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Optimal adjustments for inconsistency in imputed data 

Jeroen Pannekoek and Li-Chun Zhang1 

Abstract 

Imputed micro data often contain conflicting information. The situation may e.g., arise from partial imputation, 
where one part of the imputed record consists of the observed values of the original record and the other the 
imputed values. Edit-rules that involve variables from both parts of the record will often be violated. Or, 
inconsistency may be caused by adjustment for errors in the observed data, also referred to as imputation in 
Editing. Under the assumption that the remaining inconsistency is not due to systematic errors, we propose to 
make adjustments to the micro data such that all constraints are simultaneously satisfied and the adjustments 
are minimal according to a chosen distance metric. Different approaches to the distance metric are considered, 
as well as several extensions of the basic situation, including the treatment of categorical data, unit imputation 
and macro-level benchmarking. The properties and interpretations of the proposed methods are illustrated using 
business-economic data. 

 
Key Words: Edit-rules; Consistent micro-data; Optimization; Benchmarking. 

 
 

1  Introduction 
 

We are concerned with the task of reconciling conflicting information in imputed micro data. To 
illustrate, consider a small part of a record from a structural business survey given in Table 1.1. Two 
response patterns are postulated; one with only Turnover observed and one where also Employees and 
Wages are observed. There are many ways to impute the missing values in such a recipient record and the 
proposed adjustment methods apply irrespective of the imputation method used. The use of partial donor 
imputation is shown in Table 1.1, where the donor record is the ‘nearest neighbour’ from the same 
category of economic activity and closest to the recipient record with respect to Turnover for response 
pattern (I) and Employees, Turnover and Wages for response pattern (II). The imputation is said to be 
partial because a value of the donor is transferred to the receptor if and only if the corresponding one is 
missing in the recipient record. 

Business records generally have to adhere to a number of accounting and logical constraints. For 
checking of the validity of a record these are referred to as edit-rules. For the example record here, 
suppose the following three edit-rules are formulated: 
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Partial donor imputation leads to violation of these edit-rules, which we refer to as the (micro-level) 
consistency problem: for response pattern (I), the first two edit-rules involving Turnover are violated; for 
response pattern (II), all three edit-rules are violated. To obtain a consistent record, some of the eight 
values (i.e., including both the observed and imputed ones) have to be changed. Now, in the two cases 
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here, it is possible to change only the imputed values to satisfy all the edit-rules, so let us consider 
adjustments of the imputed values for the moment. 

 
Table 1.1 
Data, missing data and donor values for variables in a business record. Employees (Number of employees); 
Turnover main (Turnover main activity); Turnover other (Turnover other activities); Turnover (Total 
turnover); Wages (Costs of wages and salaries) 
 

Variable Name  Response (I) Response (II) Donor Values 

1x   Profit   330 

2x  Employees  25 20 

3x  Turnover Main   1,000 

4x  Turnover Other   30 

5x  Turnover 950 950 1,030 

6x  Wages  550 500 

7x  Other Costs   200 

8x  Total Costs   700 

 
Traditional adjustment methods, such as the prorating method implemented in Banff (Banff Support 

Team 2008), are designed to handle one constraint at a time. In response pattern (I), the prorating method 
could proceed as follows: (1) adjust the imputed values for Total costs and Profit with a factor 950/1,030 
so that they add up to the observed Turnover, (2) adjust the imputed values for Turnover main and 
Turnover other with the same factor to satisfy the second edit, and (3) adjust the imputed values of Wages 
and Other costs, again with the same factor to make them add up to the previously adjusted value of Total 
costs. 

For response pattern (II): step (1) and (2) may be carried out as before, but step (3) needs to be 
modified unless the observed Wages is to be ‘over-written’. Notice that Total costs appears in two edit-
rules: 1a  and 3.a  When the imputed Total costs is only adjusted according to 1a  in step (1), the relevant 

information in the observed Wages is ignored. Indeed, depending on the values available it can even 
happen that Total costs is adjusted downwards in step (1) to the extend that there is no acceptable non-
negative solution left for Other costs at step (3). In general, adjusting a variable that appears in multiple 
edit-rules according to only one of them is not only suboptimal in theory, it also requires an arbitrary 
choice of the order in which the edit-rules are to be handled, and it may unnecessarily cause a break-down 
of the procedure. 

Under the assumption that the inconsistency is not due to systematic errors, we propose an 
optimization approach that treats all the constraints simultaneously. To this end it is convenient to express 
the edit restrictions in matrix notation, as ,Cx d  where C  is the constraint (or restriction) matrix, and 
d  a constant vector. For the restrictions 1 3,a a  we have  

 

1 0 0 0 1 0 0 1

= 0 0 1 1 1 0 0 0  and  = .

0 0 0 0 0 1 1 1

C d 0

 
      
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The non-zero elements in a row of the constraint matrix identify all the variables that are involved in the 
corresponding edit constraint, and the non-zero elements in a column of the constraint matrix identify all 
the edit constraints that involve the corresponding variable. 

In addition, there are often linear inequality constraints. The simplest case is the non-negativity of most 
economic variables. The constraints can then be formulated as eq eq=C x d  and ineq ineq< ,C x d  

corresponding to the equality and inequality constraints. For ease of exposition we shall, without noting 
otherwise, adopt the compact expression .Cx d  

As mentioned earlier, not all the values need or should be adjusted. We therefore make a general 
distinction between free (or adjustable) and fixed (not adjustable) variables. This includes as a special case 
the situation where all the data values are considered adjustable. We emphasize that the distinction is not 
necessarily that between the imputed and observed variables, and imputation may have been carried out 
for missing values as well as erroneous observed ones. For instance, some imputed values may be held 
fixed because they are derived by logical reasoning as in deductive imputation, or they may have been 
obtained from external sources that are considered more reliable. Whereas some observed values may be 
considered unreliable and are allowed to be changed. Given the absence of systematic errors, a general 
approach is to identify the adjustable variables by “error localization” (e.g., de Waal, Pannekoek and 
Scholtus 2011), treating the imputed and observed values as equally error-prone. Nevertheless, in much of 
the text below we shall treat the imputed values as adjustable and the observed ones as fixed for ease of 
elaboration. 

