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An efficient estimation method for matrix survey sampling 

Takis Merkouris1 

Abstract 

Matrix sampling, often referred to as split-questionnaire, is a sampling design that involves dividing a 
questionnaire into subsets of questions, possibly overlapping, and then administering each subset to one or 
more different random subsamples of an initial sample. This increasingly appealing design addresses concerns 
related to data collection costs, respondent burden and data quality, but reduces the number of sample units that 
are asked each question. A broadened concept of matrix design includes the integration of samples from 
separate surveys for the benefit of streamlined survey operations and consistency of outputs. For matrix survey 
sampling with overlapping subsets of questions, we propose an efficient estimation method that exploits 
correlations among items surveyed in the various subsamples in order to improve the precision of the survey 
estimates. The proposed method, based on the principle of best linear unbiased estimation, generates composite 
optimal regression estimators of population totals using a suitable calibration scheme for the sampling weights 
of the full sample. A variant of this calibration scheme, of more general use, produces composite generalized 
regression estimators that are also computationally very efficient. 

 
Key Words: Best linear unbiased estimator; Calibration; Composite estimator; Generalized regression estimator; Non-

nested matrix sampling; Split-questionnaire. 
 
 

1  Introduction 
 

Matrix sampling is a sampling design in which a long questionnaire is divided into subsets of questions 
(items), possibly overlapping, and each subset is then administered to one or more distinct random 
subsamples of an initial sample. In its various forms this design may serve a variety of purposes, such as 
reducing the length and cost of the survey process and addressing concerns related to respondent burden 
and data quality associated with a long questionnaire. Matrix sampling has been applied or explored in 
various fields, primarily in educational assessment and public health studies. A review of previous 
research on matrix sampling, with discussion of the issues arising in its implementation in surveys, is 
given in Gonzalez and Eltinge (2007). For recent work on design and estimation for matrix survey 
sampling, motivated by the potential benefits of such sampling schemes in large scale surveys, see 
Raghunathan and Grizzle (1995), Thomas, Raghunathan, Schenker, Katzoff and Johnson (2006), 
Gonzalez and Eltinge (2008), Chipperfield and Steel (2009, 2011), and references therein. Among the 
many matrix sampling designs explored in the literature, we distinguish the following four principal 
designs varying in the number of subsamples and the number of sub-questionnaires (overlapping or not) 
administered to each subsample. 

 
(a) Different (non-overlapping) sets of questions are administered to different subsamples. 
(b) An additional core set of questions is administered to all subsamples in design (a). There are 

several reasons for including a core set of items in all subsamples: High precision may be required 
for some items of special interest; some other items (e.g., demographic characteristics) define 
subpopulations and may be used in cross-tabulations of survey results; the correlation of the core 
items with the rest of items may be used to enhance the precision of estimates for all items. 
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(c) A variant of design (a) involving an additional subsample that receives the full questionnaire. It 
may be viewed as a generalization of two-phase sampling design. The motivation for this design is 
to allow for analysis of interaction between sets of questions, by having responses to all questions 
from the units of the additional sample, and to enable more efficient estimation. 

(d) An extension of design (c), in which the core set of questions is administered to all subsamples. It 
embodies all features of the previous three designs.  

 
A current trend in survey planning relates to a variant of matrix sampling in which a number of distinct 

surveys with overlapping content are integrated for the benefit of streamlined survey operations, 
harmonized survey content and data consistency, as well as improved estimation. In this nonstandard 
matrix sampling framework, the distinct surveys may use subsamples of a large master sample or 
independent samples from the same population. Such sampling schemes are actively being researched or 
implemented in various statistical agencies; see, for example, the integration of household surveys in the 
British Office of National Statistics (Smith 2009) and in the Australian Bureau of Statistics (2011). 
Although such integration may be viewed as a reverse process to splitting a questionnaire, the structure of 
the design with respect to the collection of different subsets of data items from different samples is 
essentially the same as in the standard framework. In the particular case where the samples from 
constituent surveys are independent, possibly with different sampling designs, the designs (b), (c) and (d) 
could be characterized as non-nested matrix sampling designs. It is to be noted that the advantages of 
matrix sampling are not always contingent on using subsamples (necessarily dependent) of an initial 
sample. It may be more practical in certain situations to use independent samples, notwithstanding the 
possibility of a negligible sample overlap. 

In this paper we address the estimation problem in matrix sampling, namely the loss of precision of 
survey estimates due to not collecting all data items from all sample units. In the nonstandard matrix 
sampling of the preceding paragraph, the estimation problem is the improvement of the precision of 
estimates for each constituent survey. For matrix sampling designs (b), (c) and (d), involving overlapping 
subsets of questions, a dual estimation task is to combine data on common items from different 
subsamples for improved estimation, and to exploit correlations among items surveyed in different 
subsamples for more efficient estimation for all items. To this aim, estimation involving imputation of the 
missing values caused by the omitted items in each subquestionnaire has been explored in Raghunathan 
and Grizzle (1995) and Thomas et al. (2006). Estimation using a simple weighting adjustment that 
combines data on common items has been considered by Gonzalez and Eltinge (2008). In the particular 
case of non-nested design (b), the estimation problem of combining data from independent samples has 
also been dealt with in the literature; see, for example, Renssen and Nieuwenbroek (1997), Houbiers 
(2004), Merkouris (2004, 2010), Wu (2004) and Kim and Rao (2012). Non-nested design (d) has been 
considered in Renssen (1998). We propose an efficient estimation method, based on the principle of best 
linear unbiased estimation, which produces composite optimal regression estimators of totals by means of 
a suitable calibration procedure for the sampling weights of the combined sample, when the second-order 
sample inclusion probabilities are known. A variant of this calibration procedure of more general 
applicability produces composite generalized regression estimators, which for certain sampling settings 
are optimal regression estimators. The method exploits correlations of items across the subsamples to 
improve the efficiency of estimators even for items surveyed in all subsamples. It is also operationally 
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very convenient, producing estimates for all items at population or domain level by means of a simple 
adaptation of the standard calibration system commonly used in statistical agencies. Introducing here the 
method, we study in detail the principal designs (c) and (d). Adaptations to more general designs are fairly 
straightforward. 

In the following Section 2 and Section 3 we describe the proposed method for design (c). The 
application of the method to design (d) is described in Section 4. Domain estimation is dealt with in 
Section 5. A simulation study is presented in Section 6. We conclude with a discussion in Section 7. 

 
2  Composite optimal regression estimation for design (c) 
 

A general estimation method for matrix sampling is illustrated for design (c) through the simplest 
setting involving three samples 1 2,S S  and 3S  with arbitrary designs and sizes 1 2 3, , ,n n n  which may be 
subsamples of an initial sample of size 1 2 3=n n n n+ +  from a population labeled = 1, , , , ,U k N   or 
may be drawn independently from .U  A p − dimensional vector of variables x  and a q − dimensional 
vector of variables y  are surveyed in 1S  and 2 ,S  respectively, and both vectors are surveyed in 3 .S  
These two modes of matrix sampling, depicted in Figure 2.1, will henceforth be referred to as nested and 
non-nested matrix sampling, respectively, in analogy with the nested and non-nested two-phase sampling 
(Hidiroglou 2001). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Nested and non-nested matrix sampling design (c) 

 
We denote by iw  the vector of design weights for sample , = 1,2,3,iS i  and by iX  and iY  the sample 

matrices of x  and ,y  the subscripts indicating the sample. We obtain simple Horvitz-Thompson (HT) 
estimators ( )1 1 1

ˆ = ′X X w  and 3X̂  of the population total xt  of ,x  using 1S  and 3 ,S  respectively, and HT 
estimators 2Ŷ  and 3Ŷ  of the total yt  of ,y  using 2S  and 3 .S  For more efficient estimation of the totals 

xt  and yt  we seek composite estimators that combine all the available information on x  and y  in the 

           Nested design                                              Non-nested design 
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three samples. Such composite estimators that are best linear unbiased estimators (BLUE), i.e., minimum-
variance linear unbiased combinations of the four estimators 1 2 3

ˆ ˆ ˆ, ,X Y X  and 3
ˆ ,Y  are denoted by ˆ BX  and 

ˆ BY  and given in matrix form by 

 

1

2

3

3

ˆ
ˆˆ

= ,ˆˆ
ˆ

X
YX
XY
Y

B

B

 
        
 
 

P  (2.1) 

where ( ) 11 1= ,−− −′ ′W V W W VP  the matrix W  satisfies ( ) ( )1 2 3 3
ˆ ˆ ˆ ˆ, , , = ,E  ′ ′′ ′ ′ ′ ′ ′  x yX Y X Y W t t  and has 

entries 1’s  and 0’s,  and V  is the variance-covariance matrix of ( )1 2 3 3
ˆ ˆ ˆ ˆ, , , .′′ ′ ′ ′X Y X Y  This estimation 

method was proposed by Chipperfield and Steel (2009), who provided analytical expressions of the BLUE 
for scalars x  and y  in non-nested matrix sampling, assuming simple random sampling and known .V  
Such an approach to composite estimation has been explored also in a different context of survey 
sampling; see Wolter (1979), Jones (1980) and Fuller (1990). In general, computation of the BLUE given 
by (2.1) is not at all practical, as the computation of an estimated matrix V  (and its inverse) in P  would 
be quite laborious, especially if the number of variables or the sizes of the samples were large; it would be 
prohibitive if estimates for subpopulations were also required. Of course, the problem would become more 
difficult with more samples involved. 

A more practical formulation of this estimation procedure is as follows. First, we express the 
composite estimators in (2.1) explicitly as linear combinations of the HT estimators 1 2 3

ˆ ˆ ˆ, ,X Y X  and 3
ˆ ,Y  

i.e.,  

 
1 1 2 2 3 3 4 3

1 1 2 2 3 3 4 3

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ .

x x x x

y y y y

X B X B Y B X B Y

Y B X B Y B X B Y

B

B

= + + +

= + + +
  

The condition of unbiasedness, ( )ˆ =BE xX t  and ( )ˆ = ,BE yY t  implies that 3 1= ,−x xB I B  

4 2= −x xB B  and 4 2= ,−y yB I B 3 1= .−y yB B  Thus, P  and W  can be expressed as  

 
1 2 1 2

1 2 1 2

= , = ,
x x x x

y y y y

B B I B B I 0 I 0
W

B B B I B 0 I 0 I

− −   
′     − −   

P   

respectively, and the two composite estimators have necessarily the regression form  

 
( ) ( )

( ) ( )
3 1 1 3 2 2 3

3 1 1 3 2 2 3

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ .

x x

y y

X X B X X B Y Y

Y Y B X X B Y Y

B

B

= + − + −

= + − + −
 (2.2) 

Then writing ( )= , ,−IP B B  in obvious notation for matrix ,B  we can express (2.1) as  

 ( ) 3 3 1 31

3 3 2 32

ˆ ˆ ˆ ˆˆˆ
= = ,

ˆ ˆ ˆ ˆˆˆ

X X X XXX
I

Y Y Y YYY

B

B

        −
        + − +

         −         
B B B  (2.3) 
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the right-hand side of (2.3) being the matrix form of (2.2). The problem of finding the optimal (variance-
minimizing) P  of the BLUE in (2.1) reduces then to that of finding the optimal matrix B  in (2.3). The 
estimated optimal ˆ oB  is given by  

 

1
3 1 3 1 3

3 2 3 2 3

ˆ ˆ ˆ ˆ ˆˆ ˆ= Cov , ,ˆ ˆ ˆ ˆ ˆ
X X X X X
Y Y Y Y Y

o V
−

− −      
−       − −      

B  (2.4) 

and when the three samples are independent it reduces to  

 
1

3 31

3 32

ˆ ˆˆˆ ˆ ˆ ˆ= .ˆ ˆˆ
X XX
Y YY

o V V V
−

     
+     

     
B  (2.5) 

In view of (2.3), with such optimal ˆ oB  the estimated BLUE in (2.1) involving the estimated ˆ ,V  and with 
( )ˆ ˆ ˆ= , Io o−P B B  is a special type of optimal multivariate regression estimator. For the form of the 

ordinary (single-sample) optimal regression estimator and relevant discussion, see Montanari (1987) and 
Rao (1994). 

