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A method of determining the winsorization threshold, with 
an application to domain estimation 

Cyril Favre Martinoz, David Haziza and Jean-François Beaumont1 

Abstract 

In business surveys, it is not unusual to collect economic variables for which the distribution is highly skewed. 
In this context, winsorization is often used to treat the problem of influential values. This technique requires the 
determination of a constant that corresponds to the threshold above which large values are reduced. In this 
paper, we consider a method of determining the constant which involves minimizing the largest estimated 
conditional bias in the sample. In the context of domain estimation, we also propose a method of ensuring 
consistency between the domain-level winsorized estimates and the population-level winsorized estimate. The 
results of two simulation studies suggest that the proposed methods lead to winsorized estimators that have 
good bias and relative efficiency properties. 

 
Key Words: Conditional bias; Robust estimation; Winsorized estimator; Influential values. 

 
 

1  Introduction 
 

In business surveys, it is not unusual to collect economic variables for which the distribution is highly 
skewed. In this context, we often face the problem of influential values in the selected sample. These 
values are typically very large, and their presence in the sample tends to make classical estimators very 
unstable. 

It is possible to guard against the impact of influential values at the design stage by selecting with 
certainty the potentially influential units. For example, in business surveys, it is customary to use a 
stratified simple random sampling without-replacement design containing one or more take-all strata that 
are usually composed of large units. Unfortunately, it is seldom possible to completely eliminate the 
problem of influential values at the design stage. The strata in business surveys are usually formed using a 
geography variable, a size variable (for example, number of employees) and a classification variable (for 
example, the North American Industry Classification System (NAICS) code). In a survey that collects 
dozens of variables of interest, it is not unlikely that some of them will have little or no correlation with 
the stratification variables, which may result in the presence of influential values. This is the case in 
particular in Statistics Canada’s environmental surveys, such as the Agricultural Water Survey, one of 
whose objectives is to measure the quantity of water used by Canadian farms for irrigation. It turns out 
that water consumption in a given year has little correlation with the stratification variables, since 
consumption depends in part on the weather conditions affecting the sampled farms. Another example is 
the Industrial Water Survey, one of whose objectives is to measure the quantity of water used. In the case 
of mining companies, the consumption of water for ore extraction is strongly correlated with the 
geophysical characteristics of the land, which are not taken into account by the stratification variables. 

Another problem that leads to influential values in the sample is the presence of stratum jumpers, 
which arises when the stratification information collected in the field is different from the information in 
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the sampling frame. These differences are usually due to errors in the frame (for example, an outdated 
frame). A stratum jumper is a unit that is not in the stratum that it would have been assigned to if the 
information in the frame had been accurate. If a unit with a large value is assigned to a take-some stratum, 
it will have a large value for the variable of interest and possibly a large sampling weight, which will 
potentially make it very influential. In practice, it is not unusual to have between 5% and 10% stratum 
jumpers. 

Classical estimators (such as the expansion estimator) exhibit (virtually) no bias, but they can be very 
unstable in the presence of a influential values. Robust estimators are constructed so as to limit the impact 
of influential values, which leads to estimators that are more stable but potentially biased. The objective is 
to develop robust estimation procedures whose mean square error is significantly smaller than that of 
classical estimators when there are influential values in the population but which do not suffer a serious 
loss of efficiency when there are none. The treatment of influential values usually strikes a trade-off 
between bias and variance. 

Winsorization is a method often used in business surveys to treat influential values. It involves 
decreasing the value and/or weight of one or more influential units to reduce their impact. Two forms of 
winsorization are considered: standard winsorization and the winsorization described by Dalén (1987) and 
Tambay (1988). These methods are described in Section 4. Whichever type is used, winsorization requires 
the determination of a constant that corresponds to the threshold above which large values are reduced. 
The choice of this constant is crucial, as a poor choice may lead to winsorized estimators that have a larger 
mean square error than classical estimators. The problem of choosing the constant has been studied by 
Kokic and Bell (1994) and Rivest and Hurtubise (1995), among others. In the case of a stratified simple 
random sampling without-replacement design, these researchers determined the constant that minimizes 
the estimated mean square error of the winsorized estimators. For repeated surveys, they suggest using 
historical data collected in previous iterations. Kokic and Bell (1994) determined the optimal value of the 
constant by setting up a common mean model in each stratum and minimizing the winsorized estimator’s 
mean square error with respect to both the model and the sampling design. Clark (1995) generalized the 
results obtained by Kokic and Bell (1994) to the case of a ratio estimator and by calculating the mean 
square error with respect to the model only. 

First, we consider a different criterion, which involves finding the constant that minimizes the largest 
estimated conditional bias in the sample. As we explain in Section 2, the conditional bias associated with a 
unit is a measure of influence that takes into account the sampling design used. The proposed method has 
the advantage of being simple to apply in practice. In addition, unlike the methods proposed in the 
literature, it does not require historical information or a model describing the distribution of the variable of 
interest in each stratum. Robust estimation based on the conditional bias is presented in Section 3. 

In Section 5, we deal with the problem of domain estimation, which is an important problem in 
practice. We apply a robust method separately in each domain of interest. A population-level estimator 
can easily be produced by aggregating the robust estimators obtained at the domain level. However, since 
it is defined as the sum of estimators that are all biased, the aggregate estimator could have a large bias. 
This point was raised by Rivest and Hidiroglou (2004). We propose a three-step approach: First, apply a 
robust method separately in each domain of interest to produce initial estimates. Independently, produce 
an initial robust estimate at the population level. Lastly, using a method similar to calibration (e.g., Deville 
and Särndal 1992), modify the initial estimates so as to ensure consistency between the robust estimates 
obtained at the domain level and the robust estimate obtained at the population level. The problem of 
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consistency for domains has been studied in the context of small area estimation; for example, see You, 
Rao and Dick (2004) and Datta, Gosh, Steorts and Maple (2011). 

