
Survey Methodology 41-1

Catalogue no. 12-001-X 
ISSN 1492-0921

by Alina Matei and M. Giovanna Ranalli

Dealing with non-ignorable  
nonresponse in survey sampling:  
A latent modeling approach

Release date: June 29, 2015



Standard table symbols
The following symbols are used in Statistics Canada  
publications:

.	 not available for any reference period 

..	 not available for a specific reference period 

...	 not applicable 
0	 true zero or a value rounded to zero 
0s	 value rounded to 0 (zero) where there is a meaningful 
	 distinction between true zero and the value that was rounded 
p	 preliminary 
r	 revised 
x	 suppressed to meet the confidentiality requirements  
	 of the Statistics Act 
E	 use with caution 
F	 too unreliable to be published 
*	 significantly different from reference category (p < 0.05)

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website, 
www.statcan.gc.ca. 
 
You can also contact us by 
 
email at infostats@statcan.gc.ca 
 
telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following toll-free numbers: 

•• Statistical Information Service	 1-800-263-1136
•• National telecommunications device for the hearing impaired	 1-800-363-7629
•• Fax line	 1-877-287-4369

 
Depository Services Program 

•• Inquiries line	 1-800-635-7943
•• Fax line	 1-800-565-7757

Published by authority of the Minister responsible for Statistics Canada

© Minister of Industry, 2015

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

Note of appreciation
Canada owes the success of its statistical system to a 
long‑standing partnership between Statistics Canada, the  
citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information could not 
be produced without their continued co‑operation and goodwill.

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, 
reliable and courteous manner. To this end, Statistics Canada has 
developed standards of service that its employees observe. To 
obtain a copy of these service standards, please contact Statistics 
Canada toll-free at 1-800-263-1136. The service standards 
are also published on www.statcan.gc.ca under “About us” > 
“The agency” > “Providing services to Canadians.”

http://www.statcan.gc.ca
mailto:infostats%40statcan.gc.ca?subject=
http://www.statcan.gc.ca/eng/reference/licence-eng.htm
http://www.statcan.gc.ca/pub/12-001-x/2015001/article/14173-eng.htm
http://www.statcan.gc.ca/eng/about/service/standards


Survey Methodology, June 2015 145 
Vol. 41, No. 1, pp. 145-164 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Alina Matei, Institute of Statistics, University of Neuchâtel, Pierre à Mazel 7, 2000, Neuchâtel, Switzerland. E-mail: alina.matei@unine.ch and 

Institute of Pedagogical Research and Documentation Neuchâtel, Switzerland; M. Giovanna Ranalli, Dept. of Political Sciences, University of 
Perugia, Italy. E-mail: giovanna.ranalli@stat.unipg.it. 

 

Dealing with non-ignorable nonresponse in survey sampling: 
A latent modeling approach 

Alina Matei and M. Giovanna Ranalli1 

Abstract 

Nonresponse is present in almost all surveys and can severely bias estimates. It is usually distinguished 
between unit and item nonresponse. By noting that for a particular survey variable, we just have observed and 
unobserved values, in this work we exploit the connection between unit and item nonresponse. In particular, we 
assume that the factors that drive unit response are the same as those that drive item response on selected 
variables of interest. Response probabilities are then estimated using a latent covariate that measures the will to 
respond to the survey and that can explain a part of the unknown behavior of a unit to participate in the survey. 
This latent covariate is estimated using latent trait models. This approach is particularly relevant for sensitive 
items and, therefore, can handle non-ignorable nonresponse. Auxiliary information known for both respondents 
and nonrespondents can be included either in the latent variable model or in the response probability estimation 
process. The approach can also be used when auxiliary information is not available, and we focus here on this 
case. We propose an estimator using a reweighting system based on the previous latent covariate when no other 
observed auxiliary information is available. Results on its performance are encouraging from simulation studies 
on both real and simulated data. 

 
Key Words: Unit nonresponse; Item nonresponse; Latent trait models; Response propensity; Rasch models. 

 
 

1  Introduction 
 

Nonresponse is an increasingly common problem in surveys. It is a problem because it causes missing 
data and, more importantly, because such gaps are a potential source of bias for survey estimates. In the 
presence of unit nonresponse, it is often assumed that each unit in the population has an associated 
probability to respond to the survey. Such a response probability is unknown and several methods are 
proposed to estimate it either explicitly, using response propensity modeling like logistic regression 
models (see e.g., Kim and Kim 2007), or implicitly, using response homogeneity groups or more generally 
calibration (see Särndal and Lundström 2005, for an overview). Once estimates are computed, a 
commonly used method to deal with unit nonresponse is reweighting: sampling weights of the respondents 
are adjusted by the inverse of the estimated response probability providing new weights. Estimation of 
response probabilities typically requires the availability of auxiliary information, either in the form of the 
value of some auxiliary variables for all units in the originally selected sample or of their population mean 
or total. 