Given the free and fixed variables, the complete data record is accordingly partitioned into sub-vectors 

freex  and fixed ,x  and the constraints matrix into freeC  and fixed ,C  containing the columns of C  that 

correspond to freex  and fixed ,x  respectively. The constraints for the adjustable variables are then given by 

free free fixed fixed C x d C x  or, equivalently, 

 freeAx b  (1.1) 

where the matrix A  represents the constraints on the free variables and will be called the accounting 
matrix and b  the constant vector for these constraints. Notice that, while the constraint matrix C  is 

derived a priori from the edit-rules alone, without reference to the actual data, and is the same for all the 
records, the accounting matrix A  is generally different from one record to another, since the distinction 
between free and fixed variables varies across the units. 

Our strategy to remedy the micro inconsistency problem in imputed data is to make adjustments to the 
adjustable values that are minimal according to some chosen distance (or discrepancy) measure, such that 
the adjusted record satisfies all the edit-rules. All the constraints are simultaneously handled assuming the 
absence of systematic errors. 

The rest of the paper will contain the following. The optimization approach will be outlined in 
Section 2. We consider different distance (or discrepancy) measures, the adjustments they generate, and 
illustrate their properties and interpretations using the example record above. In Section 3 we discuss 
possible extensions of the basic approach to adjustments based on statistical assumptions in addition to 
logical constraints, treatment of categorical data, unit imputation with adjustments, and adjustments for 
macro-level benchmarking constraints in combination with micro-level consistency. In Section 4 we 
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examine the pasture area data from the Norwegian Agriculture Census 2010, including an approach to the 
assessment of uncertainty due to editing. A final short summary is provided in Section 5. 

 
2  The minimum adjustment approach 
 

2.1  The optimization problem 
 

We propose to resolve the consistency problem outlined above by adjusting the free variables 
simultaneously and as little as possible, such that all the edit-rules are satisfied. Let the adjustable part of 
the record before adjustment be denoted by a J - vector 0x  and by x  the corresponding J - vector after 

the adjustment. The optimization problem can be formulated as:  

 
 0arg min ,

s.t. ,
x

x x x

Ax b

D






 (2.1) 

where  0,D x x  is a function measuring the distance (or discrepancy) between x  and 0 ,x  and A  the 

K J  accounting matrix associated with the K  constraints on x  given in (1.1). We will consider 

different functions D  in Section 2.2. 

The conditions for a solution to the minimization problem (2.1) can be found by inspection of the 
Lagrangian for this problem, which can be written as  

      0, = ,x α x x α Ax bTL D    (2.2) 

where α  is a K - vector of Lagrange multipliers, or dual variables, with components ,k  one for each of 

the K  constraints, and ak  the thk  row (corresponding to constraint )k  of the accounting matrix .K JA  

Notice that an additional non-negativity restriction needs to be applied to each k  corresponding to an 

inequality constraint, but not the k  of an equality constraint. 

From optimization theory it is well known that for a convex function  0,D x x  and linear constraints, 

the solution to (2.1) is given by vectors ,x α  that satisfy the so-called Karush-Kuhn-Tucker (KKT) 

conditions (see, e.g., Luenberger 1984; Boyd and Vandenberghe 2004). One of them is that the gradient of 
the Lagrangian w.r.t. x  is zero when evaluated at , ,x α  i.e.,  

    0, = , = 0,x α x x
j jx x kj k

k

L D a       (2.3) 

where kja  is the  ,k j - element of ,A  and  ,
jxL x α  the gradient of L  w.r.t. jx  evaluated at x  and ,α  

and 
jxD  that of .D  From (2.3), we can see how different choices for D  lead to different solutions to the 

adjustment problem, which we will refer to as the adjustment models. 

 

2.2  Distance functions and adjustment models 
 

A widely used distance function in many areas of statistics is the weighted least squares (WLS) 

function given by      0 0 0, = 1 2 ,TD  x x x x W x x  where W  is a diagonal matrix with diagonal 

elements ,jw  for = 1, ..., .j J  We then obtain, from (2.3), the adjustment model  
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 0,

1
= .j j kj k

kj

x x a
w

    (2.4) 

The WLS-criterion thus results in additive adjustments: the total adjustment to the initial value 0, jx  is the 

weighted sum of the adjustments that correspond to each of the K  constraints. The adjustment due to the 
thk  constraint depends on the following: 

 

 The adjustment parameter (i.e., the dual variable) k  that describes the amount of adjustment. 

A smaller value for k  (in absolute sense if k  refers to an equality constraint) corresponds to a 

smaller adjustment; a zero value for k  means that no adjustment due to that constraint takes 

place. 

 The constant kja  (i.e., an element of the accounting matrix) describes the direction and size of 

the adjustment to variable .j  Often, kja  is 1, -1 or 0 and then describes whether 0, jx  is adjusted 

by ,k k     or not at all. 

 The weight :jw  variables with larger weights are adjusted less than those with smaller 

weights. The special case of 1jw   yields the ordinary least squares (LS) criterion, where the 

amount of adjustment due to each constraint is the same for all the relevant variables.  
 