We conclude this section with a discussion of the concept of robustness in classical statistics and 
robustness in finite populations. In classical statistics, we deal with infinite populations, for which we 
want to estimate the mean, say. In this context, an outlier is a value that was generated under a different 
model from the one under which the majority of the observations were generated. The presence of outliers 
in the sample can be attributed to the fact that the population from which the sample is generated is a 
mixture of distributions or that some observations are subject to measurement errors. In classical statistics, 
we usually want to conduct inferences about the population of inliers. The aim is therefore to construct 
estimators that are robust in the sense that they are not seriously affected by the presence of outliers in the 
sample. In this context, it is desirable to construct robust estimators that have a high breakdown point 
and/or a bounded influence function. In finite populations, measurement errors are corrected at the 
verification stage, and it is assumed that there are none left at the estimation stage. The aim is to conduct 
an inference about the “total” population, which includes both outliers and inliers. In other words, in 
contrast to classical statistics, we are not just interested in the population of inliers. In this context, 
estimators that have a high breakdown point and/or a bounded influence function are generally not 
appropriate because they can lead to large biases. We will give preference to estimators that are robust in 
the sense that (i) they are more stable than classical estimators in the presence of influential values and 
almost as efficient as classical estimators in their absence, and (ii) they converge to classical estimators as 
the sample size and the population size increase. Simulation studies are presented in Section 6. Section 7 
concludes with a discussion. 

 
2  Measure of influence: Conditional bias 
 

Consider a finite population of individuals, denoted by ,U  of size .N  We want to estimate the total for 

the variable of interest ,y  denoted by = .ii U
t y

  From the population we select a sample ,S  of 

(expected) size ,n  using the sampling design   .p S  A classical estimator of t  is the expansion estimator, 

also known as the Horvitz-Thompson estimator, ˆ = ,i ii S
t d y

  where 1i id    is the sampling weight 

of unit i  and i  denotes its probability of inclusion in the sample. Although the expansion estimator, ˆ,t  

is design-unbiased for ,t  it can be highly unstable in the presence of influential values. 

To measure the impact (or influence) that a sampled unit has on the expansion estimator, we use the 
concept of conditional bias of a unit; see Moreno-Rebollo, Muñoz-Reyez and Muñoz-Pichardo (1999), 
Moreno-Rebollo, Muñoz-Reyez, Jimenez-Gamero and Muñoz-Pichardo (2002) and Beaumont, Haziza 
and Ruiz-Gazen (2013). Let iI  be the sample selection indicator variable for unit i  such that = 1iI  if 

i S  and = 0,iI  otherwise. The conditional bias of the estimator t̂  associated with a sampled unit is 

defined as  

  HT
1

ˆ= = 1 = ,ij i j
i p i j

j U i j

B E t I t y


    
    

  (2.1) 



60 Favre Martinoz et al.: A method of determining the winsorization threshold, with an application to domain estimation 
 

 
Statistics Canada, Catalogue No. 12-001-X 

where ij  is the joint probability of inclusion of units i  and j  in the sample. In general, the conditional 

bias (2.1) is unknown, since the values of the variable of interest are observed only for the sampled units. 
In practice, the conditional bias must be estimated. We consider the conditionally unbiased estimator (for 
example, see Beaumont et al. 2013): 

 

HT
1

,

ˆ =

= ( 1) .

ij i j
i j

j S j ij

ij i j
i i j

j S j i j ij

B y

d y y



 

    
   

    
     




 (2.2) 

This estimator is conditionally unbiased in the sense that  HT HT
1 1

ˆ = 1 = .p i i iE B I B  We make the 

following remarks on the conditional bias and its estimator: (i) The conditional bias (2.1) and its estimator 
(2.2) depend on the inclusion probabilities i  and the joint inclusion probabilities .ij  In other words, the 

conditional bias is a measure that takes the sampling design into account. (ii) If = 1,i  then HT
1 = 0iB  

and, similarly, HT
1

ˆ = 0.iB  That is, when = 1,i  unit i  is selected in all possible samples, and 

consequently    ˆ ˆ= 1 = = 0,p i pE t I t E t t   since t̂  is a design-unbiased estimator of .t  A unit 

selected systematically in the sample therefore has no influence and does not contribute to the variance of 
ˆ.t  (iii) The estimated conditional bias (2.2) depends on the second-order inclusion probabilities, .ij  For 

some designs, these probabilities may be difficult to calculate, in which case approximations will be used. 
For sampling designs that belong to the class of high-entropy designs (e.g., Berger 1998), a number of 
approximations of the second-order inclusion probabilities have been proposed in the literature; for 
example, see Haziza, Mecatti and Rao (2008). An alternative solution is to calculate approximations of the 

ij  using Monte Carlo methods; see Fattorini (2006) and Thompson and Wu (2008). 

For a stratified simple random sampling design, the conditional bias (2.1) associated with sampled unit 
i  in stratum h  is given by  

  HT
1 = 1 ,

1
h h

i i Uh
h h

N N
B y y

N n
     

 (2.3) 

where hn  denotes the size of the sample selected in stratum 1, = ,
h

Uh h ii U
h y N y

  and hU  denotes the 

population of units in stratum h  of size , = 1, , .hN h H  The estimator of the conditional bias (2.2) 

reduces to  

 HT
1

ˆ = 1 ,
1

h h
i i Sh

h h

n N
B y y

n n
     

 

where 1=
h

Sh h ii S
y n y

  and hS  is the sample in stratum .h  

For a Poisson design, the conditional bias of sampled unit i  is given by  

    HT = 1 = 1 .i i i iB I d y  (2.4) 
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In contrast to the simple random sampling without-replacement design, the conditional bias (2.4) is known 
for all units in the sample, since it does not depend on finite population parameters. 