Expressing the estimated variance of the HT estimator of a total (see, for example, Särndal, Swensson 
and Wretman (1992), page 43) as a quadratic form with associated non-negative definite matrix 

( ){ }0 = ,kl k l k l klπ − π π π π πΛ  where ,k klπ π  are first-and-second order inclusion probabilities, it can be 
shown after some matrix algebra that  

 0 0 1
3

ˆ = ( ) ( ) ,Λ Λo −′ ′B X X X X  (2.6) 

where  

 
1

2

3 3

=
X 0
0 Y

X Y

− 
 −  
 

X  (2.7) 

is the ( )n p q× +  design matrix corresponding to the regression estimator (2.3), 3X  is the matrix X  
with the first two rows set equal to zero, and 0Λ  is associated with the combined sample 

1 2 3= ,S S S S∪ ∪  reducing in the non-nested sampling to the block-diagonal matrix { }0diag iΛ  with 0
iΛ  

associated with the sample .iS  For the nested design, the probabilities defining 0Λ  are products of the 
probabilities of inclusion in S  and the conditional (on S ) subsampling probabilities. With this estimated 

ˆ ,oB  the estimated BLUE in (2.3), called composite optimal regression estimator (COR) and denoted by 
CORˆ ,X  is written compactly as COR

3 3
ˆ ˆ ˆˆ ˆ= [= ( ) ],o o′ ′− − wX X B X X XB  where ( )1 2 3= , , ′′ ′ ′w w w w  is 

the vector of design weights of the combined sample .S  It transpires that the COR estimator is in fact the 

sum of weighted sample regression residuals, and ˆ oB  minimizes the quadratic form ( )3
ˆ o′ ′−X XB  

( )0
3

ˆ o′−Λ X XB  in these residuals, which is the estimated approximate (large-sample) variance of 
CORˆ .X  

Now, upon writing CORˆX  as ( ) ( )[ ]1COR 0 0
3

ˆ = ,−′ ′ ′+ −w Λ Λ 0 wX X X X X X  it appears that the 

COR estimator has the form of a calibration estimator (with vector of calibration totals ( )= , ′′ ′0 0 0  of 
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dimension ( )) ,p q+  whose components satisfy the constraints COR COR
1 3

ˆ ˆ=X X  and COR COR
2 3

ˆ ˆ= ,Y Y  i.e., 
calibrated estimates of the same total from two different samples are equal. Indeed, the vector  

 ( ) ( )10 0= ,c w Λ Λ 0 w−′ ′+ −X X X X  (2.8) 

is the vector of calibrated weights that minimizes the generalized least-squares distance 
( ) ( ) ( )10 −′− −c w Λ c w  while satisfying the constraints 1 1 3 3=′ ′X c X c  and 2 2 3 3= ,′ ′Y c Y c  where the 
subcector ic  corresponds to sample .iS  This follows from a general result for the single-sample case, 
according to which calibration with the generalized least-squares distance measure may involve an 
arbitrary n n×  positive definite matrix R  instead of 0 ;Λ  see Andersson and Thorburn (2005). 

We may now write the COR estimator formally as a calibration estimator, COR
3

ˆ = ,′cX X  and using 

the subvector of calibrated weights 3 ,c  for sample 3S  only, we obtain the components of CORˆX  directly 
in the simple linear forms  

 COR COR
3 3 3 3

3 3
ˆ ˆ= = ; = = ,k k k kS S

c c′ ′∑ ∑X X c x Y Y c y   

as in common survey practice. Yet, a decomposition of the vector c  based on the following general 
lemma on calibration gives an analytic expression of CORX̂  and CORŶ  of the form (2.2), which provides 
insight into the structure and the efficiency of the COR estimator. The proof of the lemma is given in the 
Appendix.  
 

Lemma 1 Let X  be a design matrix of dimension ( )n p q× +  and of full rank and written in partition 

form ( ), ,ΨX  with corresponding vector of calibration totals ( )= , ,′′ ′Ψt t tX X  and let R  be any positive 

definite matrix of dimension .n n×  Then the vector of calibrated weights ( ) 1= −′+c w R RX X X  

( ) ,′−t wX X  obtained from the calibration procedure involving the distance measure ( ) 1−′−c w R  
( )−c w  and the constraint = ,′c t XX  can be decomposed as  

 ( ) [ ] ( ) [ ]1 1= ,Ψ Ψ Ψc w L L t w L Ψ Ψ L Ψ t Ψ w− −′ ′ ′ ′+ − + −X X XX X X X  (2.9) 

where ( )= −L R I PX X  with ( ) 1= ,−′ ′P R RX X X X X  and ( )= −Ψ ΨL R I P  with ( ) 1= .−′ ′ΨP Ψ Ψ RΨ Ψ R  
The vector c  can be written as  

 ( ) [ ]1= ,Ψ Ψ Ψ Ψc c L L t c−′ ′+ −XX X X X  (2.10) 

where the vector  

 ( ) [ ]1= −′ ′+ −Ψ Ψc w RΨ Ψ RΨ t Ψ w   

is generated by calibration of the design weights involving only Ψ  and .Ψt  By symmetry,  

 ( ) [ ]1= ,Ψc c L Ψ Ψ L Ψ t Ψ c−′ ′+ −X X X X  (2.11) 

where  
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 ( ) [ ]1= .−′ ′+ −c w R R t wX XX X X X   

 

Now, if X  is as in (2.7), with corresponding vector of calibration totals ( )= , ,′′ ′t 0 0X  and if 
0= ,R Λ  then it follows from (2.9) that (2.8) can be written in the form  

 ( ) [ ] ( ) [ ]1 1
1 3 2 3

ˆ ˆ ˆ ˆ= ,− −′ ′+ − + −Ψ Ψc w L L X X L Ψ Ψ L Ψ Y YX XX X X   

and thus  

 
( ) ( )

( ) ( )

COR
3 3 3 1 1 3 2 2 3

1 1 1 3 2 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

x x

x x x

X X c X B X X B Y Y

B X I B X B Y Y

o o

o o o

′= + − + −

= + − + −
 (2.12) 

in obvious notation for 1
ˆ o

xB  and 2
ˆ .o

xB  A similar expression is obtained for CORˆ .Y  It is seen from (2.12) 
that the COR estimator CORX̂  of xt  is approximately (for large samples) unbiased, and derives its 
efficiency from combining the two elementary estimators 1X̂  and 3X̂  (pooling information from samples 

1S  and )3S  and from borrowing strength from sample 2S  through the correlation between x  and .y  In 
view of (2.10), the estimator CORX̂  takes the alternative forms  

 

( ) [ ]

[ ]

( )

1COR
3 3 3 1 1 3 3

OR OR OR
3 1 1 3

OR OR
1 1 1 3

ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ,

Ψ Ψ Ψ Ψ Ψ

x

x x

X X c X L L X c X c

X B X X

B X I B X

o

o o

−′ ′ ′ ′ ′= + −

= + −

= + −

X X X

 (2.13) 

where ( ) ( )1OR 0 0
2 3

ˆ ˆ ˆ ˆ=i i i
−′ ′+ −X X X Λ Ψ Ψ Λ Ψ Y Y  are optimal regression (OR) estimators incorporating 

the regression effect of the last term in (2.12). 

In non-nested matrix sampling, { }0 0= diag ,iΛ Λ  OR
1 1

ˆ ˆ= ,X X  

OR
3 3 3 3 2

ˆ ˆ ˆ ˆ ˆ ˆ= Cov( , )[ ( )V+ +X X X Y Y  
1

3 2 3
ˆ ˆ ˆ ˆ( )] [ ],V − −Y Y Y  having estimated approximate variance  ( ) ( )OR

3 3
ˆ ˆ ˆAV =X XV −  

 ( ) ( ) ( )[ ]  ( )1
3 3 2 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆCov , Cov , ,X Y Y Y X YV V
− ′+  and  ( ) ( )  ( )

1OR OR
1 3 1 3

ˆ ˆ ˆ ˆ ˆ= AV AVo V
−

 + xB X X X  is the 

coefficient that minimizes the variance  ( )CORˆAV .X  From the explicit form 1
ˆ =xI B o−  

( ) ( ) ( )  ( ) ( ) ( )[ ]  ( )
1

1
1 1 3 3 3 2 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆCov , Cov , ,V V V V V
−

− ′+ − × + X X X X Y Y Y X Y  it is then clear that the 
stronger the correlation between x  and y  the larger the 1

ˆ o− xI B  and more weight is given to the less 

variable component OR
3

ˆ .X  In this connection, it can be easily shown that  ( )CORˆAV X  satisfies  

  ( ) ( )[ ]  ( )  ( )
11COR COR OR

1 1 3 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆAV = < , AV AV = < .o oV

−−   − x xX X B I X X I B I   

These inequalities hold also for any linear combination of the components of each of the estimators 
involved. The optimal composite regression estimator CORX̂  is more efficient than each of its two 
components 1X̂  and OR

3X̂  by the shown quantities, with the efficiency depending on the strength of the 
correlation between x  and .y  The estimator CORX̂  is also more efficient than the estimator 
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( )COR
1 1 1 3

ˆ ˆ= ,o o+ −x xX B X I B X    with ( ) ( ) ( )[ ] 1
1 3 1 3

ˆ ˆ ˆ ˆ ˆ ˆ= ,o V V V −
+xB X X X  which does not incorporate the 

information on y  (does not borrow strength from sample )2S  and has estimated variance 
 ( ) ( ) ( ) ( )[ ] ( )1COR

1 1 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆAV = .V V V V

−
+X X X X X  Indeed, writing the variance  ( ) ( )COR

1 1
ˆ ˆ ˆ ˆAV = oV xX X B  as 

 ( ) ( ) ( ) ( )[ ] ( )1COR
1 1 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆAV = ,V V V V
−

+X X X X X E  where 1 2=E E E  with 1
1 3

ˆ ˆ= [ ( ( ))V −−E I X

 

1
3 3 2 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆCov( , )[ ( ) ( )] Cov ( , )]V V − ′+X Y Y Y X Y  and 

1
2 1 3 3 3 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= [ [ ( ) ( )] Cov( , )[ ( )V V V−− + +E I X X X Y Y  



1 1
3 3 3

ˆ ˆ ˆ ˆ( )] Cov ( , )] ,V − −′Y X Y  and noticing that ,≤E I  it follows that  

  ( )  ( )[ ] 1COR CORˆAV AV = ,
−

≤X X E I   

that is, borrowing strength from 2S  reduces the variance of the composite estimator of xt  by the factor 
,E  which depends on the strength of the correlation between x  and .y  It can be easily verified that for 

two scalar variables x  and y  and simple random sampling this result reduces to the analogous analytical 
result on the efficiency of BLUE given in Chipperfield and Steel (2009, page 231). In this simple case 

[ ] ( )[ ] ( ) ( )[ ]2 2
1 3 3 2 1 3 2 3 1 2= 1 ,E n n n n n n n n n n+ + − ρ + + − ρ  where ρ  is the correlation between x  and 

.y  As an illustration, assuming equal sample sizes and correlation = 0.7,ρ  the efficiency gain is 13.96%. 