A specific choice of the weights is 0,1 ,j jw x  for = 1, ..., ,j J  in which case the squared relative 

adjustments are minimized and a larger initial value (i.e., 0, )jx  is adjusted more than a smaller one in 

absolute sense. Dividing (2.4) by 0, jx  we obtain  

 
0,

= 1 ,j
kj k

kj

x
a

x
 


  (2.5) 

which is an additive adjustment model for the ratio between the adjusted and unadjusted values. It may be 
noticed that this is the first-order Taylor expansion (i.e., around 0 for all the ’s)k  to the multiplicative 

adjustment given by  

  
0,

= 1 .j
kj k

kj

x
a

x
 


  (2.6) 

From (2.5) we see that k  determines the relative change from the initial 0, jx  to the adjusted ,jx  which 

in absolute sense is usually much smaller than unity. For instance, = 0.2k   implies 20%  adjustment 

of 0, jx  if = 1,kja   which is large in practice. The products of the ’sk  are therefore often much smaller 

than the ’sk  themselves, in which case (2.5) becomes a good approximation to (2.6), and one may 

regard the WLS adjustment to be roughly given as the product of all the constraint-specific multiplicative 
adjustments. 

Multiplicative adjustment by (2.6) may change the sign of 0, jx  if > 1kj ka   for some .k  

Multiplicative adjustments that preserve the sign of the initial 0, jx  can be obtained using the 
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Kullback-Leibler (KL) divergence measure (not formally a distance function), given by =KLD  

 0,ln ln 1 .j j jj
x x x   We then have, from (2.3), the adjustment model 

  0,= exp .j j kj k
k

x x a    (2.7) 

The adjustment due to constraint k  is equal to 1 if kja  is 0  (i.e., no adjustment), it is  exp k  if kja  is 1 

and it is  1 exp k  if ika  is 1.  Since 1 kj ka   is the first-order approximation of  exp kj ka   

around = 0k  if 1,kja   the WLS and KL criteria can be expected to yield similar adjustments as long 

as these are small or moderate. 

 

2.3  Methods for solving the minimum adjustment problem 
 

The general convex optimization problem (2.1) can be solved explicitly if the objective function is the 
weighted least squares and there are only equality constraints. In this case, the Lagrangian is 

       0 0, = 1 2 ,T TL    x α x x W x x α Ax b  and the equations to be solved are  

    0, = =x x α W x x A α 0TL    (2.8) 

  , = = .α x α Ax b 0L   (2.9) 

Solving (2.8) for x  and substituting the result in (2.9) we obtain  

    11
0= T  α AW A Ax b   

and then, on back substitution in (2.8), we obtain explicitly  

    11 1
0 0= .x x W A AW A Ax bT T     (2.10) 

For other objective functions and with inequality constraints in general, there are no explicit solutions 
to (2.1). However, there are many free or commercial algorithms for the convex optimization problem. For 
the application in this paper we used the R programming language and applied the so-called row-action or 
Successive Projection Algorithms (SPA) - see e.g., Censor and Zenios (1997). The SPA is an iterative 
algorithm that uses the constraints (rows of the accounting matrix) one by one. In one iteration the x-
vector is sequentially adjusted to each of the constraints. The operation of adjusting to a single constraint 
requires only to update the elements of the x- vector that are involved in that constraint (corresponding to 
the non-zero elements of the currently processed row of the accounting matrix). After all constraints are 
visited one iteration is completed and the next one is started. For the WLS criterion, an R-package is 
available that implements the SPA and is especially designed for the adjustment problem (van der Loo 
2012). 

 

2.4  Example revisited 
 

Table 2.1 shows the minimum adjustments of the example record in Table 1.1, using the LS-, WLS- 
and KL-criterion, respectively. The observed values are treated as fixed and shown in bold, the imputed 
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values are adjustable. For the WLS method we use 0,1 ,j jw x  giving results that are equal to the KL-

criterion up to the first decimal. 

For both response patterns, the LS adjustment procedure leads to a negative value for Turnover other 
which is not acceptable (Table 2.1). When the LS-procedure is rerun with a non-negativity constraint for 
the variable Turnover other, the result is simply a zero for that variable and 950 for Turnover main due to 
constraint 2.a  Without the non-negativity constraint, the LS-adjustments are -40 for 3x  and 4 ,x  and -16 

for 6x  and 7 ,x  i.e., same adjustment for each pair of variables that appear in the same constraint. The 

variable Total costs  8x  is part of two constraints and the total adjustment to this variable consists of two 

additive components. One component is due to constraint 1,a  and the other due to 3.a  For response 

pattern (I), the first component is -48 and the second component is 16, and the two add up to -32 in 
Table 2.1. 
 

Table 2.1 
Imputation and adjustment of business record in Table 1.1. DI: Partial donor imputation without adjustment; 
LS: Least-squares distance; WLS: Weighted least-squares distance; KL: Kullback-Leibler divergence 
measure; GR: Generalized ratio adjustments 
 

 
Variable 

 
Name 

Response (I) Response (II) 
DI LS WLS/KL GR DI LS WLS/KL GR 

1x   Profit 330 282 291 304 330 260 249 239 

2x  Employees 20 20 20 18 25 25 25 25 

3x  Turnover Main 1,000 960 922 922 1,000 960 922 921 

4x  Turnover Other 30 -10 28 28 30 -10 28 29 

5x  Turnover 950 950 950 950 950 950 950 950 

6x  Wages 500 484 470 461 550 550 550 550 

7x  Other costs 200 184 188 184 200 140 151 161 

8x  Total costs 700 668 658 646 700 690 701 711 

 
The WLS/KL adjustments are larger, in absolute sense, for larger imputed values than for smaller ones. 

In particular, the adjustment to Turnover other is only -2.3, so that no negative adjusted value results in 
this case, whereas the adjustment to Turnover main is -77.7. The multiplicative nature of these 
adjustments can be observed as the adjustment factor for both these variables is 0.92 (for both response 
patterns). The adjustment factor for Wages and Other costs in response pattern (I) is equally 0.94 because 
these variables are in the same constraint 3,a  such that the ratio between their initial values is unaffected 

by this adjustment. However, the initial ratio of each of these variables to Total Costs is not preserved 
because Total Costs has a different sign in the constraint 3a  and, moreover, Total Costs is also part of 
constraint 1a  so that it is subjected to two adjustment factors. 