 
3  Robust estimation based on the conditional bias 
 

To guard against the undue influence of certain units, it is advisable to construct robust estimators of 
the total ,t  that is, estimators that reduce the impact of the most influential units. We consider a class of 

estimators of the form 

 ˆ ˆ= ,Rt t    (3.1) 

where   is a certain random variable. As we will see in Section 4, the winsorized estimators considered 
can be written in form (3.1). As in Beaumont et al. (2013), we want to determine the value of   that 
minimizes the maximum estimated conditional bias of ˆ

Rt  in the sample. Formally, we are seeking the 

value of   that minimizes  

  1
ˆ ,max

R
i

i S
B


 (3.2) 

where 1
ˆ R

iB  denotes the estimated conditional bias of ˆ
Rt  associated with sampled unit .i  This conditional 

bias is given by  

 
 

 
1

HT
1

ˆ= = 1

= = 1

R
i p R i

i p i

B E t I t

B E I


 

 (3.3) 

which is estimated by  

 HT
1 1

ˆ ˆ= ,R
i iB B    (3.4) 

where HT
1

ˆ
iB  is a conditionally unbiased estimator of HT

1 .iB  If we note that   is a conditionally unbiased 

estimator of  = 1 ,p iE I  it follows that the estimator of the conditional bias (3.4) is conditionally 

unbiased for 1 .R
iB  In other words, we have  1 1

ˆ = 1 = .R R
p i i iE B I B  

Beaumont et al. (2013) showed that the value of   that minimizes (3.2) is given by  

 opt min max

1 ˆ ˆ= ,
2

B B    

where  HT
min 1

ˆ ˆ= min i S iB B  and  HT
max 1

ˆ ˆ= max .i S iB B  Estimator (3.1) then becomes 

  min max

1 ˆ ˆˆ ˆ= .
2Rt t B B   (3.5) 

Beaumont et al. (2013) demonstrated that under certain regularity conditions, the estimator (3.5) is design-
consistent; that is,  ˆ = .R pt t O N n  
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4  Application to winsorized estimators 
 

Estimator (3.5) can be written in alternative forms, which can make it easier to implement in some 
cases. We consider the winsorized form. This form has been widely studied in the literature. As mentioned 
in Section 1, standard winsorization is distinguished from Dalén-Tambay winsorization. 

Standard winsorization involves decreasing the value of units that are above a particular threshold, 
taking their weight into account. Let iy  be the value of variable y  for unit i  after winsorization. We have  

 

if 

=
if >

i i i

i

i i
i

y d y K

y K
d y K

d







  (4.1) 

where > 0K  is the winsorization threshold. The standard winsorized estimator of the total t  is given by  

 
 

ˆ =

ˆ= ,

s i i
i S

t d y

t K



 

 
 (4.2) 

where  

   = max 0, .i i
i S

K d y K


    

Hence, the estimator (4.2) can be written in the form (3.1). An alternative is to express ŝt  as a weighted 

sum of the initial values using modified weights: 

ˆ = ,s i i
i S

t d y

   

where  

 

min ,

= .
i

i
i i

i

K
y

d
d d

y

 
 
   (4.3) 

If  min , =i i iy K d y  (that is, if unit i  is not influential), then = .i id d  Thus, the weight of a non-

influential unit is not modified. In contrast, the modified weight of an influential unit is less than id  and 

may even be less than 1. It is worth noting that a unit with a value of = 0iy  presents no particular 

problems, since its contribution to the estimated total, ˆ ,st  is zero. In this case, an arbitrary value can be 

assigned to the modified weight .id  

In the case of Dalén-Tambay winsorization, the values of the variable of interest after winsorization are 
defined by 

 

if 

= .1
if >

i i i

i
i i i

i i i

y d y K

y K K
y d y K

d d d




      

  (4.4) 
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This leads to the winsorized estimator of the total :yt  

 
 

DT
ˆ =

ˆ= ,

i i
i S

t d y

t K


 

 
 (4.5) 

where  

 
 

 
1

= max 0, .i
i i

i S i

d
K d y K

d


    

Estimator (4.5) can also be written in the form (3.1). As in the case of ˆ ,st  an alternative is to express 

DTt̂  as a weighted sum of the initial values using modified weights: 

DT
ˆ = ,i i

i S

t d y

   

where  

  
min ,

= 1 1 .
i

i
i i

i

K
y

d
d d

y

 
 
    (4.6) 

As in the case of the standard winsorized estimator, the weight of a non-influential unit is not modified. 
Unlike standard winsorization, Dalén-Tambay winsorization guarantees that the modified weights will not 
be less than 1. Once again, a unit with a value of = 0iy  presents no particular problems, since its 

contribution to the estimated total, DT
ˆ ,t  is zero. In this case, an arbitrary value can be assigned to the 

modified weight .id  

Since the standard and Dalén-Tambay winsorized estimators are of the form (3.1), the optimal constant 

optK  that minimizes (3.2) is obtained by solving  

   min max

1 ˆ ˆ=
2

K B B    

or  

   min max
ˆ ˆ

max 0, = ,
2j j j

j S

B B
a d y K




  (4.7) 

where = 1ja  in the case of ŝt  and  = 1j j ja d d  in the case of DT
ˆ .t  It is shown in the Appendix 

that a solution to equation (4.7) exists under the following conditions: 
 

1. 0;  andij i j      

2.  min max

1 ˆ ˆ 0.
2

B B   
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Condition 1 is satisfied for most one-stage designs used in practice, such as stratified simple random 
sampling and Poisson sampling. Condition 2 implies that ˆ

Rt  must be less than or equal to ˆ,t  since by 

construction, a winsorized estimator cannot be greater than the Horvitz-Thompson estimator. It is 
generally expected that Condition 2 will be satisfied in most skewed populations encountered in business 
surveys and social surveys. It is also shown in the Appendix that the solution to equation (4.7) is unique if 
the above conditions are met and if 0iy   for .i S  The Appendix contains a brief description of an 

algorithm for finding the solution to equation (4.7). 

It should be noted that while the value optK  is different for each type of winsorized estimator used, the 

resulting robust estimators are identical. In other words, we have  

     min max
opt DT opt

ˆ ˆ
ˆ ˆ ˆ ˆ= = = .