In nested matrix sampling, the two estimators in (2.13) are  ( )OR ˆˆ ˆ ˆ= Cov ,i i i+X X X Ψ  
( )[ ] [ ]1

2 3
ˆˆ ˆ ˆ ,V

−
−Ψ Y Y  and     

OR OR OR OR OR OR
1 3 1 3 1 3 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ= [AV( ) AC( , )][AV( ) AV( ) 2AC( ,o
x − + −B X X X X X X  

OR 1
3

ˆ )] ,−X  where AC denotes approximate covariance. In this case, in addition to the correlation 3, 3x yρ  

between 3X̂  and 3Ŷ  in sample 3 ,S  the efficiency of CORX̂  depends on the estimators’ correlations 

1, 3 2, 3 2, 3, ,x x y y y xρ ρ ρ  due to the dependence of the subsamples. For univariate x  and y  and with the 

simplifying assumption of identical designs for the three subsamples (as in equal splitting of the full 
sample), we obtain some insight through the simple expressions  ( )CORˆAV =X  
( ) ( ) ( ) ( ) ( ) ( ) ( )2 22

3 1, 3 2, 3 3, 3 2, 3 1, 3 2, 3 3, 3 2, 3
ˆ 2 1 1 4 1 1 ,x x y y x y y x x x y y x y y xV X    − ρ − ρ − ρ − ρ − ρ − ρ − ρ − ρ     and 

 ( ) ( ) ( )COR
3 1, 3

ˆAV = 1 2.x xX V X + ρ  Clearly, the estimator COR ,X  which ignores information on ,y  is 
more efficient than the simple average of single-sample estimators of xt  only when there is negative 
correlation 1, 3 .x xρ  The efficiency of CORX̂  relative to CORX  

 
 ( )
 ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

22COR
1, 3 2, 3 3, 3 2, 3

22COR
1, 3 2, 3 1, 3 3, 3 2, 3

ˆ 4 1 1 2AV
=

4 1 1 1AV
x x y y x y y x

x x y y x x x y y x

X
X

− ρ − ρ − ρ − ρ

− ρ − ρ − + ρ ρ − ρ

  

depends on the sign and size of 1, 3x xρ  and the size of 3, 3 2, 3 .x y y xρ − ρ  

Although the calibration procedure, with vector of calibrated weights (2.8), substantially facilitates the 
computation of the composite optimal regression estimator for any total of interest, the matrix 0Λ  makes 
the calculations exceedingly demanding, particularly in nested sampling where the subsamples are 
dependent and thus 0Λ  is not diag{ }0 .iΛ  Besides, the probabilities klπ  are not known for most sampling 
designs. An alternative composite regression estimator that is computationally very efficient is developed 
in the next section. 
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3  Composite generalized regression estimation for design (c) 
 

A computationally very convenient, but generally suboptimal, variant of ˆ oB  in (2.6) is obtained by 
replacing the matrix 0Λ  with the diagonal “weighting matrix” Λ  having ik ikw q  as thik  diagonal entry, 
where { }ikw  are the design weights of iS  and { }ikq  are positive constants. This gives the multivariate 

composite generalized regression (CGR) estimator of ( ), ′′ ′x yt t  

 
CGR

3 3 1 31
CGR

3 3 2 32

ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ= ( ) = ,ˆ ˆ ˆ ˆˆˆ
X X X XXX

I
Y Y Y YYY

−       
+ − +        −         

B B B  (3.1) 

where 1
3

ˆ = ( ) ( ) −′ ′Λ ΛB X X X X  is the associated matrix regression coefficient. For an extensive 
discussion of the generalized regression estimator in a single sample, see Särndal et al. (1992, Chapter 6). 

The CGR estimator may be compactly written as ( )CGR
3 3

ˆ ˆ ˆˆ ˆ= = , ′′− − wX X BX X XB  i.e., as a sum 

of weighted sample regression residuals. The coefficient B̂  is optimal in the sense of generalized least 

squares, i.e., it minimizes the quadratic form ( ) ( )3 3
ˆ ˆ′′ ′− −ΛX XB X XB  in these residuals. Similarly to 

the COR estimator, the CGR estimator too can be obtained in calibration form as 3 ,′cX  where the vector 

( ) ( )1= −′ ′+ −c w Λ Λ 0 wX X X X  minimizes the generalized least-squares distance ( ) 1−′−c w Λ  
( )−c w  and satisfies the constraints CGR CGR

1 3
ˆ ˆ=X X  and CGR CGR

2 3
ˆ ˆ= .Y Y  This extends to the present 

context the well-known equivalence of generalized regression estimation and calibration estimation 
(Deville and Särndal 1992) for a single-sample setting. Now using the subvector of calibrated weights 3 ,c  
for sample 3S  only, we obtain the composite estimators in (3.1) in the simple linear forms CGR

3 3
ˆ = ′X X c  

and CGR
3 3

ˆ = .′Y Y c  Using Lemma 1 and the diagonal structure of ,Λ  it works out that CGRX̂  can be 
written as  

 ( )CGR GR
1 1 1 3

ˆ ˆ ˆ ˆ ˆ= ,x xX B X I B X+ −  (3.2) 

where ( ) ( )1GR
3 3 3 2 3

ˆ ˆ ˆ ˆ= −′ ′+ −X X X ΛΨ Ψ ΛΨ Y Y  is the generalized regression (GR) counterpart of OR
3

ˆ .X  

The matrix regression coefficient 1
ˆ

xB  is written explicitly as ( ) 1
1 3 1 1 1 3

ˆ = ,−′ ′ ′+x Ψ ΨB X L X Λ X X LX X  

where ( ) 1
3 3 3 3 3 3 3 2 2 2 3 3 3 3 3 3= .−′ ′ ′ ′ ′ ′− +ΨX L X Λ X X Λ Y Y Λ Y Y Λ Y Y Λ XX  If x  and y  were uncorrelated, or 

if information on y  was not used in the estimation of ,xt  then it would be GR
3 3

ˆ ˆ=X X  and 

( ) 1
1 3 3 3 1 1 1 3 3 3

ˆ = .−′ ′ ′+xB X Λ X X Λ X X Λ X  But the GR estimator GR
3X̂  is generally more efficient than the 

HT estimator 3
ˆ ,X  and since 1 1 1 3 1 1 1 3 3 3<′ ′ ′ ′+ +ΨX Λ X X L X Λ X X Λ XX  (in the partial ordering of non-

negative definite matrices), it is clear that more weight is given to GR
3X̂  in (3.2), through 

( ) 1
1 1 1 1 1 1 1 3

ˆ = ,−′ ′ ′− +x ΨI B X Λ X X Λ X X L X  than would have been given to the component estimator 3X̂  in 
the simple composite estimator involving only information on .x  This suggests that the CGR estimator in 
(3.2), incorporating information from sample 2 ,S  is a more efficient estimator. Suggestive of the 
efficiency of CGRX̂  is also its alternative expression, obtained using (2.11), CGR CGRˆ = +X X  

( ) [ ]1 GR
3 2 3

ˆ ˆ ,−′ ′ −X L Ψ Ψ L Ψ Y YX X  where ( ) ( ) ( )1CGR
3 3 1 3 1 1 1 3

ˆ ˆ ˆ ˆ ˆ= =−′ ′+ − + −x xX X X Λ Λ X X B X I B X  X X X  
is the composite regression estimator of xt  using information on x  from 1S  and 3 .S  
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In general, the computationally simpler CGR estimator ( )CGR CGRˆ ˆ, ,X Y  involving the coefficient ˆ,B  is 
less efficient than the optimal composite regression estimator ( )COR CORˆ ˆ,X Y  which involves the estimated 
optimal coefficient ˆ oB  and has the same asymptotic variance as the BLUE in (2.3); the efficiency loss 
may be larger in nested matrix sampling, for which the matrix 0Λ  is not block-diagonal. On the other 
hand, ( )COR CORˆ ˆ,X Y  may be unstable in small samples, when there is a small number of degrees of 
freedom available for the estimation of ˆ ,oB  which is particularly so in nested matrix sampling; for a 
discussion of the relative stability of the optimal versus the generalized regression estimator in the single-
sample case see Rao (1994) or Montanari (1998). For certain sampling strategies, described in the 
following theorem, ˆ ˆ= oB B  and the CGR estimator is the COR estimator, and asymptotically is BLUE; 
the proof is given in the Appendix.  

 
Theorem 1 Consider the following sampling strategies. 
 

Non-nested design 
( )a  For all three samples 1 2,S S  and 3S  assume stratified simple random sampling without 

replacement (STRSRS) with sampling fraction =ih ih ihf n N  in stratum h  of sample ,i  
= 1, , ih H  and ihN  denoting stratum size, and specify the constants ikq  in iΛ  as 

( ) ( )= 1 1ik ih ih ihq n N f− −  for all units of stratum .h  Furthermore, assume that within each 
sample the units are sorted by stratum, and consider the augmented design matrix ( )= ,DZ X  in 
(2.7), where D  is the block diagonal matrix { }1 2 3diag , ,D D D  and iD  is the diagonal matrix 

{ }1diag , , , , ,
ii ih iH1 1 1   with diagonal element ih1  being a vector of ones for all units of stratum 

h  in sample ,iS  and consider the corresponding augmented vector of calibration totals 

( )1 2 3= , , , , ,′′ ′ ′ ′ ′t 0 0 N N NZ  where iN  is the vector of strata sizes for sample .iS  
( )b  For all three samples 1 2,S S  and 3S  assume stratified Poisson sampling and specify the constants 

ikq  in the entries of iΛ  as ( )= 1ik ihk ihkq π − π  for the units of stratum ,h  where ihkπ  is the 
inclusion probability of unit k  in stratum h  of the thi  survey. 