 
3  On possible extensions to related adjustment problems 
 

3.1  Generalized ratio adjustments 
 

The ratio model is routinely used for case weighting in business surveys under the assumption that the 
economic variables can all be related proportionally to a common measure-of-size of the business unit, see 
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e.g., Särndal, Swensson and Wretman (1992). Motivated by the ratio model one could multiply all the 
donor values by 950/1,030 to obtain the imputed values for the example record under response pattern (I), 
including the variable Employees  2x  for which the initial imputed value 20 does not formally violate 

any constraints. This shows that there may be situations where, in addition to the logical and accounting 
constraints, adjustments may be introduced based on statistical assumptions. 

For response pattern (II), the observed Employees  2 ,x  Turnover  5x  and Wages  6x  can all 

potentially be used as the measure-of-size variable in a ratio model, so that a single ratio adjustment does 
not present itself. However, we may postulate the existence of a common ratio between the recipient and 
donor records under the ratio model, and regard the observed ratios (i.e., 20/25 for Employees, 950/1,030 
for Turnover and 550/500 for Wages) as its random manifestations. Then, it seems that a plausible 
approach is to identify this common ratio as the value that minimizes the variance, or any other dispersion 
measure that is deemed suitable, of the three individual ratios. Finally, insofar as the common ratio 
pertains to the other variables, it becomes possible to adjust them using the following generalized ratio 
(GR) approach. 

Assume the multiplicative adjustment model 0,= ,j j jx x   where each j  is a random manifestation 

of a theoretical common ratio. Put the distance function  

    2
0, = 1 2x x δ δTD    (3.1) 

where δ  is the vector of ’sj  and   the mean of them. For all the variables subjected to the common 

ratio, including both free and fixed ones, we now carry out the adjustment in two steps. The first step is a 
conceptual one, where we imagine that an adjustment 0,j jx x  is made to the fixed variables: if =j jx x  

is observed and fixed, then 0,= ,j j jx x  whereas = 1j  if jx  is the imputed value 0, jx  but to be held 

fixed from ‘further’ adjustment. At the second step, adjustments are made to the initial values of the free 
variables by solving the optimization problem (2.1) with (3.1) as the distance function. This yields the GR 
adjustments of the free variables involved. 

An important condition of the GR approach is that at least one of the ’sj  must relate to a fixed 

variable. Otherwise, 0,j jx x  would be the trivial solution because this always yields = 0.D  Notice 

that we have suppressed the denotation J  in (3.1), and slightly abused the denotations 0x  and x  

introduced for (2.1). Take response pattern (I) in Table 1.1, the fixed value 5 = 950x  needs to be 

included in (3.1), yielding 5 5 0, 5 0, 950 1, 030 .j jx x x x     Solving (2.1) for all the other variables 

yields then 950 1, 030j   and = 0.D  Whereas, without including 5 ,  one would have merely 

obtained = 0D  at = 1j  and 0,=j jx x  for 5.j   

The GR adjustments for response pattern (II) are given in Table 2.1. All the three observed ’s,j  for 

= 2, 5j  and 6,  are included in (3.1) and held fixed for the optimization problem. The results are seen to 

be close to the WLS/KL adjustments. The empirical variance of the multiplicative factors is 0.0270 for the 
GR adjustments, 0.0276 for WLS/KL and 0.1434 for LS. The relative sum of squared changes, i.e., twice 
the WLS distance, is 50.6 for the WLS/KL adjustments, 51.6 for GR and 78.0 for LS. Finally, the 
unweighted sum of squared changes, i.e., twice the LS distance, is 20,925 for the LS adjustments, 23,976 
for WLS/KL and 25,090 for GR. Thus, in terms all the three distance functions, the GR adjustments are 
closer to WLS/KL than LS. 
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Now, the distance (or discrepancy) measures considered in Section 2.2 may be characterized as 
decomposable, since the overall distance between two vectors is given as a (weighted) sum of the 
‘distances’ between the corresponding components. A consequence is that a variable that does not stand in 
any constraints will retain the initial value under the minimum adjustment approach. In contrast, the 
distance (3.1) is non-decomposable, where each adjustment is dependent on the other adjustments. As a 
result even the values that are not explicitly involved in any constraints will be adjusted as long as they are 
included in the distance function, because of the changes made to the variables that are constraint-bound. 
The variable Employees provides an example in Table 2.1. The GR approach provides thus a possibility 
for adjustments based on statistical assumptions in addition to logical and accounting constraints. Indeed, 
with a single fixed variable included in (3.1), the GR adjustments are reduced to a common proportional 
adjustment, in accordance with the ratio-adjustment intuition in this case. With multiple fixed variables 
included, the GR approach aims at a kind of most-uniform adjustments as a generalization of the single-
ratio model. For response pattern (II) in Table 1.1, the approach at once takes into account all the three 
observed ratios. To achieve the same by formulating an explicit statistical model for exactly this response 
pattern is not as practical in a production setting. 

 
3.2  Adjustments involving categorical data 
 

A categorical variable carries different constraints from a continuous one. It is worth considering the 
extent to which categorical variables may be incorporated in the optimization approach. We shall 
distinguish three types of categorical data that are common in practice. 

Firstly, we call a categorical/discreet variable pseudo-continuous if in practice it can be dealt with as if 
it were a continuous variable. Typical examples of pseudo-continuous variables are age, number of 
employees, household size, etc. Pseudo-continuity can affect the choice of adjustment model and distance 
function. For instance, both additive and proportional adjustments may be acceptable for the number of 
employees, whereas a proportional adjustment of household size or age seems unnatural. Still, having 
chosen the adjustment model and distance function, one may handle a pseudo-continuous variable just like 
a real one. Rounding is necessary afterwards and its effect needs to be monitored. 