2s R

B B
t K t K t t


  (4.8) 

To compare the influence of each population unit with respect to the (non-robust) expansion estimator, 
ˆ,t  and its robust version (4.8), we carried out a simulation study. For that purpose, we generated two 

populations, each of size 100.N   One population was generated according to a normal distribution with 

mean 4,108 and standard deviation 1,500, and the other was generated according to a lognormal 
distribution with mean 4,108 and standard deviation 7,373. From each population we selected 

500,000M   samples according to two sampling designs: (i) a simple random sampling without-
replacement design of size 10,n   and (ii) a Bernoulli design of expected size 10.n   First, we 

calculated the conditional bias of the Horvitz-Thompson estimator for a simple random sampling without-
replacement design, given in (2.3) and for a Bernoulli design, given in (2.4). Note that the conditional bias 
of the Horvitz-Thompson estimator does not have to be approximated by simulation since all the 
population parameters are known. The conditional bias associated with unit i  of the robust estimator 

given in (3.3) was approximated as follows: Out of the 500,000 selected samples, we identified those 
which contained unit .i  In each of these samples, we calculated the error, ˆ .Rt t  Finally, we calculated 

the average value of ˆ
Rt t  over all the samples containing unit .i  

The results for the simple random sampling without-replacement design for the normal and lognormal 
distributions are shown in Figures 4.1 (a) and 4.1 (b) respectively. The results for the Bernoulli sampling 
design for the normal and lognormal distributions are shown in Figures 4.1 (c) and 4.1 (d) respectively. In 
each figure, the absolute value of the conditional bias of ˆ

Rt  is shown in relation to the absolute value of 

the conditional bias of t̂  for each population unit. The units above the first bisectrix have a conditional 
bias associated with ˆ

Rt  whose absolute value is greater than that of the conditional bias associated with ˆ.t  

Looking first at the results for simple random sampling without replacement, we see that the behaviour of 
the absolute value of the conditional bias of ˆ

Rt  is similar to that of the absolute value of the conditional 

bias of ˆ,t  which indicates that the influence of the units is not altered significantly after robustification of 

the expansion estimator. This result is not surprising since the population does not contain any highly 
influential units. In the case of the lognormal distribution, we see that the influence of the values that have 
a high conditional bias associated with t̂  has been reduced significantly. On the other hand, we note that 
for the majority of the data, the conditional bias of ˆ

Rt  is slightly higher than that of ˆ.t  Turning to the 

results for Bernoulli sampling, we see that in the case of the normal population, the influence of most units 
has been reduced, since the absolute value of the conditional bias of ˆ

Rt  is significantly lower than the 
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absolute value of the conditional bias of ˆ.t  In the case of the lognormal distribution, the results are similar 

to those obtained with simple random sampling without replacement for the same distribution. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Absolute value of the conditional biases of the robust and non-robust estimators 

 
 

5  Robust estimation of domain totals 
 

In practice, we usually want to produce estimates for population domains as well as an estimate at the 
global level. Let =

g
g ii U

t y
  be the total of the y variable in domain .g  We assume that the 

domains form a partition of the population such that 
=1

= = ,
G

i gi U g
t y t

   where G  is the number of 

domains. Let gS  be the set of sampled units in domain .g  The expansion estimator of gt  is given by 

ˆ = .
g

g i ii S
t d y

  We have the consistency relation 
=1

ˆ ˆ= .
G

gg
t t  

In the presence of influential values, we can apply a robust procedure separately for each domain using 
the method described in Section 3, which leads to G  robust estimators, ,

ˆ .R gt  A robust estimator of the 
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total at the population level,  agg
ˆ ,Rt  is easily obtained by aggregating the robust estimators ,

ˆ .R gt  Thus, we 

have  agg ,=1
ˆ ˆ= .

G

R R gg
t t  The consistency relation between the domain-level estimates and the 

population-level estimate is therefore satisfied. However, aggregating G  robust estimators, each suffering 
from a potential bias, may produce a highly biased aggregate robust estimator,  agg

ˆ .Rt  In most cases, the 

bias of  agg
ˆ

Rt  will be negative, since each of the ,
ˆ

R gt  estimators has a negative bias. 

To avoid having an estimator with an unacceptable bias, we first compute the robust estimator (4.8), 

,
ˆ ,R gt  for each domain. Then, we independently compute a robust estimator of the total t  in the population, 

,0
ˆ ,Rt  given by (4.8). In this case, however, the consistency relation is no longer necessarily satisfied. In 

other words, we have ,0 ,=1
ˆ ˆ ,

G

R R gg
t t   in general. It is therefore necessary to force consistency between 

the robust domain estimates and the aggregate robust estimate using a method similar to calibration. To do 
so, we compute final robust estimates *

,
ˆ , = 0,1, .., ,R gt g G  that are as close as possible to the initial robust 

estimates ,
ˆ ,R gt  based on a particular distance function, and that satisfy the calibration equation  

 * *
, ,0

=1

ˆ ˆ= .
G

R g R
g

t t  (5.1) 

In the case of the generalized chi-square distance function, we are seeking final robust estimates, *
,

ˆ ,R gt  

such that  

 
 2*

, ,

=0 ,

ˆ ˆ

ˆ2

G
R g R g

g g R g

t t

q t


  (5.2) 

is minimized subject to (5.1). The coefficient gq  in the above expression is a weight assigned to the initial 

estimate in domain ,
ˆ, ,R gg t  and is interpreted as its importance in the minimization problem. Using the 

Lagrange multipliers method, we can easily obtain a solution to this minimization problem. The solution is 
given by 

 
,

* =0
, , ,

,
=0

ˆ
ˆ ˆ ˆ= ,

ˆ

G

h R h
h

R g R g g g R gG

h R h
h

t
t t q t

q t


 



 (5.3) 

where 0 = 1   and = 1,g  for = 1, , .g G  

We make the following remarks: (i) If = 0,gq  then the final robust estimate *
,

ˆ
R gt  is identical to the 

initial robust estimate ,
ˆ .R gt  Thus, if we want to ensure that the initial estimate in domain g  is not 

modified excessively, we simply associate it with a small value of .gq  This point is also illustrated 

empirically in Section 6.2. (ii) Note that like the initial robust estimates at the domain level, ,
ˆ ,R gt  for 

= 1, , ,g G  the initial robust estimate at the population level, ,0
ˆ ,Rt  can also be modified. (iii) If 0 = 0q  
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(in other words, the initial robust estimate for the population level is not modified) and =gq q  for 

= 1, , ,g G  where q  is a strictly positive constant, expression (5.3) simplifies to  

 
 

,0*
, ,

agg

ˆ
ˆ ˆ= .