 

Nested design 
( )’a  Assume that an initial stratified simple random sample S  is split by stratum into three simple 

random subsamples 1 2,S S  and 3 .S  Specify the sampling fractions ,ihf  the constants ikq  in ,iΛ  
the design matrix ( )= ,DZ X  and the vector of calibration totals t Z  as in part ( ) .a  

( )’b  Assume that an initial stratified Poisson sample S  is randomly split by stratum into three 
subsamples 1 2,S S  and 3 ,S  with unequal inclusion probabilities for the units of each subsample. 
Specify the constants ikq  in iΛ  as ( )= 1ik ihk ihkq π − π  for the units of stratum ,h  where ihkπ  is 
the marginal inclusion probability of unit k  in stratum h  of the thi  subsample.  

 
Under each of strategies ( )a  and ( ) ,b  the calibration procedure with matrix Λ  in the least-squares 
distance measure gives the CGR estimator in (3.1) with ˆ ˆ= ,oB B  implying that the CGR estimator is the 
COR estimator. For ( )’a  and ( )’ ,b  this holds approximately when the strata sampling fractions are 
approximately zero.  



Survey Methodology, June 2015 247 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Corollary 1 The result of Theorem 1 holds also for the unstratified versions of all four designs. For 
simple random sampling without replacement (SRS), in particular, the matrix D  reduces to the diagonal 
matrix { }1 2 3diag , ,1 1 1  having as its thi  diagonal element the in - dimensional unit vector ,i1  and the 

vector of calibration totals is then ( )= , , , , .N N N ′′ ′t 0 0Z  
 

Corollary 2 In non-nested sampling, when the sampling design for each of the three samples is one of the 
designs in ( )a  and ( )b  or one of their unstratified versions, but not the same for all samples, the result of 
Theorem 1 holds provided that the matrix D  in Z  and the vector t Z  are reduced so as to correspond 
only to the samples for which SRS or STRSRS is used.  
 

The extended calibration scheme in Theorem ( )1 , ’a a  includes calibration to the stratum sizes (or to 
the population size in the SRS version), through the inclusion of an intercept for each stratum in the design 
matrix .X  No additional information is used beyond what is assumed in the sampling design in ( )a  and 
( )’ ,a  and the form of the resulting CGR estimator remains the same as in (3.1) because the HT estimates 
of the population and strata sizes are exact. The effect of this extended calibration (with the specified 
values of )ikq  is only to convert the CGR coefficient B̂  to the optimal coefficient ˆ oB  and, thus, the 
CGR estimator to the COR estimator. The practical significance of this conversion lies in carrying out 
optimal composite regression estimation through the much simpler calibration procedure of generalized 
regression estimation. 

Subsampling as in part ( )’ ,a  with a priori fixed sample sizes, is a natural procedure in matrix sampling 
involving splitting a questionnaire. In contrast, in the subsampling scheme of part ( )’b  in  is the expected 
sample size of ,iS  the actual size being random. Unequal subsampling probabilities may be determined 
adaptively for increased efficiency; see Gonzalez and Eltinge (2008). 

The results of Theorem 1 could extend to other sampling designs, e.g., stratified two-stage simple 
random sampling in non-nested matrix sampling. However, the required adjustments in the matrices iΛ  
would not be easier than using directly the matrices 0

iΛ  in the calibration to obtain the optimal composite 
regression estimator. 

For sampling designs other than those assumed in Theorem 1, the value of ikq  in the entries of iΛ  
should be set to ( )1 2 3= ,ik iq n n n n+ +     where = ,i i i in n d d  denoting design effect, to take into account 
the differential in effective sample sizes among the three samples. If the same design is used for all 
samples, then = .i in n  The justification for this adjustment is based on the argument given in Merkouris 
(2010) for a similar problem of composite regression estimation. 

 
4  Composite estimation for matrix sampling design (d) 
 

4.1  Core set of variables with known totals 
 

We discuss first a special case of the matrix sampling design (d) in which the variables that are 
common to the three samples have known totals. In this very realistic sampling setting, all samples collect 
also information on the same vector of auxiliary variables z  for which the vector of population totals zt  
is known. For illustration we consider again three samples, as in Figure 2.1 (but with z  added in all 
subsamples). Then, the CGR estimator CGRX̂  in (3.1) may be augmented with the ordinary regression 
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terms ( ) ( ) ( )3 1 4 2 5 3
ˆ ˆ ˆ ˆ ˆ ˆ ,− + − + −x z x z x zB t Z B t Z B t Z  where ˆ , = 1,2,3i iZ  is the HT estimator of zt  based 

on sample ;iS  similarly for CGRˆ .Y  This estimator has improved efficiency, as it incorporates additional 
information, and is generated by a calibration procedure that includes the additional three constraints 

CGRˆ = ,i zZ t  and has the design matrix X  in (2.7) augmented with the block-diagonal matrix 
{ }1 2 3= diag , , .Z Z Z Z  In the simplest case when the sample matrices iZ  reduce to the unit columns i1  

(with corresponding total the size of the population), the calibration scheme is the one specified in 
Corollary 1 above. As shown in the proof of the next theorem, an application of Lemma 1 to the present 
calibration procedure, with partitioned design matrix ( ), , =Z R ΛX  and calibration totals 

( ), , , , ,′′ ′ ′ ′ ′z z z0 0 t t t  gives a modified CGR form of (3.1) with GR estimators incorporating information on 

z  in place of HT estimators. This is compactly written as GR GR
3

ˆ ˆˆ ,−X BX  where GR
3 3

ˆ ˆ= +X X  
( ) ( )1

3 ( )
ˆ ,−′ ′ −zΛZ Z ΛZ t ZX  with ( )( ) = , , ,′′ ′ ′z z z zt t t t  and GRˆX  expressed similarly, and where 

( )[ ] ( )[ ] 1
3

ˆ = −′ ′− −Z ZΛ I P Λ I PB X X X X  with ( ) 1= .−′ ′ZP Z Z ΛZ Z Λ  

Replacing Λ  by 0Λ  in the calibration procedure gives the optimal composite regression estimator, 
compactly written as OR OR

3
ˆ ˆˆ ,o−X B X  with optimal regression estimators incorporating information on 

z  in place of GR estimators, and with ( )[ ] ( )[ ] 10 0 0 0
3

ˆ =o −′ ′− −Z ZΛ I P Λ I PB X X X X  where 
( ) 10 0 0= .−′ ′ZP Z Z Λ Z Z Λ  Noticing that ( )0

3− ZI P X  is the matrix of residuals corresponding to OR
3

ˆX  and 

that ( ) ( ) ( )  ( )0 0 0 0 0 OR OR
3 3 3

ˆ ˆ= = AC , ,′′ ′− − −Z Z ZΛ I P I P Λ I PX X X X X X  and similarly for  ( )ORˆAV ,X  
it follows that  

  

1OR OR OR OR OR
3 1 3 1 3
OR OR OR OR OR
3 2 3 2 3

ˆ ˆ ˆ ˆ ˆˆ = AC , AV ,ˆ ˆ ˆ ˆ ˆ
X X X X X
Y Y Y Y Y

o
−

− −      
−         − −      

B  (4.1) 

in analogy with (2.4), or with (2.5) in non-nested sampling. Thus, ˆ oB  is optimal in the sense of 
minimizing the approximate variance of the estimator OR OR

3
ˆ ˆˆ ,o−X B X  which is then asymptotically 

BLUE. An alternative estimator, of weaker optimality, has the form GR GR
3

ˆ ˆˆ ,wo−X B X  where the 

coefficient ( ) ( ) ( ) ( )
1

0 0
3

ˆ =wo
−

   ′ ′′ ′− − − −  Z Z Z ZI P Λ I P I P Λ I PB X X X X  has the form (4.1) but 
with GR estimators in place of OR estimators. This estimator, differing from the CGR only in the 
regression coefficient, is optimal in the restricted sense of being the composite of GR estimators 
incorporating information on z  that has minimum approximate variance. In general, this later composite 
estimator cannot be obtained as a calibration estimator. The following theorem gives conditions under 
which the CGR estimator is optimal in one of the two senses in non-nested matrix sampling; the proof is 
given in the Appendix. The nested sampling version of the theorem, with subsampling schemes and proof 
as in Theorem 1, is omitted for brevity.  

 
Theorem 2 Consider the following sampling strategies. 
 

( )a  For all three samples 1 2,S S  and 3S  assume SRS with sampling fractions = ,i if n N  and specify 
all constants ikq  in iΛ  as ( ) ( )= 1 1 .ik i iq n N f− −  Consider the augmented design matrix 

( )= , ZZ X  in (2.7), where { }1 2 3= diag , , ,Z Z Z Z  and with the corresponding augmented vector 
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of calibration totals ( )= , , , , .′′ ′ ′ ′ ′z z zt 0 0 t t tZ  Further, suppose that =i iZ h 1  for constant 
vectors .ih  

Then, the calibration procedure gives the CGR as GR GR GR GR
3 3

ˆ ˆ ˆ ˆˆ ˆ= ,wo− −X BX X B X  i.e., the 
CGR estimator is the optimal composite of GR estimators incorporating information on .z  

( )b  For all three samples 1 2,S S  and 3S  assume STRSRS with sampling fraction =ih ih ihf n N  in 
stratum h  of sample , = 1, , ii h H  and ihN  denoting stratum size, and specify the constants in 

iΛ  as ( ) ( )= 1 1ik ih h ihq n N f− −  for all units of stratum .h  Further, assume that within each 
sample the units are sorted by stratum, and consider the augmented design matrix ( )= , ,Z DZ X  
in (2.7), with corresponding augmented vector of calibration totals 1= ( , , , , , ,′ ′ ′ ′ ′ ′z z zt 0 0 t t t NZ  

2 3, ) .′′ ′N N  The definition of D  and iN  is as before. 

Then, the calibration procedure gives the CGR as OR OR
3

ˆ ˆˆ ,o−X B X  i.e., the CGR estimator is the 
optimal composite of optimal regression estimators incorporating information on .z  

( )c  For all three samples 1 2,S S  and 3S  assume stratified Poisson sampling and specify the constants 

ikq  in the entries of iΛ  as ( )= 1ik ihk ihkq π − π  for the units of stratum .h  

Then, the calibration procedure, with Z  and t Z  as in ( ) ,a  gives the CGR as GR GR
3

ˆ ˆˆ =−X BX  
OR OR

3
ˆ ˆˆ ,o−X B X  i.e., GR and OR estimators are identical, and the CGR estimator is the optimal 

composite of optimal regression estimators incorporating information on .z  

 
The condition =i iZ h 1  in ( )a  of Theorem 2 is customarily satisfied when the vector z  contains 

categorical variables. Results analogous to Corollaries 1 and 2 of the previous section hold also for parts 
( )b  and ( )c  of Theorem 2. Here too, for sampling designs other than those assumed in Theorem 2, the 
value ( )1 2 3=ik iq n n n n+ +     in the entries of Λ  should be used. 