Secondly, what we call a nominal categorical variable indicates whether a unit falls into a particular 
category. A nominal variable with M  categories, labelled = 1, 2, ..., ,x M  carry with it the constraint  

  
=1

= 0.
M

m

x m   (3.2) 

However, the labels (e.g., 1 = tomatoes, 2 = beans, 3 = cucumbers) are not suitable for operations such as 
addition, multiplication or rounding. Neither is a nominal value 3 more distant to 1 than 2. Therefore, the 
constraint (3.2) can not be taken into account under the minimum adjustment approach which assumes 
interval scale measurements. The adjustment of an observed value that does not satisfy (3.2) must be 
handled by marking it as missing and, then, imputing some admissible as well as suitable value, i.e., just 
like in case the value is missing to start with. 

Thirdly, a variable may be defined to have value zero for the units that are not eligible. Depending on 
whether the measure is pseudo-continuous or nominal when the unit is eligible, we have a semi-
continuous/-nominal variable that has a non-zero probability of being zero. The difference to pseudo-
continuity above is that a semi-continuous variable may require an additional non-negativity constraint in 
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the accounting matrix. Consider then a semi-nominal variable. In practical questionnaire design, such a 
variable is often split in two, say, 1X  and 2 .X  Let 1 = 1X  if the unit is engaged in a certain activity, say, 

production of greenhouse vegetables, and let 1 = 0X  otherwise. Let 2X  be a nominal measure of activity 

when 1 = 1,X  and 2 = 0X  otherwise. Formally, the logical constraint can be given as  

    1 2 1 2
=1

1 = 0
M

m

x x x x m       (3.3) 

Consider all the possible data patterns, including when a value is missing (indicated by “ ”): 
 

    1 2 2, , :x x x   The value 1x  can be deduced provided admissible 2 ,x  i.e., 2x  is either 0 

or satisfies (3.2), otherwise the situation turns into case    1 2, ,x x     below. 

    1 2 1, , :x x x   If 1 = 0x  then 2 = 0;x  if 1 = 1x  then (3.3) reduces to (3.2) above. 

    1 2, , :x x     Both values need to be imputed by values that satisfy (3.3). 

  1 2, :x x  Violation of (3.3) is e.g., the case if    1 2, = 1, 0x x  or if 1 = 0x  and 2 > 0.x  We 

have case  2, x  above if 2x  is fixed,  1 ,x   if 1x  is fixed, or  ,   if neither is fixed.  
 

To summarize, the constraints (3.2) and (3.3) can not be handled by the minimum adjustment approach 
with linear constraints considered before. Instead, they need to taken care of by the imputation method. 
Often, donor-based imputation (e.g., Statistics Canada’s CANCEIS software that implements the Nearest 
Neighbour Imputation Methodology, NIM) can be designed to impute categorical data such that user 
specified constraints are satisfied, see e.g., Bankier, Lachance and Poirier (2000). 

 
3.3  Adjustment of donor-based unit imputation 
 

In donor-based unit imputation the whole record of values are taken from the chosen donor. This has 
advantages over joint modelling of all the target variables if there are many of them. Chen and Shao 
(2000) establish the consistency of survey estimator based on nearest neighbour imputation (NNI) under 
mild conditions. The key assumption is that the difference in the conditional expectations of any target 
variable between a donor and a receptor, given the variables on which the distance metric is calculated, is 
bounded by the ”distance” between them. That is, they have the same expectations for all the statistical 
variables if the “distance” between them is zero. 

There is thus a need for adjusting donor-based unit imputation when the “distance” between the 
receptor and the donor is not zero. To illustrate with the example record in Table 1.1, suppose Turnover 
 5x  is always known from the administrative source and is used for donor identification, so that partial 

imputation under response pattern (I) becomes unit imputation. Since Turnover of the receptor differs 
from that of the donor, the distance between them is not zero, and it seems natural that the donor values 
should be adjusted to take this difference into account. Indeed, now that there are constraints involving 
Turnover, adjustments are necessary in any case. 

Let x  contain the variables that may be missing. Let z  contain the known variables that are used for 

donor identification. Let  = ,
TT Tx x z  be the combined vector of variables. Unit imputation (giving 

0 )x  can be regarded as partial imputation of the missing sub-vector x  of .x  The need for adjustment of 
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unit imputation may arise if there are edit-rules that involve both values of x  and ,z  and/or if the z-
values do not match exactly between the donor and receptor. Indeed, unit imputation without adjustment 
may rather be considered exceptional in practice. 

 

3.4  Macro-level benchmarking in addition to micro-level constraints 
 

A business census requires imputation and editing in order to arrive at a complete dataset for statistical 
production. Or, a statistical register may be constructed based on a combination of administrative data and 
one or several sample surveys. Editing and imputation are again necessary. A common feature is that, 
unlike survey sampling, no case weighting is needed. 

When processing such data, macro-level benchmark constraints are frequently imposed due to 
concerns for statistical efficiency and/or macro-level consistency with external sources. A benchmark 
constraint is satisfied if the complete data add up to the given benchmark total, which may refer to 
different aggregation levels, i.e., containing both population and sub-population totals. For instance, 
certain key national totals may be estimated by some suitable method and imposed as benchmark 
constraints afterwards. Or, a set of domain-level benchmark constraints may be derived by some small 
area estimation technique. Also benchmark constraints from external sources are common in structural 
business statistics - an example from the Norwegian Agriculture Census 2010 will be described in 
Section 4. 

Methods for imputation under benchmark constraints have been studied by Beaumont (2005), 
Chambers and Ren (2004), Zhang (2009) and Pannekoek, Shlomo and de Waal (2013). The approach 
taken here is similar to the one taken in the first two papers. In both these papers a weighted least squares 
distance between initial imputed values (or outlying values in the case of Chambers and Ren 2004) and 
adjusted imputed values is minimized subject to the constraint that sample-weighted totals based on the 
adjusted data are equal to the benchmark totals. Here, we assume that some suitable imputation method 
has been applied to yield the initial complete population dataset, which may or may not be benchmarked. 
The inconsistency problem on the micro-level implies that adjustments of the initial complete data set will 
be necessary in general. 