ˆ
R

R g R g
R

t
t t

t

 
 
 

 (5.4) 

In this case, the initial estimates ,
ˆ

R gt  are all modified by the same factor,  ,0 agg
ˆ ˆ .R Rt t  (iv) How can we set 

the values of gq  in practice? It seems natural to adopt the following choice: 

     
=1

ˆ ˆ= CV CV ,
G

g g g
g

q t t  

where   ˆCV gt  is the estimated coefficient of variation (CV) associated with domain .g  For example, in a 

repeated survey, the estimated CV observed in a previous iteration can be used. This choice of gq  is based 

on the fact that we will not want to make a large change in the initial estimate associated with a domain 
that has a small estimated CV. In such a domain, the problem of influential values is clearly less serious, 
and the initial robust estimate ,

ˆ
R gt  is expected to be relatively close to the actual total .gt  In other words, 

the robust estimator ,
ˆ

R gt  should have low bias and be relatively stable. It therefore makes sense not to 

attempt to change the initial robust estimate substantially. (v) In (5.2), we used the generalized chi-square 
distance, which leads to the linear method. In the literature on calibration (e.g., Deville and Särndal 1992), 
there are a number of other calibration methods. In particular, there is the Kullback-Leibler distance, 
which leads to the exponential method and the logit and truncated linear methods. Using the last two 
methods, we can specify positive bounds 1C  and 2C  such that *

1 , , 2
ˆ ˆ .R g R gC t t C   In other words, we 

ensure that the ratio *
, ,

ˆ ˆ
R g R gt t  falls within the interval between 1C  and 2 .C  Note that the calibration 

procedure may lead to *
,

ˆ ˆ 0,R g gt t   for a certain ,g  which is counterintuitive. In this case, we simply 

include the constraint *
,

ˆ ˆ
R g gt t  for = 1, , ,g G  in the calibration procedure. (vi) An alternative is to 

express *
,

ˆ
R gt  as a weighted sum of the initial values using modified weights: 

* *
,

ˆ = ,
g

R g i i
i S

t d y

   

where  

,
* =0

,
=0

ˆ

= 1
ˆ

G

h R h
h

i i g g G

h R h
h

t
d d q

q t

 
 

  
 
 
 




   

and id  is given by either (4.3) or (4.6). We can also write the estimator *
,

ˆ
R gt  as a weighted sum with the 

initial weights using modified values: 

* *
,

ˆ = ,
g

R g i i
i S

t d y

   



68 Favre Martinoz et al.: A method of determining the winsorization threshold, with an application to domain estimation 
 

 
Statistics Canada, Catalogue No. 12-001-X 

where  

,
* = 0

,
=0

ˆ

= 1 ,    
ˆ

G

h R h
h

i i g g G

h R h
h

t
y y q i g

q t

 
 

   
 
 
 




   

and iy  is given by either (4.1) or (4.4). (vii) We may want to find the winsorization thresholds 

, = 1, , ,gK g G  such that the standard winsorized estimator or the Dalén-Tambay winsorized estimator 

is equal to *
,

ˆ .R gt  We can follow a procedure similar to the one in Section 4, and we can use an algorithm 

similar to the one in the Appendix. A necessary condition for the existence of a solution is that 
*

,
ˆ ˆ 0.g R gt t   (viii) With the proposed calibration procedure, more than one partition of the population 

can be dealt with jointly. For example, we may be interested in publishing both provincial estimates and 
industry estimates. If so, we simply insert the following calibration equations into the calibration 
procedure: 

* *
, ,0

=1

ˆ ˆ= ,
G

R g R
g

t t  

* *
, ,0

=1

ˆ ˆ= ,
L

R l R
l

t t  

where G  and L  denote the number of provinces and the number of industries respectively. The method 

can also be applied to more than two partitions of the population. 

 
6  Simulation studies 
 

6.1  Winsorization in a simple random sampling without-replacement design  
 

We carried out a simulation study to examine the properties of several robust estimators using 11 
populations. The first 10 of size 5,000N   consists of a variable of interest .y  In each population, the 

y values were generated according to the following model: 

= ,i i i iY U V   

where ,i iU   and iV  are random variables whose distributions are described in Table 6.1. Population 1 

was generated according to a normal distribution. Populations 2 through 5 were generated using a mixture 
of normal distributions with contamination rates ranging from 0.5% to 5%. Populations 6 through 8 were 
generated according to skewed distributions. Populations 9 and 10 were generated using a mixture of 
lognormal distributions with contamination rates equal to 0.5% and 5%. Population 11 of size 5,000N   

is from the information technology survey produced by the French National Institute for Statistics and 
Economic Studies (INSEE) in 2011. One of the survey’s objectives is to estimate the e-commerce sales of 
French companies. We use the “sales” variable in our simulation. The distribution of y  in each 
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population is plotted in Figure 6.1. In addition, Table 6.2 presents a number of descriptive statistics for 
each of the populations used. For confidentiality reasons, the units for Population 11 are not shown in the 
plot. Similarly, there are no descriptive statistics for Population 11 in Table 6.2. 