Finally, by analogy to (3.2), and with the appropriate decomposition of the vector of calibrated weights 
,c  the composite estimator CGRX̂  takes now the form  

 ( )CGR GR GR
1 1 1 3

ˆ ˆ ˆ ˆ ˆ= ,+ −x xX B X I B X   
where GR

1X̂  and GR
3X̂  are GR estimators using information on z  from 1 ,S  and on y  and z  from 2S  and 

3 ,S  respectively, and 1
ˆ

xB  is the corresponding matrix regression coefficient. Similar is the expression for 
CGRˆ .Y  Of course, CGRX̂  and CGRŶ  can be obtained directly through this modified c  in the simple linear 

forms CGR
3 3

ˆ = ′X X c  and CGR
3 3

ˆ = .′Y Y c  

 
4.2  Core set of variables with unknown totals 
 

We turn now to the case of matrix sampling design (d) in which the variables z  that are common to the 
three samples have unknown totals. Estimation in this setting includes the construction of a composite 
estimator of the vector of totals .zt  In line with the formulation of Section 2, composite estimators of 

,x yt t  and zt  that are best linear unbiased combinations of the HT estimators 1 1 2 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,X Z Y Z X Y Z  

are given by  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 3 3 2 3 2 1 3 4 2 3

3 2 3 3 1 1 3 2 1 3 4 2 3

2 1 4 2 2 4 3 1 1 3 3 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

x x x x x

y y y y y

z z z z z z

X B X I B X B Y Y B Z Z B Z Z

Y B Y I B Y B X X B Z Z B Z Z

Z B Z B Z I B B Z B X X B Y Y

B

B

B

= + − + − + − + −

= + − + − + − + −

= + + − − + − + −

 (4.2) 

The estimators in (4.2) can be written in the matrix regression form  

 

1 3
3

1 3
3

2 3
3

2 3

ˆ ˆ
ˆ ˆ

ˆ ˆ
ˆ ˆ= ,ˆ ˆ
ˆ ˆ

ˆ ˆ

X X
X X

Z Z
Y Y

Y Y
Z Z

Z Z

B

B

B

− 
     −     +     −         − 

B  (4.3) 

with the variance-minimizing matrix of coefficients given by ( ) ( )[ ] 1
3 12 3 12 3= Cov , ,V −

− − −u u u u uB    

where ( )3 3 3 3
ˆ ˆ ˆ= , , ,′′ ′ ′u X Y Z  3 3 3 3 3

ˆ ˆ ˆ ˆ= ( , , , ) ,′′ ′ ′ ′u X Z Y Z  ( )12 1 1 2 2
ˆ ˆ ˆ ˆ= , , , .′′ ′ ′ ′u X Z Y Z  With estimated covariance 

and variance matrices we obtain the estimated optimal matrix ˆ ,oB  and (4.3) becomes then an optimal 
multivariate regression estimator. Then, proceeding as in Section 2, it can be shown that  

 0 0 1
3

ˆ = ( ) ( ) ,o −
−
′ ′Λ ΛB X X X X   

where  

 
1 1

2 2

3 3 3 3

=
X Z 0 0
0 0 Y Z

X Z Y Z

− − 
 − −  
 

X  (4.4) 

is the design matrix corresponding to the regression estimator (4.3), 3−X  is the matrix X  with the 
second column eliminated and the first two rows set equal to zero, and 0Λ  is as in Section 2. 

Replacing the matrix 0Λ  with the weighting matrix ,Λ  gives the generalized regression coefficient 
1

3
ˆ = ( )( ) ,Λ Λ −

−
′ ′B X X X X  and (4.3) becomes the CGR estimator of ( ), , ′′ ′ ′x y zt t t  

 

CGR 1 3
3

CGR 1 3
3

CGR 2 3
3

2 3

ˆ ˆ
ˆ ˆ

ˆ ˆˆˆ ˆ= .ˆ ˆ
ˆ ˆ

ˆ ˆ

X X
X X

Z Z
Y Y

Y Y
Z Z

Z Z

− 
     −     +     −         − 

B  (4.5) 

The estimator (4.5) can be conveniently obtained through a calibration procedure that gives a vector of 
calibrated weights for the combined sample S  having the form ( ) ( )1= ,−′ ′+ −c w Λ Λ 0 wX X X X  as 
before, but now satisfying the additional constraint CGR CGR CGR

1 2 3
ˆ ˆ ˆ= = .Z Z Z  Expression (4.5) is then 

obtained simply as 3 ,−
′ cX  based on sample 3 .S  

The explicit expression (4.2), different for the optimal regression and the generalized regression 
variants only in the form of the linear coefficients, shows that the composite estimators of xt  and yt  are 

more efficient than their counterparts in matrix sampling design (c), equation (2.2), because they 
incorporate information on the common variables ,z  assuming non-zero correlation with x  and .y  
Particularly remarkable is the expression for the composite estimator of :zt  it involves a linear 
combination of the three HT estimators of zt  derived from the three samples, plus the two regression 
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terms implying additional efficiency through the correlation of z  with x  and .y  One would expect the 
additional terms to be zero because an optimal combination of the three estimators should incorporate all 
information on z  available in the three samples. In general, however, the associated coefficients are not 
zero. In non-nested sampling, conditions under which these coefficients are zero are given by the 
following proposition, the proof of which is given in the Appendix. The result should also hold in nested 
sampling.  
 
Proposition 1 The coefficients 1zB  and 3zB  in the estimator ˆ BZ  in (4.2) are zero only if  

 
( )[ ] ( ) ( )[ ] ( )

( )[ ] ( ) ( )[ ] ( )

11
1 1 1 3 3 3

11
2 2 2 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆCov , Cov ,

ˆ ˆ ˆ ˆ ˆ ˆCov , Cov , .

Z X Z Z X Z

Z Y Z Z Y Z

V V

V V

−−

−−

=

=
 (4.6) 

This can happen only if the sampling designs for the three samples are identical, including equal sample 
sizes, or only if the sampling design across samples is the same design with equal inclusion probability for 
all units, but not necessarily with the same sample size.  
 

Noticing that the quantities on each side of the equations (4.6) are regression coefficients, according to 
Proposition 1 the terms of the estimator ˆ BZ  incorporating the correlation of z  with x  and y  are zero 
only if the effect of the regression of x  and y  on z  is identical in samples 1S  and 3S  and in samples 2S  
and 3 ,S  respectively. The essence of this finding is that estimation of zt  using only information on z  
from the three samples, but ignoring information on x  and ,y  will be suboptimal when there is 
differential regression effect of x  and y  on z  in the various samples. The efficiency of ˆ BZ  relative to 
the composite estimator BZ  that uses only information on z  was possible to gauge in the simple setting 
involving scalar ,x y  and ,z  simple random sampling for 1S  and 3S  and Bernoulli sampling for 2 ,S  and 
equal sampling rates for all three samples. Then only the first equation of (4.6) holds. After much tedious 
algebra the efficiency of ˆ BZ  relative to BZ  was derived to be ( ) ( ) ( )[ ]ˆ = ,B B BV V V G H−Z Z Z   with  

 

( ) ( )
( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )

22

2 2 2 2 2 2

2 2 2 2 2 2

2

2 1

1 12 9 3 2 1 12 1

2 8 1 4

6 1 2

xz yz y z

z yz xz xy yz xz yz z y

xy yz y xz y yz xy xz y

xz z z yz y

G r r cv cv

H cv r r r r r r cv cv

r r cv r cv r r r cv

r cv cv r cv

= − −

= + − − − + −

+ + + − −

+ − −

  

where ,xy xzr r  and yzr  denote population correlation coefficients, and ,y zcv cv  denote coefficients of 

variation. Although in this setting the departure from the conditions of Proposition 1 is minimal, different 
configurations of admissible values for , , ,xy xz yz yr r r cv  and zcv  show that the efficiency gain may be 

substantial, making up for the inefficiency of the HT estimator of zt  based on the Bernoulli sample 2 .S  
For example, when = 0.3, = 0.3, = 0.3xy xz yzr r r  and = 0.1, = 0.6,y zcv cv  the efficiency gain is 23%. In 

the case of the composite optimal regression estimator CORˆ ,Z  with estimated coefficients 1
ˆ o

zB  and 3
ˆ ,o

zB  
the regression coefficients in (4.6) are estimated, and thus the equalities in (4.6) would never hold exactly 
because of the sample differences. Likewise in the case of the CGR estimator CGRˆ ,Z  for which equations 
formally identical to (4.6) are given in terms of sample generalized regression coefficients. 
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Regarding the efficiency of the CGR estimator (4.5), an exact analogue of Theorem 1 holds in the 
present setting, with the same sampling strategies for which the CGR estimator is optimal regression 
estimator and asymptotically BLUE. 

Composite estimation for a matrix sampling scheme involving a core set of variables with both known 
and unknown totals can be carried out using the obvious extended calibration scheme. 

 
5  Domain estimation 
 

Composite estimators for domains (subpopulations) of interest may be readily obtained using the 
calibrated weights derived in the previous sections, that is, by summing the weighted values of a variable 
over any domain .dU U⊂  For instance, letting idX  denote the matrix ,iX  for sample ,iS  with the 
entries of the thk  row set equal to 0 if ,dk U∉  the CGR estimator of the domain total dxt  based on the 
weights of 3S  calibrated with the scheme of design (c) (see Section 3) is given by  

 ( ) [ ]1CGR GR GR
3 3 3 3 3 1 3

ˆ ˆ ˆ ˆ= = ,d d d d
−′ ′ ′+ −Ψ ΨX X c X X L L X XX X X   

where ( ) ( )1GR
3 3 3 2 3

ˆ ˆ ˆ ˆ=d d d
−′ ′+ −X X X ΛΨ Ψ ΛΨ Y Y  and the subscript d  indicates domain. The CGR 

estimator CGR
1

ˆ
dX  based on sample 1S  is obtained in the same manner. However, unlike the population-

level estimator (3.2), resulting from calibration of two estimators to each other at population level, the 
estimators CGR

1
ˆ

dX  and CGR
3

ˆ
dX  are not constructed as composites of two domain estimators, based on 

samples 1S  and 3 ,S  and they are not identical. Moreover, although both CGR
1

ˆ
dX  and CGR

3
ˆ

dX  incorporate 
information on x  from samples 1S  and 3 ,S  their construction (non-customized at domain level) may 
entail some loss of efficiency. 

A simple modification of the calibration procedure that leads to efficient composite estimation for all 
totals of interest involves the augmentation of the design matrix with columns defined at each domain 
level for the relevant variables. Thus, for design (c) estimation of the domain total dxt  involves the 

augmentation of the design matrix X  in (2.7) with the column ( )1 3, , .d d
′′ ′ ′−X 0 X  The resulting estimator, 

CGR ,dX  may be written in the forms  

 
( ) ( ) ( )

( )

CGR
3 1 1 3 2 2 3 3 1 3

GR GR
1 1 1 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ,

x x x

x x

X X B X X B Y Y B X X

B X I B X

d d d d d d d

d d d d

= + − + − + −

= + −



 

 (5.1) 

where GR
1dX  and GR

3dX  are now the GR domain estimators incorporating the regression effect of the second 
and third terms of (5.1). Adding another term in (5.1) involving the difference 2 3

ˆ ˆ
d d−Y Y  may not 

improve appreciably the efficiency of CGR
dX  but will be necessary if estimation of the domain total dyt  is 

also required. In any particular situation, the augmentation of the design matrix X  involves only those 
components of x  or y  for which domain estimates are needed. A possible drawback of this procedure is 
the additional computational burden, which increases with the number of domains and the variables for 
which domain estimation is required. 