Denote by X  the complete dataset of interest, where each row corresponds to a unit-level record as the 
one in Table 1.1, and each column corresponds to a particular variable. Let 0X  be the initial complete 

dataset after imputation and X  the adjusted dataset. Each benchmark constraint applies to a particular 
column vector of X  and over the units that fall under its domain. That is, it can be expressed generically 
as  col ,T tr X  where  col X  is the column vector of concern, and r  is the indicator vector for 

whether a unit belongs to the domain of concern, and t  the benchmark total. In this way all the 

benchmark constraints may be summarized as 

     colr X tT   (3.4) 

where each column of   col X  corresponds to a benchmark constraint, and each column of  r  the 

corresponding indicator vector, and t  the vector of all the benchmark totals. Notice the similarity between 

(3.4) and (1.1). A minimum adjustment approach follows on specifying the adjustable and fixed values 
and the distance (or discrepancy) function. 
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Both the benchmark constraints and the micro-level constraints can be seen as linear constraints on the 
very long vector containing all elements of  ,  vec ,X X  say. Conceptually, all constraints together can 

therefore be expressed in the form (1.1). The restriction matrix of this formulation is, however, huge and 
very sparse. The rows corresponding to the micro-level constraints contain possibly non-zero values 
corresponding to the values in the record they apply to and zeros for all other values of  vec X  and the 

rows corresponding to the benchmark constraints contain non-zero elements only corresponding to the 
values in  vec X  that contribute to that benchmark total. In practice, the optimization problem generated 

by (3.4) in addition to the micro-level constraints can be handled using the SPA, i.e., one constraint at a 
time and operating only on the elements of  vec X  corresponding to the non-zero elements in that 

constraint, without actually forming this huge and sparse constraint matrix. For the benchmark constraints 
we only need to process the columns of   col X  one by one and for the micro-level constraints we 

process each unit-level record one at a time. These iterative minimum adjustments along the columns and 
rows of X  resemble the iterative proportional fitting (or raking) algorithm for fitting log-linear models to 
contingency table data and for adjusting (contingency) tables to new margins, which is formally identical 
to a SPA with the KL-divergence and equality constraints only. 

 
4  Case study 
 
4.1  Imputation and adjustment of pasture data 
 

The population for the “main questionnaire” of the Norwegian Agriculture Census 2010 contains about 
45,000 units. Questions 22 - 24 deal with pasture area: 
 

 Question 22 inquires the units that possess productive pasture. 

 Question 23 inquires the total productive pasture area in 2010. 

 Question 24 inquires the composition of pasture area by the last time it was seeded: (1) 2006 - 
2010, (2) 2001 - 2005, and (3) 2000 or earlier.  

 

Denote by 0,1 0,2,x x  and 0,3x  the three reported categories of pasture area in Question 24. Let 
3

0 0,1
= jj

x x
  be the sum that is the subject of Question 23. Now, this total is available from the 

government agency that administers the relevant subsidy. In editing the reported 0x  is overwritten by the 

administrative figure, denoted by ,x  and held as fixed afterwards. Next, Question 22 can be inferred given 

x  and held as fixed afterwards, so that only Question 24 remains to be handled. 

Below we describe the treatment of the 34,480 units that have productive pasture area according to 
their respective observation patterns (Table 4.1, where the unit index i  of all the variables was omitted for 

ease of presentation). 
 

 10,378 units reported a total pasture area that is consistent with the administrative source: these 
are the potential donors; no adjustment is needed. 

 11,827 units have a reported total that is greater than the known value: these have a micro-level 
inconsistency problem. Of course, missing values can also be the case if < 3,jj

r  but the 
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chance is small, so we shall assume that there are no missing values among these units. All the 
observed values are adjustable, such that the accounting equation is given by  

 
; =1

= .
j

j
j r

x x     

The GR approach simply yields the proportional adjustment 0,; 1
.

j
jj r

x x
  The same 

adjustment is given by the WLS-approach with 0,1j jw x  if = 1,jr  as well as by the KL 

approach. We notice that there is no particular motivation for considering additive adjustments 
for these data. 

 3,876 units have no reported pasture area of any kind, despite they have productive pasture area 
according to the administrative source: these constitute unit-missing records. The nearest-
neighbour (NN) donor is found according to ,x  within each of the 12 “farming forms”, which is 

a classification known for the whole population. In the case of multiple NN donors, we choose 
the one with the shortest physical distance, which make the NN-imputation completely 
deterministic, given all the x- values. Finally, a proportional adjustment of the donor values is 

carried out in order to satisfy the accounting equation  

 
; =1

=
j

j
j r

x x

     

where jr  is the observation/reporting indicator associated with the donor. 

 3,019 units have reported pasture areas of all the three kinds, but their sum is less than the 
known total: these have a micro-level inconsistency problem. A proportional adjustment is 

applied to all the reported values w.r.t. the accounting equation 
3

1
= .jj

x x
    

 The last two groups are the 2,703 units with one kind of reported pasture area and the 2,677 
units with two kinds of reported pasture area. Obviously, that the reported total is less than the 
known value here may be caused by inconsistency and/or missing values. To avoid introducing 
systematic pattern through editing, we let the decision depend on the donor. Take a unit with 
only one reported pasture area. Firstly, the potential donors are limited to those from the same 
“farming form”, as well as having at least the same kind of pasture area. The NN donor is then 
selected among these to minimize  

  0, ; 1
max 1 ,

j
j j j r

x x x x x x  


       

where  1 2 3, ,x x x    and x   are the values of the potential donor. In other words, the NN donor 

is selected both w.r.t. the relative difference between the total pasture area as well as the 
proportion of the reported kind of pasture area to the corresponding total. Let the NN donor be 
associated with x  and .r  If > 1 = ,j jj j

r r   then we assume that there are missing 

values where = 1jr   but = 0;jr  whereas, if = ,j jj j
r r   then we assume that there is 

only an inconsistency problem. The remaining imputation and adjustment actions are 
straightforward. The same treatment is applied to the units with two reported pasture areas, with 
obvious modifications due to = 2.jj

r  
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Table 4.1 
Observation pattern among units with productive pasture area: = 1jr  if 0, jx  is reported, = 0jr  otherwise; 