In each population, we selected 5,000M   samples according to a simple random sampling without-
replacement design of size 100,300n   and 500.  For each sample, we calculated the expansion 

estimator t̂  and the robust estimator (4.8). Let    1 , , ny y  be the values of the y variable arranged in 

ascending order. We also calculated the first-, second- and third-order winsorized estimators, where the 
thp  order winsorized estimator is obtained by replacing the p  largest values in the sample with the 

value   , = 1, 2, 3.n py p  In a classical statistical context, Rivest (1994) showed that the first-order 

winsorized estimator has good mean-square-error properties for a large class of skewed distributions. 

As a measure of the bias of an estimator ˆ ,  we calculated the Monte Carlo relative bias (in 

percentage): 

 
 ( )

=1
MC

1 ˆ
ˆBR = 100,

M

m
m

t
M

t

 
 


 

where  
ˆ

m  denotes the estimator ̂  in sample , = 1, , 5,000.m m   We also calculated the relative 

efficiency of the robust estimators with respect to the expansion estimator, ˆ :t  

 
 

 

2

( )
=1

MC
2

( )
=1

1 ˆ
ˆRE = 100.

1
ˆ

M

m
m

M

m
m

t
M

t t
M

 
 






 

The results are shown in Table 6.3. 

The results presented in Table 6.3 show that the once-winsorized estimator has lower bias and is 
generally more efficient than the two times and three times winsorized estimators, which is consistent with 
the results obtained by Rivest (1994). It is interesting to compare the robust estimator ˆ

Rt  and the once-

winsorized estimator. In the case of Population 1, which does not contain any influential values, we see 
that both estimators have low bias and are as efficient as the expansion estimator. In the case of the 
populations with a mixture of normal distributions (Populations 2 to 5), we observe that the once-
winsorized estimator is less efficient than the robust estimator in every scenario except for Population 5 
with 300.n   In fact, the once-winsorized estimator is less efficient than the expansion estimator in 
every scenario except for Population 2 with 100.n   The robust estimator is more efficient than the 

expansion estimator except in Populations 4 and 5, for which we observe values of relative efficiency 
ranging from 91% to 102%. In the case of the populations with a mixture of lognormal distributions 
(Populations 9 and 10), we see that the bias and efficiency performance of the once-winsorized estimator 
and the robust estimator is very similar in all scenarios. The same is true for the skewed populations 
(Populations 6 to 8), for which the two estimators produce similar results. In the case of Population 11, the 
robust estimator has a lower bias than the once-winsorized estimator for 100,n   though it is less 
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efficient (41% versus 47%). For 300n   and 500,n   the robust estimator has a lower bias and is 

significantly more efficient than the once-winsorized estimator. 

 
Table 6.1 
Models used to generate the populations 
 

Population  iU  distribution Mixture  i  distribution iV  distribution 

1  2,000; 500   No     

2  2,000; 500   Yes   0.005     50,000; 10,000  

3  2,000; 500   Yes   0.01     50,000; 10,000  

4  2,000; 500   Yes   0.02     50,000; 10,000  

5  2,000; 500   Yes   0.05     50,000; 10,000  

6   og log 2,000 ;1.2    No       

7   og log 2,000 ;1.5     No       

8  rechet 2,000;2.5;2.1    No       

9   og log 2,000 ;1.2     Yes   0.05    og (log 5,000 ; 1.2)   

10   og log 2,000 ;1.2     Yes   0.05    og (log 5,000 ; 1.2)   

 
 

 

Table 6.2 
Descriptive statistics for the ten simulated populations 
 

Descriptive Population 

statistic 1 2 3 4 5 6 7 8 9 10 

min  132.3 314.9 105.3 275.9 187.4 23.6 7.6 2,000.9 20.5 26.6 

max  3,968 79,506 78,526 80,540 78,690 252,612 379,751 2,159 305,612 1.3×106 

1Q   1,639 1,667 1,664 1,666 1,685 883 743 200 920 913 

Median  1,986 1,993 1,997 2,015 2,053 1,996 1,981 2,002 2,167 2,041 

3Q   2,330 2,337 2,339 2,349 2,421 4,505 5,337 2,004 5,018 4,927 

Mean  1,985 2,267 2,536 2,976 4,661 4,005 6,118 2,004 4,738 7,883 

Standard deviation 503 3,709 5,506 7,119 11,470 7,353 17,190 5.89 9,796 33,111 

Skewness   0.0 14.0 10.2 7.3 4.3 4.2 11.6 11.8 12.1 18.4 

Kurtosis  3 209 109 56 20 19 196 228 267 570 

CV  0.25 1.6 2.2 2.4 2.5 1.8 2.8 2.9×10-3 2.0 4.2 
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Figure 6.1 Distribution of the variable of interest in the 11 populations. 
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Table 6.3 
Monte Carlo relative bias (in %) and relative efficiency (in parentheses) of several estimators 
 

Population   n    ˆ
Rt    Winsorization 

      Once  Two times Three times 
    100  -0.1(100) -0.1(100) -0.2(101) -0.3(102) 
1   300  0.0(100) -0.0(100) -0.0(100) -0.1(100) 
   500  0.0(100) -0.0(100) -0.0(100) -0.0(100) 

    100  -4.9(59) -7.5(87) -10.7(65) -11.9(55) 
2   300  -2.9(87) -3.0(129) -6.8(158) -9.5(169) 
   500  -1.9(96) -1.2(122) -3.6(175) -6.5(226) 

    100  -6.9(74) -8.9(122) -16.5(119) -20.0(107) 
 3  300  -3.5(99) -1.9(122) -5.6(171) -10.6(232) 
   500  -2.4(102) -0.9(107) -2.2(130) -4.5(186) 

    100  -7.6(91) -6.2(131) -15.5(169) -24.4(194) 
 4  300  -2.9(101) -0.6(103) -2.1(118) -4.4(154) 
   500  -2.0(102) -0.6(102) -1.1(101) -1.8(108) 

    100  -5.7(102) -1.1(104) -4.1(126) -9.7(173) 
 5  300  -2.2(102) -0.4(100) -0.8(101) -1.4(102) 
   500  -1.2(100) -0.1(100) -0.3(100) -0.5(101) 