Survey Methodology, June 2015 253 
 

 
Statistics Canada, Catalogue No. 12-001-X 

An alternative approach that may be more appropriate when the domain estimates of interest are 
numerous, involves the separate production of the domain estimates by carrying out the composite 
calibration only at the domain level. For the domain total ,dxt  this would give the domain CGR estimator, 
in analogy with the population CGR estimator (3.2),  

 ( )CGR GR
1 1 1 3

ˆ= ,d d d d d+ −x xX B X I B X
   

  

where ( ) 1
1 3=

d dd d d d d

−′ ′x Ψ ΨB X L L


X X X  and ( ) ( )1GR
3 3 3 2 3

ˆ ˆ ˆ= .d d d d d d d d
−′ ′+ −X X X ΛΨ Ψ ΛΨ Y Y



 The 

efficiency of the joint estimator ( )CGR CGR,d dX Y
 

 over the estimator ( )CGR CGRˆ ˆ,d dX Y  can be verified under the 
conditions of the following proposition (its proof in the Appendix).  
 

Proposition 2 Under the sampling schemes of Theorem 1,  

  

CGR CGR
3 3
GGR CGR
3 3

ˆ
AV < AV .ˆ

d d

d d

  
  

   

X X
Y Y




  

Notably, the drawback of a separate production of the domain estimates, through composite calibration 
at the domain level, is the loss of consistency among estimates at population level and domain level. 

The above considerations extend to domain estimation for matrix sampling design (d). 

 
6  A simulation study 
 

We have conducted a simulation to study the relative performance of the various composite estimators 
for the nested version of the basic design (c). Values of correlated scalar variables x  and y  were 
generated from a bivariate log-normal distribution with mean and variance parameters ( ),x yµ µ  and 

( )2 2, .x yσ σ  With fixed = 3,xµ  = 5,yµ  four combinations of variances ( )2 2,x yσ σ  (5 and 10) and three 

values of the correlation ( ),x yρ  (0.5, 0.7, 0.9) were considered. Variances 2 = 5,xσ  2 = 10xσ  imply 
skewness 2.65 and 4.33, respectively, while variances 2 = 5,yσ  2 = 10yσ  imply skewness 1.43 and 2.15. 
For each of these twelve settings, a population of size = 1,000,000N  was created. From each of the 
twelve populations a simple random sample S  of size = 5,000n  was drawn without replacement, and 
split into three simple random subsamples ( )1 2 3, ,S S S  with two different allocations, namely, 
( )1 2 3= 2,000, = 2,000, = 1,000n n n  and ( )1 2 3= 1,500, = 1,500, = 2,000 ,n n n  the second allocation 
giving larger combined samples 1 3S S∪  and 2 3 .S S∪  Thus, a total of 24 simulation settings were 
created. For each such setting, we computed the HT estimators of the totals xt  and yt  using the full 

sample ,S  as well as the HT estimator of xt  using 1S  and 3S  and the HT estimator of yt  using 2S  and 

3 .S  For the HT estimators based on two subsamples, we employed the simple method for combining two 
subsamples (Gonzales and Eltinge 2008) by a weighting adjustment involving the probability of selection 
of a population unit in 1S  or in 3S  and in 2S  or in 3 .S  In addition, for both xt  and yt  we computed the 

CGR and COR estimators. Each simulation sampling setting was repeated 10,000 times. 
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The simulated bias (in percent) of all estimators was smaller than 0.05%, with the exception of two 
settings involving 2 = 10,xσ  with associated population skewness of 4.33, where the largest observed 
values 0.14% and 0.17% correspond to CGR and COR for ,xt  respectively, in the sample allocation 
(2,000, 2,000, 1,000), dropping to 0.10% and 0.13% in the more favorable allocation (1,500, 1,500, 
2,000). Thus the relative efficiencies of the estimators are evaluated using their simulated design 
variances. 

Table 6.1 shows the efficiency of the composite estimators CGR and COR relative to the HT 
estimators that use 1 3S S∪  and 2 3 .S S∪  The measure of this relative efficiency is the percent relative 
difference of variances [V(CGR)-V(HT)]/V(HT) and [V(COR)-V(HT)]/V(HT). A negative value of this 
measure indicates the efficiency gain achieved by the two composite estimators. Not shown in Table 6.1, 
the simulated loss of efficiency of the HT estimators of both xt  and yt  due to not using the full sample S  

is very close to the nominal loss for SRS, that is, 66.8% for the allocation (2,000, 2,000, 1,000), and 
43.1% for the allocation (1,500, 1,500, 2,000). 

 
Table 6.1  
Relative differences (in percent) of variances of CGR and COR to HT for x and y, based on 10,000 simulated 
samples with two different sample allocations. 
 

(n1, n2, n3) (2,000; 2,000; 1,000) (1,500; 1,500; 2,000) 
           x            y            x            y  

 CGR COR CGR COR CGR COR CGR COR 
2 25 5x yσ = σ =           

0.5ρ =   -2.24 -6.86 26.39 -6.23 -5.19 -6.29 12.59 -6.52 

0.7ρ =  -11.90 -14.75 10.21 -13.96 -12.78 -13.24 0.25 -13.13 

0.9ρ =  -24.89 -28.57 -12.49 -28.10 -21.55 -23.37 -14.55 -23.03 
2 25 10x yσ = σ =           

0.5ρ =   -0.27 -6.75 6.50 -6.26 -3.94 -6.60 0.50 -6.44 

0.7ρ =  -11.47 -14.56 -6.29 -14.04 -12.87 -13.51 -9.51 -13.10 

0.9ρ =  -28.14 -28.42 -25.74 -28.23 -23.70 -23.54 -22.07 -23.09 
2 210 5x yσ = σ =           

0.5ρ =   -4.57 -6.51 28.64 -6.17 -5.90 -5.98 17.57 -6.44 

0.7ρ =  -11.29 -14.37 16.08 -13.92 -11.66 -12.90 6.69 -13.00 

0.9ρ =  -20.32 -28.09 -2.46 -28.19 -18.46 -22.97 -6.97 -22.91 
2 210 10x yσ = σ =           

0.5ρ =   -4.79 -6.49 8.54 -6.13 -6.06 -6.22 3.41 -6.34 

0.7ρ =  -13.27 -14.28 -2.57 -13.95 -13.27 -13.15 -6.00 -12.93 

0.9ρ =  -26.01 -28.06 -20.37 -28.21 -22.18 -23.17 -18.48 -22.89 
 

 
For the variable ,x  using the CGR estimator at low correlation = 0.5ρ  and with allocation (2,000, 

2,000, 1,000) leads to an efficiency gain that ranges from 0.27% to 4.79% at the four different variance 
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settings; this gain reflects the amount of lost information recovered by the CGR estimator. Substantial 
gain is achieved at = 0.7,ρ  ranging from 11.29% to 13.27%, and more so at = 0.9,ρ  ranging from 
20.32% to 28.14%. With sample allocation (1,500, 1,500, 2,000) the CGR estimator performs better at 

= 0.5,ρ  and = 0.7,ρ  but not at = 0.9.ρ  Additional gain is achieved by the COR estimator, which is 
more efficient than the CGR estimator in all but two settings (where the estimators are equally efficient, 
see column 7). The efficiency of the COR estimator relative to HT estimator is close to the nominal for 
SRS efficiency, which is 6.25, 13.92 and 28.12 at = 0.5,ρ  = 0.7,ρ  = 0.9,ρ  respectively, for allocation 
(2,000, 2,000, 1,000), and 6.417, 13.186 and 23.30 for allocation (1,500, 1,500, 2,000); see quantity E in 
Section 2, third last paragraph. As expected, the CGR estimator competes better with the COR estimator 
with increasing correlation and sample size. 

For the variable ,y  the CGR estimator is inferior to the HT estimator at correlation level = 0.5ρ  and 
in half of the simulated settings at = 0.7;ρ  see positive values in columns 4 and 8. This inefficiency of 
the CGR estimator ranges from 6.50% (at )= 0.7ρ  to 28.64% (at )= 0.5ρ  in the sample allocation 
(2,000, 2,000, 1,000), and reduces to 0.25% (at )= 0.7ρ  to 17.57% (at )= 0.5ρ  in the sample allocation 
(1,500, 1,500, 2,000). This is explained by the larger skewness of x  (the x  variable being used a 
auxiliary to y  in the regression procedure); the lower levels of inefficiency are observed at 2 = 10,yσ  
when the differential in skewness between x  and y  is the smallest. On the other hand, at correlation 

= 0.9ρ  and with allocation (2,000, 2,000, 1,000), the efficiency gain of the CGR estimator relative to the 
HT estimator ranges from 2.46% (when the skewness differential is the largest) to 25.74% (when the 
skewness differential is the smallest), with similar efficiency levels displayed for allocation (1,500, 1,500, 
2,000). The COR estimator is more efficient than the CGR estimator in all settings, the relative efficiency 
being close to the nominal one for SRS (same efficiency as with ) .x  For y  too, the CGR estimator 
competes better with COR estimator with increasing correlation and sample size. 

This limited empirical study, which essentially simulates the SRS version of Theorem ( )1 ’ ,a  confirms 
the theory on the efficiency of the optimal estimator COR, even for modest sample size, and shows the 
usefulness of the two composite estimators CGR and COR in partially recovering the information loss due 
to splitting the full questionnaire. It also shows that the practical CGR estimator is not always a good 
substitute of the COR estimator for small samples and low correlation between x  and .y  

 
7  Discussion 
 

The proposed estimation method for matrix sampling involves a single-step calibration of the weights 
of the combined sample. Estimates of totals for all variables can be obtained by using only the units of 
sample 3S  and their calibrated weights which incorporate all the available information from all three 
samples. These weights could be used to calculate other weighted statistics, including means, ratios, 
quantiles and regression coefficients. When the second-order inclusion probabilities are known, including 
cross-sample inclusion probabilities in the nested case, the calibration procedure of Section 2 can produce 
composite optimal regression estimators and their variances, but with great computational difficulty. For 
general sampling settings, the much simpler calibration scheme of Section 3 generates readily composite 
generalized regression estimators, which for certain sampling strategies are optimal regression estimators. 

Estimation of the variance of a CGR estimator may, in principle, be based on the method of Taylor 
linearization of the generalized regression estimator (see, e.g., Särndal et al. 1992, pages 235, 237). This 
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approach requires calculations that may not be practical, or even feasible for complex sampling designs 
because the second-order inclusion probabilities are rarely known. Replication methods for variance 
estimation, such as the jackknife method or the bootstrap method (see, for example, Rust and Rao 1996), 
can be applied to the CGR estimators of the previous sections. For example, the jackknife method, 
customarily used in surveys with stratified multistage sampling design, could be used to replicate the 
calibration procedures that give rise to the CGR estimators. For the non-nested design, this requires 
applying the jackknife method to the combined sample, with the three independent samples treated as 
sample superstrata containing the sample strata. The replication procedure would involve then the 
combined sample sorted by sample and by strata within each sample, to produce replicates of the 
calibrated weights defined in the previous sections. The total number of strata used in the jackknife 
replication procedure is the total number of strata in the three samples, with each replicate involving all 
strata. Public-use microfiles may include the replicate calibrated weights for easy variance estimation by 
users. For this purpose too, replicate weights for 3S  only need to be included, bringing about substantial 
economy of data storage in such microfiles. The case of nested design is more complicated. Further 
investigation in this direction will be a topic of separate study. 