= 1, 2, 3j  for three categories of pasture area 
 

     
0, <j jj

r x x   

Total  
0, =j jj

r x x   0, >j jj
r x x   = 0jj

r  = 1jj
r  = 2jj

r  = 3jj
r  

34,480 10,378 11,827 3,876 2,703 2,677 3,019 

 
The sub-population and population totals based on imputation with adjustments are given in Table 4.2, 

in comparison with raw data totals and the census file totals. We notice the following. (a) The census file 
had been edited in a ‘traditional’ way that involves much clerical work (about 1.5 man-year in total). In 
contrast, the editing procedures here are fully automated, and everything (i.e., exploratory analysis, 
decision of the treatments, programming and processing) was done in less than two days. Although the 
questions concerning pasture areas are only 3 out of a total of 36 questions of the “main questionnaire”, it 
is obvious that the potential saving in time could be enormous. (b) The differences between the imputed 
totals and the census totals are small for all sub-populations, compared to those between the raw data and 
the census totals. All the changes from the raw data are in the ‘right’ direction, judged by the census 
results. One may conclude that the automated editing procedures have achieved most of the census editing 
results. (c) It is possible to introduce benchmark constraints in addition. An an illustration, we used the 
census file sub-population totals for the 3,876 unit-missing records, in addition to the known pasture area 
total for each of them. Convergence was reached in 23 iterations with the WLS criterion. (d) For the 5,380 
units where partial missing may be the case, imputation of ‘missing’ values was carried for about 25% of 
them in the census processing, whereas it is about 75% by the editing procedure here. The number of 
cases for partial missing is probably under-estimated in the census file because it is based on selective 
manual checks. In any case, not withstanding the differences in the individual treatments, the edited totals 

are fairly close to each (Table 4.2, under 0 < < 3).jj
r  

 

Table 4.2 
Sub-population and population pasture area totals based on raw data, imputation with adjustments and 
census production data. (All figures ×105)  
   0, <j jj

r x x   

   0, >j jj
r x x     = 3jj

r    0 < < 3jj
r  

Raw   8.20   6.95   12.76 1.40 1.45 1.53 1.33   0.86  3.05
Impute & Adjust   5.24   4.34   8.71 1.72 1.81 1.88 2.01   1.87  3.51
Census   5.47   4.37   8.45 1.73 1.85 1.84 2.04   1.54  3.80
   = 0jj

r    > 0jj
r    Total 

Raw   -   -   - 14.0 12.4 21.9 -  -  -
Impute & Adjust   1.20   1.06   1.93 12.2 11.3 19.3 13.43   12.38  21.17
Census   1.31   1.23   1.66 12.6 11.0 19.1 13.95   12.25  20.79

 
4.2  Approximate mean squared error estimation 
 

As the measure of uncertainty for the pasture area data here, we use the mean squared error of 
prediction (MSEP) given by 

   2
MSEP ,j j j U UE X X  R X    
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where =j iji U
X x

  is the target population total and =j iji U
X x

   is the corresponding total based 

on imputation with adjustments, for = 1, 2, 3.j  Moreover,  =U i i Ux X   contains the known pasture 

area totals in the population, and UR  is the matrix of missing indicators whose thi  row is given by 

 1 2 3, , .i i ir r r  

Now, while it is customary that adjustments due to inconsistency in the micro data are referred to as 
imputation in statistical data editing, the eventual uncertainty associated with this is generally ‘ignored’ 
afterwards. This amounts to assume that =ij ijx x  if = 1.ijr  What remains to be accounted for is the 

uncertainty associated with the imputation of the missing values and the subsequent adjustment of the 
donor values, under the assumption that neither imputation nor adjustment introduces bias to the final 
value. This amounts to assume that   = 0ij ijE x x  if = 0.ijr  Under these two assumptions, we have 

 

   

   

2

; = , 1 ; =0

2

; = , 1 ; =0

MSEP 1 1

r 1

r 1

i ij ij

i ij ij

j ij ij ij ij
i U i U

ij ij ij ij
i U d i U r

ij ij ij ij
i U d i U r

E r x r x

V d x V x

d V x V x

 

  

  

       
  

   
     

   

  

 

 

 



  

where ijd  is the number of times ijx  is used as a donor value for imputation of missing data, and the 

decomposition of variance holds provided the distributions of the units are independent of each other. 
Moreover, provided 1,ijd   

  
;

=
kj ij

ij kj ij ij
k U x x

x d x
 

     

where =kj ijx x  means that ijx  is used as the donor value for ,kjx  and kjx  is the final value after 

adjustment. In other words, ij  is the combined adjustment made to ,ij ijd x  where ij ijd x  would have been 

the contribution of ijx  to jX  through imputation if it had been donor imputation without adjustment. 

Notice that ijd  can be treated as a constant in the last (approximate) equation as long as the donor 

identification depends only on UR  and .UX  This is true for the 3,876 unit-missing records, but not 

exactly for the 5,380 units that may have partial missing. As explained in Section 4.1, the NN-
identification in fact also depends on the observed ijx - values. For this reason, the last equation holds only 

approximately. 