    100  -5.7(79) -5.4(75) -8.2(80) -10.6(89) 
 6  300  -2.6(84) -2.6(79) -3.9(81) -5.1(88) 
   500  -2.0(86) -2.0(81) -3.0(82) -3.8(88) 

    100  -8.4(72) -9.3(73) -14.7(72) -18.7(79) 
7   300  -4.5(86) -4.4(95) -7.8(91) -10.2(95) 
   500  -3.5(94) -3.1(105) -6.0(106) -8.1(109) 

    100  -0.0(69) -0.0(75) -0.0(77) -0.0(85) 
 8  300  -0.0(82) -0.0(88) -0.0(87) -0.0(95) 
   500  -0.0(88) -0.0(96) -0.0(94) -0.0(100) 

    100  -5.7(73) -5.8(71) -9.5(72) -12.4(80) 
 9  300  -3.5(87) -3.5(85) -5.4(88) -6.8(98) 
   500  -2.4(88) -2.4(88) -3.8(90) -4.9(97) 

    100  -13.5(68) -15.0(70) -24.6(76) -31.7(89) 
10   300  -7.5(80) -7.2(79) -12.1(85) -16.3(97) 
   500  -5.3(85) -5.1(83) -8.4(91) -11.4(103) 

    100  -22.8(47) -32.6(41) -42.0(42) -47.7(47) 
11   300  -14.7(65) -20.0(77) -29.6(68) -34.3(75) 
   500  -11.3(76) -14.6(96) -24.3(90) -29.3(97) 

 
6.2  Winsorization in a stratified simple random sampling without-

replacement design  
 

We also tested the calibration method described in Section 5. We generated a population of size 
5,000,N   which we divided into five strata, 1 5, , ,U U  of size 1 5, , ,N N  respectively; see Table 6.4 

for the values of .hN  In each stratum, we generated a variable of interest y  according to a lognormal 

distribution with parameters  log 2,000  and 1.5.   

From the population we selected 5,000M   samples according to a stratified simple random 
sampling without-replacement design. In stratum ,hU  we selected a sample hS  of size hn  according to a 

simple random sampling without-replacement design; see Table 6.4 for the sizes hn  and the 

corresponding sampling fractions, .h h hf n N  
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The objective here is to estimate the total in the population, = ,ii U
t y

  and the stratum totals 

= ,  = 1, , .
h

h ii U
t y h H

   In other words, in our example, the strata correspond to domains of interest. 

Since the strata form a partition of the population, we have the consistency relation, 
=1

= .
H

hh
t t  

Similarly, the expansion estimators satisfy the consistency relation 
=1

ˆ ˆ= ,
H

hh
t t  where ˆ = i ii S

t d y
  

and ˆ =
h

h i ii S
t d y

  with i h hd N n  if .hi U  

For each sample, we first computed the robust estimator (4.8) in each stratum and aggregated the 

robust estimates to produce an aggregate robust estimate,  agg ,=1
ˆ ˆ= .

H

R R hh
t t  Independently, we 

computed the robust estimator (4.8), denoted ,0
ˆ ,Rt  at the population level. To ensure that the consistency 

relation (5.1) was satisfied, we performed the calibration procedure described in Section 5 to obtain the 
final robust estimates *

,
ˆ , = 0, , 5.R ht h   We used four systems of coefficients :hq  (1) 0 = 0q  and 

1 5= = = 1;q q  (2) 0 = 0q  and  1= 1 ,h h hq n f   = 1, , 5;h   (3) 0 = 0q  and 

   2 1 2ˆ= CV = 1 ,h h h h h h hq t N f n S t  where    1 22 = 1 ,  = 1, , 5;
h

h h i Uhi U
S N y y h


    (4) 

0 = 0q  and     2 1 2ˆ ˆ= CV = 1 ,h h h h h h hq t N f n s t  where 

   1 22 = 1 ,  = 1, , 5.
h

h h i Shi S
s n y y h


    We make the following remarks on the choice of the 

coefficients :hq  (i) For all four systems, we assigned a weight 0 = 0q  to estimate ,0
ˆ ,Rt  which is 

equivalent to making no change in the robust estimate at the population level. In other words, we have 
*

,0 ,0
ˆ ˆ= .R Rt t  (ii) The first weighting system assigns an equal weight to all strata regardless of the sample 

size or sampling fraction. (iii) In the case of the second system, the coefficient hq  is a function of the 

sample size hn  and the sampling fraction ,hf  but it is independent of the intra-stratum variability 2 .hS  

(iv) In the third and fourth systems, the choice of hq  depends on the actual CV and the estimated CV 

respectively, for the reasons mentioned in Section 5.  

 
Table 6.4 
Characteristics of the strata 
 

  Stratum   1   2   3   4   5  

hN    2,000   1,500   1,000   400   100  

hn    20   75   100   80   80 

hf    0.01   0.05   0.1   0.2   0.8 

 
For each robust estimator, we computed the Monte Carlo relative bias (as a percentage) and the relative 

efficiency (with respect to the expansion estimator); see Section 6.1. The results are presented in 
Table 6.5. 

The results show that the initial robust estimators ,
ˆ

R ht  are biased, as expected. The bias is larger in 

strata with a small sampling fraction. For example, in Stratum 1, for which 1 ,= 1%f  the relative bias of 

1,
ˆ

ht  is 11.9%,  compared with only 1.5%  in Stratum 5, for which 5 .= 80%f  We also note that the 

initial robust estimators are all more efficient than the corresponding expansion estimator, with relative 
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efficiency values ranging from 57% to 97%. The aggregate estimator  agg
ˆ

Rt  obtained by summing the 

initial estimators ,
ˆ , = 1, , 5R ht h   shows a modest bias with a value equal to 5.7%  but is more efficient 

than the population-level expansion estimator ˆ,t  with a relative efficiency of 87%. 

