda qadaqaaiaadUeadaWgaaWcbaGaae4BaiaabchacaqG0baabeaaaOGa ayjkaiaawMcaaiabg2da9iabgkHiTmaaleaaleaacaaIXaaabaGaaG OmaaaakmaabmaabaGabmOqayaajaWaaSbaaSqaaiaab2gacaqGPbGa aeOBaaqabaGccqGHRaWkceWGcbGbaKaadaWgaaWcbaGaaeyBaiaabg gacaqG4baabeaaaOGaayjkaiaawMcaaiaac6caaaa@4D8E@

Bibliographie

Beaumont, J.-F., Haziza, D. et Ruiz-Gazen, A. (2013). A unified approach to robust estimation in finite population sampling. Biometrika, 100, 555-569.

Berger, Y.G. (1998). Rate of convergence for asymptotic variance of the Horvitz-Thompson estimator. Journal of Statistical Planning and Inference, 74, 149-168.

Clark, R.G. (1995). Winsorization methods in sample surveys. Thèse de maîtrise, Department of Statistics, Australian National University.

Dalén, J. (1987). Practical estimators of a population total which reduce the impact of large observations. R and D Report. Statistics Sweden.

Datta, G.S., Gosh, M., Steorts, R. et Maple, J. (2011). Bayesian benchmarking with applications to small area estimation. Test, 20, 574-588.

Deville, J.-C., et Särndal, C.-E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376-382.

Fattorini, L. (2006). Applying the Horvitz-Thompson criterion in complex designs: A computer-intensive perspective for estimating inclusion probabilities. Biometrika, 93, 269-278.

Haziza, D., Mecatti, F. et Rao, J.N.K. (2008). Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design. Metron, 66, 91-108.

Kokic, P.N., et Bell, P.A. (1994). Optimal Winsorizing cutoffs for a stratified finite population estimator. Journal of Official Statistics, 10, 419-435.

Moreno-Rebollo, J.L., Muñoz-Reyez, A.M., Jimenez-Gamero, M.D. et Muñoz-Pichardo, J. (2002). Influence diagnostics in survey sampling: Estimating the conditional bias. Metrika, 55, 209-214.

Moreno-Rebollo, J.L., Muñoz-Reyez, A.M. et Muñoz-Pichardo, J.M. (1999). Influence diagnostics in survey sampling: Conditional bias. Biometrika, 86, 923-928.

Rivest, L.-P. (1994). Statistical properties of Winsorized means for skewed distributions. Biometrika, 81, 373-383.

Rivest, L.-P., et Hidiroglou, M. (2004). Outlier treatment for disaggregated estimates. Proceedings of the Survey Research Methods Section, American Statistical Association, Alexandria, Virginie, 4248-4256.

Rivest, L.-P., et Hurtubise, D. (1995). Moyenne winsorisée de Searls pour populations asymétriques. Techniques d’enquête, 21, 2, 119-129.

Tambay, J.-L. (1988). An integrated approach for the treatment of outliers in sub-annual surveys. Proceedings of the Survey Research Methods Section, American Statistical Association, Alexandria, Virginie, 229-234.

Thompson, M.E., et Wu, C. (2008). Échantillonnage PPT systématique randomisé basé sur la simulation en cas de substitution d’unités. Techniques d’enquête, 34, 1, 3-11.

You, Y., Rao, J.N.K. et Dick, P. (2004). Benchmarking hierarchical Bayes small area estimators in the Canadian census undercoverage estimation. Statistics in Transition, 6, 631-640.

Précédent

Date de modification :