The described estimation method may be readily adapted to matrix sampling designs with more than 
two subquestionnaires or more than three subsamples, making more evident the operational power of the 
calibration procedure. In each case, the crucial step is to determine the design matrix .X  In such designs 
there may be more complex patterns with respect to the number of subquestionnaires administered to the 
various subsamples. All composite estimates can then be obtained using the weighted variable values only 
from the minimum number of subsamples that in combination contain all items. 
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Appendix 
 

Proof of Lemma 1 
 

For the partitioned matrix ( )= , ,ΨX X  the vector ( ) ( )1= −′ ′+ −c w R R t wXX X X X  takes the 
form  

 
( )

( ) ( ) ( ) ( )

1

11 21 12 22

,

,

− ′′ ′ −  
= +    ′′ ′ −   

′ ′= + + − + + −

X

Ψ

Ψ

t X wR RΨ
c w R RΨ

t Ψ wΨ R Ψ RΨ

w R A RΨA t w R A RΨA t Ψ wX

X X X
X

X

X X X

  

where, from algebra of partitioned matrices, ( )[ ] ( )[ ]
11 1

11 = =
−− −′ ′ ′ ′ ′− − ΨA R RΨ Ψ RΨ Ψ R R I PX X X X X X  

with ( ) 1= ,−′ ′ΨP Ψ Ψ RΨ Ψ R  ( )[ ] 1
22 = −′ ′−A Ψ R I P ΨX  with ( ) 1= ,−′ ′P R RX X X X X  ( ) 1

12 = −′−A RX X  



Survey Methodology, June 2015 257 
 

 
Statistics Canada, Catalogue No. 12-001-X 

( )
22′RΨ AX  and ( ) ( )1

21 11= .−′ ′−A Ψ RΨ Ψ R AX  Then, equation (2.9) follows without difficulty. To prove 

equation (2.10), we set ( ) ( )1= ,−′ ′+ −Ψ Ψc w RΨ Ψ RΨ t Ψ w  so that 1( )( ) ( ) =−′ ′ ′−ΨRΨ Ψ RΨ t Ψ wX  

,′ ′−Ψc wX X  and use the alternative form ( ) ( ) ( ) ( ) ( )1 1 1
22 11= − − −′ ′ ′ ′ ′+A Ψ RΨ Ψ RΨ Ψ R A RΨ Ψ RΨX X  to 

write c  above without the second term as  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]( )

( ) ( ) ( ) ( )[ ]( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )[ ]( )
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1
22 22

1 1 1
11

1 1 1
11

1
11

1 1
11

1

Ψ Ψ

Ψ

Ψ

Ψ Ψ

Ψ

Ψ

w RΨA t Ψ w R R RΨ A t Ψ w

w RΨ Ψ RΨ RΨ Ψ RΨ Ψ R A RΨ Ψ RΨ t Ψ w

R R I RΨ Ψ RΨ Ψ R A RΨ Ψ RΨ t Ψ w

c RΨ Ψ RΨ Ψ R A c w

R R I RΨ Ψ RΨ Ψ R A c w

c RΨ Ψ RΨ Ψ R

−

− − −

− − −

−

− −

−

′ ′ ′ ′+ − − −

′ ′ ′ ′ ′ ′= + + −

′ ′ ′ ′ ′ ′ ′− + −

′ ′ ′ ′= + −

′ ′ ′ ′ ′ ′− + −

′ ′= +

X X X X

X X

X X X X X X

X X X

X X X X X X X

( ) ( )
( ) ( )[ ]( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )

11

1 1
11 11

1
11

1 .

Ψ

Ψ

Ψ Ψ

Ψ Ψ Ψ Ψ

A c w

R R I R A A c w

c RΨ Ψ RΨ Ψ R R A c w

c R I P R I P c w

− −

−

−

′ ′−

′ ′ ′ ′− + − −

′ ′ ′ ′= + − −

′ ′ ′= − − − −

X X X

X X X X X X X

X X X X

X X X X X

  

Adding to this the second term of c  from (2.9) gives (2.10), in the explicit form  

 ( ) ( )[ ] ( )1 .−′ ′+ − − −Ψ Ψ Ψ Ψc R I P R I P t cXX X X X   

 
Proof of Theorem 1 
 

( )a  Calibration with design matrix ( )= ,DZ X  and vector of totals ( )= , ,′′ ′t 0 NZ  with ( )= , ,′′ ′0 0 0  

( )1 2 3= , , ,′′ ′ ′N N N N  gives the vector of calibrated weights ( ) ( )1= ,−′ ′+ −c w Λ Λ t wZZ Z Z Z  

which by Lemma 1 is written as ( ) ( )1= ,−′ ′+ −D D D Dc c L L 0 cX X X X  where 
( ) ( )1= −′ ′+ −Dc w ΛD D ΛD N D w  and ( )= ,−D DL Λ I P  with ( ) 1= .−′ ′DP D D ΛD D Λ  For 

STRSRS with = ,ih ih ihf n N  ˆ= = ,′D w N N  and thus ( ) ( )1= .−′ ′+ −D Dc w L L 0 wX X X X  

Then, in view of (2.8), in order to show that ˆ ˆ= oB B  it suffices to show that 0= .DL Λ  For 
STRSRS it is easy to show that ( ){ }0 = diag ,ih ihλ − 1Λ I P  where ( ) ( )[ ]2= 1 1ih ih ih ih ihN f n nλ − −  

and ( ) 1= .ih ih ih ih ih
−′ ′1P 1 1 1 1  Next, observe that the matrix DP  is diagonal with thih  entry 

( ) 1 = ,ih ih ih ih ih ih ih
−′ ′ 11 1 Λ 1 1 Λ P  because the elements of ihΛ  are constant. Since this constant 

element is ( ) ( ) ( )[ ]= 1 1 = ,ik ik ih ih ih ih ih ihw q N n N f n− − λ  we get ( ){ }= diag =ih ih−D 1L Λ I P  
0 ,Λ  o.e.d. 

( )b  For Poisson sampling, ( ){ }0 2= diag 1 , = 1, , .i ihk ihk ih H− π πΛ 
 The proof follows immediately 

upon observing that with the specified constants ikq  in the entries of iΛ  we have 0= .i iΛ Λ  

( )’a  For simplicity drop the stratum subscript. Simple random subsampling is done sequentially with 
fixed sizes 1 2,n n  and 3 .n  It can be shown that the first-and-second order marginal inclusion 
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probabilities for iS  are =ik in Nπ  and ( ) ( )[ ]= 1 1 ,ikl i in n N Nπ − −  as if iS  was drawn directly 
from .U  A combinatorial argument shows that the conditional (given )S  second-order inclusion 
probability for iS  and jS  is ( )[ ]

| = 1ikjl S i jn n n nπ −  and thus the marginal inclusion probability is 
( )[ ]= 1 .ikjl i jn n N Nπ −  For = , = 0.ikjkk l π  Then ( )[ ]2= = 1kl ikjl ik jl i jn n N N∆ π − π π −  and 
2= .kk i jn n N∆ −  Thus 0,kl∆ ≈  for ,k l U∈  when the sampling fractions are small, and then 

{ }0 0diag .i≈Λ Λ  Optimality of the CGR then follows from Theorem 1 (a). 

( )’b  Randomly assigning the units of S  to three subsamples, with fixed expected subsample size, 
implies that inclusion of the units is done independently within and between the subsamples. Since 
in Poisson sampling the units of U  are also included in S  independently, = = 0kl ikjl ik jl∆ π − π π  

and = .kk ik jl∆ −π π  kk∆  is approximately zero for small sampling fractions, and then 

{ }0 0diag .i≈Λ Λ  Optimality of the CGR follows then from Theorem ( )1 .b  

 
Proof of Theorem 2 
 

We start with the expression of the CGR estimator. By Lemma 1, with partitioned design matrix 
( ), ZX  and = ,R Λ  the calibrated weight vector c  can be written as = +Z Zc c L X  

( ) ( )1 ,−′ ′−Z ZL 0 cX X X  where ( ) ( )1
( )= −′ ′+ −Z zc w ΛZ Z ΛZ t Z w  and ( )= .−Z ZL Λ I P  Then 

( ) ( )1GR
3 3 3 3 ( )

ˆ ˆ ˆ= = −′ ′ ′+ −Z zc ΛZ Z ΛZ t ZX X X X  and ( ) ( )1GR
( )

ˆ ˆ ˆ= .−′ ′+ −zΛZ Z ΛZ t ZX X X  It 

follows that the CGR estimator is given by GR GR
3 3

ˆ ˆˆ= ,′ −cX X BX  where ( )[ ]3
ˆ = ′ − ZΛ I PB X X  

( )[ ] 1 .−′ − ZΛ I PX X  
 

(a) Since { }= diag
iZ ZP P  and, for SRS, ( ){ }0 = diag ,i iλ − 1Λ I P  where ( ) ( )[ ]2= 1 1i i i iN f n nλ − −  

and ( ) 1= ,i i i i i
−′ ′1P 1 1 1 1  we have ( ) ( ) ( ){ }0 = diag .

ii i− λ − −Z 1 ZΛ I P I P I P  Now, by assumption 

= ,i i1 Z h  so that =
i

′ ′Z1 P 1  and hence ( ) = .
ii −1 ZP I P 0  It follows that ( )0 =− ZΛ I P  

( ){ }diag
iiλ − ZI P  and, since the matrices 

i
− ZI P  are idempotent, ( ) ( )0 =′− −Z ZI P Λ I P  

( ){ }diag .
iiλ − ZI P  But = ,i ik ikw qλ  where =ik iw N n  and ikq  are the specified constants in the 

entries of .iΛ  It follows that ( ) ( ) ( ){ } ( )0 = diag =
ii

′− − − −Z Z Z ZI P Λ I P Λ I P Λ I P  and thus 
ˆ ˆ= ,woB B  so that GR GR GR GR

3 3
ˆ ˆ ˆ ˆˆ ˆ= .wo− −X BX X B X  

(b) By Lemma 1, with the partitioned design matrix ( )= , ,Z DZ X  and vector of totals 

( )( )= , , ,′′ ′ ′zt 0 t NZ  the vector of calibrated weights ( ) ( )1= −′ ′+ −c w Λ Λ t wZZ Z Z Z  can be 

written as ( ) ( ) ( ) ( ) ( )
1

( )= , , , , , ,
−
 ′ ′ ′′ ′+ −   D D D z Dc c L Z Z L Z 0 t Z cX X X X  where = +Dc w  

( ) ( )1−′ ′−ΛD D ΛD N D w  and ( )= ,−D DL Λ I P  with ( ) 1= .−′ ′DP D D ΛD D Λ  But, as shown in the 

proof of Theorem 1(a), =Dc w  and 0= .DL Λ  Thus, ( ) ( ) ( )
1

0 0= , , ,
−

 ′+  c w Λ Z Z Λ ZX X X  

( ) ( )( ), , . ′ ′′ ′ − z0 t Z wX  Next, by applying again Lemma 1, now with 0=R Λ  and design matrix 