The population-level winsorized estimator, ,0
ˆ ,Rt  shows a small bias with a value equal to 2.8%  and 

is significantly more efficient than the expansion estimator, with a relative efficiency of 81%. The final 
estimators *

,
ˆ

R ht  obtained using the system of coefficients = 1hq  for 1, ,5h    all have lower bias than 

the initial estimator ,
ˆ ,R ht  except for Stratum 5. This is due to the fact that we force the sum of the final 

estimates *
,

ˆ
R ht  to calibrate on a low-bias estimator. On the other hand, the decrease in the bias is 

accompanied by a slight decrease in efficiency. For example, in Stratum 4, the relative efficiency is 63% 
for the robust estimator ,4

ˆ
Rt  and 66% for the final estimator *

,4
ˆ .Rt  In the case of Stratum 5, the first system 

of coefficients is clearly unsuitable, since it leads to a change in the estimate for this stratum, like all the 
other strata, when this stratum has a very high sampling fraction of 80%. In fact, for this system of 
coefficients, the estimator *

,5
ˆ

Rt  is less efficient than the expansion estimator, with a relative efficiency of 

104. The second choice of coefficients ,hq  which takes the sampling fraction hf  and the sample size hn  

into account, leads to some interesting results. The final robust estimator in Stratum 1, *
,1

ˆ ,Rt  has an 

appreciably lower bias than the initial estimator ,1
ˆ

Rt  and the final estimator based on the first system of 

coefficients, at the cost of a slight loss of efficiency. For Stratum 5, the estimator *
,5

ˆ
Rt  has a low bias (a 

relative bias of 0.8%)  and the same 97% efficiency as the initial estimator ,5
ˆ .Rt  The third and fourth hq  

weighting systems lead to similar relative bias and relative efficiency results. For Stratum 1, they lead to 
lower relative biases than the first weighting system, at the cost of a slight loss of efficiency. For Strata 2, 
3 and 4, all four systems of coefficients exhibit similar relative bias and relative efficiency. For Stratum 5, 
the final estimators are virtually unbiased and no less efficient that the expansion estimator. 

 
Table 6.5 
Monte Carol relative bias (in %) and relative efficiency (in parentheses) of the robust estimators at the global 
level and the stratum level 
 

Global estimator 
 agg

ˆ
Rt  *

,0 ,0
ˆ ˆ=R Rt t  *

,0 ,0
ˆ ˆ=R Rt t  *

,0 ,0
ˆ ˆ=R Rt t  *

,0 ,0
ˆ ˆ=R Rt t  

 -5.7(87) -2.8(81) -2.8(81) -2.8(81) -2.8(81) 
   *

,
ˆ

R ht  

  
,

ˆ
R ht  1hq    1 1h h hq n f   ˆCVh hq t    ˆCVh hq t  

 1 -11.9(57) -9.1(60) -0.9(67) -5.7(62) -6.7(64) 
 2 -6.3(74) -3.4(76) -3.3(76) -3.3(76) -3.1(78) 
Stratum 3 -6.0(69) -3.1(70) -3.8(69) -3.2(70) -3.2(70) 
 4 -6.6(63) -3.7(66) -4.2(65) -3.3(66) -3.4(70) 
 5 -1.5(97) 1.5(104) -0.8(97) -0.2(98) 0.1(99) 

 
7  Discussion 
 

This paper outlined a proposed method for determining the threshold for winsorized estimators. This 
method has the advantage of being simple to apply in practice and can be used for sampling designs with 
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unequal probabilities. We also proposed a calibration method that satisfies a consistency relation between 
the domain-level winsorized estimates and a population-level winsorized estimate. Although we applied 
the method in the case of winsorized estimators, it can be used with any type of robust estimator.  
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Appendix 
 

We want to show that there exists a solution to the equation  

    min max
ˆ ˆ

ˆ ˆ= max 0, = =
2j j j R

j S

B B
K a d y K t t




    

under the conditions 0ij i j      and  1
min max2

ˆ ˆ 0.B B   

First, we arrange the units in order from the smallest value of = , ,i i ib d y i S  to the largest, so that 

unit 1 has the smallest value of ib  and unit n  the largest value. We begin by considering the case 

of  1
min max2

ˆ ˆ = 0.B B  We have to solve the equation   = 0,K  and we can easily see that this 

equation is satisfied for all .nK b  

We now turn to the case of  1
min max2

ˆ ˆ > 0.B B  We note first that the function  K  is continuous 

and piecewise linear for 0 .nK b   The pieces are defined by the intervals 1 , , = 1, ..., ,j jb b j n  

where 0 = 0.b  We also note that  
=

0 = > 0,
n

j jj m
a b   where m  is the smallest index such that 

0.mb   By the intermediate value theorem, there is a solution to equation (4.7) if we can show that  

      min max
=

1 ˆ ˆ= 0 < 0 = .
2

n

n j j
j m

b B B a b      (A.1) 

The first inequality follows directly from the condition  1
min max2

ˆ ˆ > 0.B B  To prove the second 

inequality, we first note that  1
min max max2

ˆ ˆ ˆ .B B B   If we use the estimator of the conditional bias (2.2) 

and the condition 0,ij i j      we observe that  max
ˆ 1 ,k kB d y   index k  being associated with 

the unit that has the largest estimated conditional bias. For the Dalén-Tambay winsorized estimator, the 

last inequality can be rewritten as max
ˆ .k kB a b  It follows that  

=
0 = ,

n

k k j jj m
a b a b    which 

completes the proof that there is a solution to equation (4.7). For the standard winsorized estimator, we 
can also easily show that max

ˆ
k kB a b  and therefore that a solution exists. In addition, if the , ,iy i S  

are all positive, the function  K  is monotonically decreasing for 0 nK b   and the solution is 

unique. 
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To find the solution opt ,K  we find the largest index l  such that    1
min max2

ˆ ˆ ,lb B B    for .l n  

The solution can then be calculated by linear interpolation between points lb  and 1;lb   that is,  

   
   

   
   

1 opt opt
opt 1

1 1

= ,l l
l l

l l l l

b K K b
K b b

b b b b



 

     


     
 

where    1
opt min max2

ˆ ˆ= .K B B    
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