A ratio model for the conditional variance of ijx  seems natural here, i.e.,  

     2=  where = 0 and = j

ij j i ij ij ij j ix x E V x         

where  2, ,j j j    may vary according to the composition of the pasture areas, denoted by 

       = 1,1,1 , 1,1, 0 , 1, 0,1  and 0,1,1 ,q  where = 1ijq  if unit i  has the thj  type pasture and 0  
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otherwise. Notice that, in the case of = 1,ijj
q  we have =ijx x  if = 1,ijq  so that the conditional 

variance is zero. The parameters of this ratio model can be estimated from the 10,378 potential donors 
satisfying 0, = .j jj

r x x   Exploratory data analysis shows that = 2j  is a reasonable choice in all the 

cases, so that in the calculations below only j  and 2
j  vary according to the observation pattern, denote 

by  2
; ;,j h j h   for = 1, ..., 4.h  Notice that, as a result of 2,j   the same 2

;ˆ j h  will be obtained 

regardless of j  whenever = 2.ijj
q  Take e.g.,  = 1,1, 0 ,Tq  we have 1 2

ˆ ˆ = 1,    such that the 

‘standardized’ fitted residuals are given by 1 1 1
ˆˆ =i i i ix x x     and 2 2 2

ˆˆ i i i ix x x       

   1 1 1
ˆ ˆ1 .i i i i ix x x x         In any case, we obtain   2 2

;
ˆ = ˆh ij j h iV x x   for unit i  with 

composition .h  

The adjustment factor ij  seems difficult to model in advance. But its mean and variance can be 

estimated empirically after imputation and adjustment have been carried out, denoted by  = ijE   

and  2 = ,ijV   respectively. Moreover, we assume ij  to be independent of ijx  conditional on .ix  

This seems a plausible assumption, since the former depends mostly on how x  is distributed in the 
‘neighbourhood’ of = ,x x  whereas the latter depends on the variation across j  given that the sum is 

equal to .x  For instance, asymptotically as the chance of finding a donor in any arbitrarily close 
neighbourhood tends to unity, the adjustment factor ij  tends to 1 in probability, irrespective of the values 

of .ijx  It now follows that, given composition ,h  an estimate of the corresponding  h ij ijV x  is given by  

    22 2 2 2 2 2 2
; ; ;

ˆˆ = .ˆ ˆ ˆ ˆ ˆh ij ij j h i j h i j h iV x x x x               

Finally, combining all the above, we obtain an approximate MSEP estimate as  

     2

; = ; =0

ˆ ˆMSEP .
h i h ij

ij h ij ij h ijj
h i U h i U r

d V x V x
 

     
r 1

  

The results of approximate variance estimation are given in Table 4.3. We know in advance that the 
regression coefficient of the ratio model must vary according to the composition of pasture area, but the 
estimates of 2

;j h  suggest that it has been sensible to allow the variance parameter to depend on .h  The 

estimated mean of ij  is close to unity for all the pasture area types, making no indications that the 

assumptions regarding the adjustment factors are unreasonable. The variance of ij  is clearly the largest 

for = 2,j  which is also reflected in the fact that the estimated MSEP here has the largest increase 

compared to NN-imputation without adjustment. The relative root MSEPs are too small to account for the 
actual differences between the census totals and the imputed totals (given in Table 4.2). This serves to 
illustrate the following general impression regarding the assessment of uncertainty due to editing. 
Systematic effects in terms of the first-order moments of the resulting statistics usually dominate the 
overall uncertainty due to editing. But they are also more difficult to quantify compared to the second-
order variance properties. In the case here, this concerns the two ‘first-order’ assumptions made in the 
beginning, i.e., =ij ijx x  if = 1ijr  and   = 0ij ijE x x  if = 0.ijr  More sophisticated assumptions 

about the error-mechanism of consistency adjustments in editing are needed in order to progress beyond 
such an ‘optimistic’ approach. 
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Table 4.3 
Approximate variance estimation for imputation with adjustment. RMSEP: Root MSEP. RMSEP by NN-
imputation without adjustment in parentheses 
 

   = 1j    = 2j    = 3j  

ˆ
j   = 1,1,1q    0.312   0.359   0.329 

 = 1,1, 0q    0.346   0.654   - 

 = 1, 0,1q    0.407   -   0.593 

 = 0,1,1q    -   0.567   0.433 
2ˆ j   = 1,1,1q    0.0248   0.0511   0.0364 

 = 1,1, 0q    0.0478   0.0478   -  

 = 1, 0,1q    0.0464   -   0.0464 

 = 0,1,1q    -   0.0798   0.0798 

  2,ˆ ˆ     (0.992, 0.0248)  (1.020, 0.0994)   (1.003, 0.0236) 

 RMSEP   3,267 
(3,134) 

 4,190 
(3,530) 

 3,111 
(2,925) 

 
; =0

RMSEP
ij

iji r
x     1.41%   1.79%   0.93% 

RMSEP jX    0.24%   0.34%  0.15% 

 

5  Summary 
 

In this paper we have formulated an optimization approach to the micro-level inconsistency problem 
that may be caused by measurement errors and/or imputation of missing values. This provides a general 
methodology that extends beyond the traditional single-constraint adjustment methods such as prorating. 
All constraints are handled simultaneously; if a variable appears in more than one constraint then it is 
adjusted according to all of them. Besides being optimal according to the chosen distance (or discrepancy) 
function, the approach also has the practical advantage that there is no need to specify the order in which 
the constraints are to be applied. 

Several distance (or discrepancy) functions are analysed. It is shown that minimizing the weighted 
least squares leads to additive adjustments and minimizing the Kullback-Leibler divergence measure leads 
to multiplicative adjustments. However, for a specific choice of weights the WLS solution of the 
optimization problem is an approximation to the KL solution. 

Adjustments based on statistical assumptions in addition to the logical constraints is introduced under 
the generalized ratio approach. The GR adjustments can be considered as a generalization of the single-
ratio adjustment under a ratio model. All the observed variable-specific ratios between the receptor and 
donor records are utilized; a variable that does not stand in any constraint can also be adjusted if it is 
included in the distance function. 

Also discussed are adjustments involving categorical data, unit-missing records and macro-level 
benchmark constraints in addition to the micro-level consistency constraints. Taken together, the proposed 
optimization approach is applicable to continuous data in a number of situations. 
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