( ), ,ZX  we get ( ) ( )10 0= ,−′ ′+ −Z Z Z Zc c L L 0 cX X X X  where ( ) 10 0= −′+Zc w Λ Z Z Λ Z  
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( )( ) ′−zt Z w  and ( )0 0 0= .−Z ZL Λ I P  Then it follows that the CGR estimator is 

( ) 10 0 OR OR
3 3 3 3

ˆ ˆˆ= = ,o−′ ′ ′ ′ ′− −Z Z Z Zc c L L cX X X X X X X X B X  in obvious expressions for 
OR OR

3
ˆ ˆ,X X  and ˆ .oB  

(c) It was shown in the proof of Theorem 1 that 0= .Λ Λ  Clearly then it holds that GR OR
3 3

ˆ ˆ= ,X X  
GR ORˆ ˆ=X X  and ˆ ˆ= ,oB B  and thus GR GR OR OR

3 3
ˆ ˆ ˆ ˆˆ ˆ= .o− −X BX X B X  

 
Proof of Proposition 1 
 

All matrices appearing in this proof are defined at the population level. Partitioning the matrix X  in 
(4.4) as ( ), ,ΨZ  where Z  consists of the second and fourth columns, and Ψ  of the rest, and applying 
Lemma 1 with { }0= = ( ) ,kl k l k lπ − π π π πR Λ  we obtain the vector of calibrated weights decomposed as  

 ( ) [ ] ( ) [ ]1 10 0 0 0= ,− −′ ′ ′ ′+ − + −Ψ Ψc w L L 0 w L Ψ Ψ L Ψ 0 Ψ wZ ZZ Z Z Z   

where ( )0 0 0= −L Λ I PZ Z  with ( ) 10 0 0= .−′ ′P Λ ΛZ Z Z Z Z  The estimator ˆ BZ  in (4.2) is obtained as 3 ,−
′Z c  

where ( )3 3= , , .−
′′ ′ ′Z 0 0 Z  The last two terms of (4.2) are consolidated in the term 0

3−′Z L ΨZ  

( ) [ ]10 .−′ ′−Ψ L Ψ 0 Ψ wZ  These two terms vanish only if 0 0 0 0 1
3 3 3(= ( ) −− − −
′ ′ ′ ′−Z L Ψ Z Λ Ψ Z Λ ΛZ Z Z Z  

0 ) = .′Λ Ψ 0Z  First, we easily get ( )0 0 0
3 3 3 3 3 3 3= ,−
′ ′ ′Z Λ Ψ Z Λ X Z Λ Y  and ( )0 0

3 3 3 3= , ,−
′ ′Z Λ Z Λ Z I IZ  as well 

as  

 
0 0 0

0 1 1 1 3 3 3 3 3 3
0 0 0

3 3 3 2 2 2 3 3 3

= ,
′ ′ ′+ ′  ′ ′ ′+ 

Z Λ X Z Λ X Z Λ Y
Λ Ψ

Z Λ X Z Λ Y Z Λ Y
Z   

and  

 
0 0 0

0 1 1 1 3 3 3 3 3 3
0 0 0

3 3 3 2 2 2 3 3 3

= .
′ ′ ′+ ′  ′ ′ ′+ 

Z Λ Z Z Λ Z Z Λ Z
Λ

Z Λ Z Z Λ Z Z Λ Z
Z Z   

Next we write  

 ( )
1 1 1 1

10
1 1= = ,

− − − −
−

− −

′+ −  ′    ′ ′−   

A B A FE F FE
Λ

B D E F E
Z Z   

where 1= −′−E D B A B  and 1= .−F A B  It follows then that 0 0 1 1 1
3 ( ) = (− − −
−
′ ′ ′+ −Z Λ Λ BA BFE FZ Z Z  

( )1 1 1 1, ) = (( ) , ( ) ).− − − −′ ′− − −BE F B I F E D B E F B I F E  Using the analytic expressions 0
3 3 3= ,′B Z Λ Z  

0 0
2 2 2 3 3 3= ,′ ′+D Z Λ Z Z Λ Z  ( ) 10 0 0

1 1 1 3 3 3 3 3 3= −′ ′ ′+F Z Λ Z Z Λ Z Z Λ Z  and 0 0
2 2 2 1 1 1= ,′ ′+E Z Λ Z Z Λ Z F  we obtain 

after some algebra  
 ( ) ( ) ( )1 1 10 0 1 0 0

3 1 1 1 2 2 2= , ,− − −−
−

 ′ ′ ′ ′ Z Λ Λ K Z Λ Z Z Λ ZZ Z Z   

where ( ) ( ) ( )1 1 10 0 0
1 1 1 2 2 2 3 3 3= .− − −′ ′ ′+ +K Z Λ Z Z Λ Z Z Λ Z  We can now obtain without much difficulty  

 

( )

( ) ( )

( ) ( )

10 0 0 0 0
3 3 3

1 11 0 0 0 0
3 3 3 3 3 3 1 1 1 1 1 1

1 10 0 0 0
3 3 3 3 3 3 2 2 2 2 2 2

,

.

−

− − −

− −−

− −

′ ′ ′ ′ ′= −

 ′ ′ ′ ′= −

′ ′ ′ ′− 

Z L Ψ Z Λ Ψ Z Λ Λ Λ Ψ

K Z Λ Z Z Λ X Z Λ Z Z Λ X

Z Λ Z Z Λ Y Z Λ Z Z Λ Y

Z Z Z Z Z
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It follows that ( )0
3 = ,−
′Z L Ψ 0 0Z  only if ( ) ( )1 10 0 0 0

3 3 3 3 3 3 1 1 1 1 1 1=− −′ ′ ′ ′Z Λ Z Z Λ X Z Λ Z Z Λ X  and ( ) 10
3 3 3

−′Z Λ Z  

( ) 10 0 0
3 3 3 2 2 2 2 2 2= .−′ ′ ′Z Λ Y Z Λ Z Z Λ Y  But these two equations are identical to the equations in (4.6). Since all 

the matrices in ( ) 10 0
i i i i i i

−′ ′Z Λ Z Z Λ X  are defined at the population level, with the subscript = 1,3i  
indicating survey, this quantity is constant across surveys only if the design-specific matrix 0

iΛ  is 
constant, or if 0

iΛ  differs among surveys by a constant multiple (depending on the sample size). This 

holds true also for ( ) 10 0 ,i i i i i i
−′ ′Z Λ Z Z Λ Y  = 2,3.i  This completes the proof. 

 
Proof of Proposition 2 
 

Under the sampling scheme (a) of Theorem 1, composite calibration at population level with design 

matrix ( )= ,DZ X  and vector of totals ( )= , ′′ ′t 0 NZ  produces the joint CGR domain estimator of 

( ),d d
′′ ′x yt t  based on the weights of 3S  and written in the form ( )CGR

3 3
ˆ ˆ ˆˆ= ,d d d+ −t ZX X B Z  where 

( ) 1
3

ˆ = .d d
−′ ′Λ ΛB X Z Z Z  The associated matrix of regression residuals is 3

ˆ ,d d′−X ZB  alternatively 

written as ( ) 3 ,d−I PZ X  with 1= ( ) .−′ ′P Λ ΛZ Z Z Z Z  Then  ( ) ( )CGR
3 3

ˆAV =d d
′′ −I PZX X  

( )0
3 .d−Λ I PZ X  Next recall from the proof of Theorem 1 that ( )0 = ,− DΛ Λ I P  with 

( ) 1= ,−′ ′DP D D ΛD D Λ  and notice that =D HZ  for a suitable constant matrix .H  It is easy to verify that 

= .D DP P PZ  It follows then that ( ) ( )0 =− −Λ I P Λ I PZ Z  and ( ) ( ) ( )0 = .′− − −I P Λ I P Λ I PZ Z Z  Thus 
 ( ) ( )CGR

3 3 3
ˆAV = .d d d′ −Λ I PZX X X  Now, composite calibration at domain level involves the design 

matrix ( )= , ;d d DZ X  no need to restrict D  to the domain .dU  The resulting CGR estimator is 

( )CGR
3 3

ˆ ˆ=
dd d d d+ −t

 

ZX X B Z  where ( ) 1
3= .d d d d d

−′ ′Λ Λ


B X Z Z Z  As with CGR
3

ˆ
dX  above, it can be 

shown that  ( ) ( )CGR
3 3 3AV = ,

dd d d′ −Λ I P


ZX X X  where ( ) 1= .
d d d dd

−′ ′P Λ ΛZ Z Z Z Z  Then  ( )CGR
3

ˆAV d −X  
 ( ) ( )CGR

3 3 3AV = .
dd d d′ −Λ P P



Z ZX X X  Noticing that 3 3= ,d d d′ ′Λ ΛX Z X Z  we can write =PZ  

( ) 1 .d d
−′ ′Λ ΛZ Z Z Z  It is trivial then to show that ( ) ( ) 2= ,

d d
− −P P P PZ Z Z Z  and since the matrix Λ  is 

diagonal with positive entries, it follows that ( )3 3 >
dd d′ −Λ P P 0Z ZX X  and hence 

 ( )  ( )CGR CGR
3 3

ˆAV < AV .d d



X X  

Under the conditions of part ( ) ,b  0=Λ Λ  and the CGR domain estimator is identical to the COR 

domain estimator COR 0
3 3

ˆ ˆ ˆˆ= ,d d d−X X B X  where ( ) 10 0 0
3

ˆ = .d d
−′ ′Λ ΛB X X X X  The associated matrix 

of regression residuals is ( ) 3 ,d−I PX X  with ( ) 10 0= .−′ ′P Λ ΛX X X X X  Then  ( )COR
3

ˆAV =dX  

( ) ( ) ( )0 0
3 3 3 3= .d d d d

′′ ′− − −I P Λ I P Λ I PX X XX X X X  On the other hand, for the estimator 
COR 0

3 3
ˆ= ,d d d−

  

X X B X  where ( ) 10 0 0
3

ˆ =d d d d d
−′ ′Λ ΛB X X X X  we have  ( )COR 0

3 3AV =d d′ Λ


X X  

( ) 3 ,
d d−I PX X  with ( ) 10 0= .

d d d d d
−′ ′P Λ ΛX X X X X  Then  

COR COR 0
3 3 3

ˆAV( ) AV( ) = (
dd d d′− −Λ P



XX X X  

3) .dPX X  Notice that 0 0
3 3 3=d d d d′ ′Λ ΛX X X X  and since 0Λ  is diagonal 0 0

3 3 3= .d d d′ ′Λ ΛX X X X  It 

follows that ( ) ( )20 0
3 3 3 3=

d dd d d d′ ′− −Λ P P Λ P PX X X XX X X X  and hence  ( )  ( )COR COR
3 3

ˆAV < AV .d d



X X  

For parts ( )’a  and ( )’ ,b  the proof is the same as in ( )a  and ( ) ,b  in view of the proof of Theorem 1. 
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