In this paper, we are particularly interested in the case where the missing data mechanism is non-
ignorable, because nonresponse depends on characteristics of interest that are either observed only on the 
respondents or are completely unobserved, which leads to data that are Not Missing At Random (NMAR). 
This is typical of, but not limited to, surveys with sensitive questions (concerning drug abuse, sexual 
attitudes, politics, income, etc). Various approaches are proposed in the survey sampling literature to deal 
with non-ignorable nonresponse. These approaches can be roughly divided into likelihood based methods 
and reweighting methods. Note that all of these methods make use of observed auxiliary information. 
Survey problems with non-ignorable nonrespondents are discussed e.g., in Greenlees, Reece and 
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Zieschang (1982), Little and Rubin (1987), Beaumont (2000), Qin, Leung and Shao (2002), Zhang (2002). 
Copas and Farewell (1998) introduce into the British National Survey of Sexual Attitudes and Lifestyles a 
variable called ‘enthusiasm-to-respond’ to the survey, which is expected to be related to probabilities of 
unit and item response. A method is proposed that estimates these probabilities using this variable to 
achieve unbiased estimates of population parameters. An approach based on the use of latent variables for 
modeling nonignorable nonresponse is given in Biemer and Link (2007), extending the ideas in Drew and 
Fuller (1980) and using a discrete latent variable based on call history data available for all sample units. 
The latent variable is computed using some indicators of level of effort based on call attempts. 

We propose here a method of reweighting to reduce nonresponse bias in the case of non-ignorable 
nonresponse. The method does not require the availability of auxiliary information, on the sample or 
population level, but different assumptions are made. First, it is assumed that item nonresponse is present 
in the survey and that it affects m  variables of particular interest. Thus a response indicator can be defined 
for each variable ,  for = 1, , ,m   taking value 1 if item   is observed on unit k  and 0 otherwise. 

Next, the response indicators are assumed to be manifestations of an underlying continuous scale which 
determines a latent variable that is related to the response propensity of the units and to the variable of 
interest. It is possible to compute such a latent variable for all units in the sample, not only for the 
respondents, and thus to use it as an auxiliary variable in a response probability estimation procedure. The 
outcome of this estimation procedure can finally be used in a reweighting fashion. 

The use of continuous latent variables to model item nonresponse is considered in Moustaki and Knott 
(2000). In this paper, we take a different perspective and use latent variable models to address non-
ignorable unit nonresponse. We propose to use a latent variable called here ‘will to respond to the survey’, 
which is expected to be related to the probability of unit response, similar to the case of the ‘enthusiasm-
to-respond’ variable as defined by Copas and Farewell (1998). Following Moustaki and Knott (2000), 
‘weighting through latent variable modeling is expected to perform well under non-ignorable nonresponse 
where conditioning on observed covariates only is not enough.’ Moreover, in the absence of any 
covariate, we expect that an estimator based on the proposed weighting system using latent variables will 
perform better in terms of bias reduction than the naive estimator computed on the set of respondents. 
Moustaki and Knott (2000) propose a reweighting system for item non-response using covariates and one 
or more latent variables. Our major contribution over the existing literature is to construct a weighting 
system to deal with unit and item non-response based only on latent variables and that can also be used in 
the absence of any other covariate. On the other hand, our approach is different to that of Copas and 
Farewell (1998), because they survey their ‘enthusiasm-to-respond’ variable on the respondents to 
quantify the interest in answering the survey and a set of covariates, while we infer it from the data. 

The paper is organized as follows. Section 2 introduces the survey framework and notation. Section 3 
illustrates estimation of response probabilities. Section 4 describes the latent trait model used to this end. 
The proposed estimator and its variance estimation are shown in Section 5. In Section 6, the empirical 
properties of the proposed estimator are evaluated via simulation studies. In Section 7 we summarize our 
conclusions. 

 

2  Framework 
 

Let U  be a finite population of size ,N  indexed by k  from 1 to .N  Let s  denote the set of sample 

labels, so that ,s U  drawn from the population using a probabilistic sampling design   .p s  The 
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sample size is denoted by .n  Let  
;

=k s s k
p s


   be the probability of including unit k  in the sample. 

It is assumed that > 0, = 1, , .k k N   Not all units selected in s  respond to the survey. Denote by 

r s  the set of respondents, and by \r s r  the set of nonrespondents. The response mechanism is 

given by the distribution  q r s  such that for every fixed s  we have 

      0,  for all  and = 1,  where = .
s

s s
s

q r s r q r s r r s


  


    

Under unit nonresponse we define the response indicator = 1kR  if unit k r  and 0  if .k r  Thus 

 = = 1 .kr k s R  We assume that these random variables are independent of one another and of the 

sample selection mechanism (Oh and Scheuren 1983). Since only the units in r  are observed, a response 
model is used to estimate the probability of responding to the survey of a unit ,k U  

   = = = 1 ,k kp P k r k s P R k s    which is a function of the sample and must be positive. 

Suppose that in the survey there are m  variables of particular interest. Each respondent is exposed to 
these m  questionnaire variables, labelled = 1, , .m   Suppose that the goal is to estimate the population 

total of some variables of interest and, in particular, of the variable of interest ,jy  i.e., 
=1

= ,
N

j kjk
Y y  

with kjy  being the value taken by jy  on unit .k  In the ideal case, if the response distribution  q r s  is 

known, then the ’skp  would be known and available to estimate jY  using a reweigthing approach. 

Suppose also that item nonresponse is present for variable .jy  Let  =  answers j jr k y k r  be the set 

of respondents for variable .jy  As in the case of unit nonresponse we assume that the units in jr  respond 

independently of each other. Let  =  answers .kj jq P k y k r  The final set of weights to be used into 

a fully reweighting approach to handle unit and item nonresponse is given by  1 ,k k kjp q  for all 

,jk r  assuming > 0.kjq  These weights can be for example used in a three-phase fashion in the 

following Horvitz-Thompson (HT) estimator  

 , ,true
ˆ = ,

j

kj
j pq

k r k k kj

y
Y

p q   (2.1) 

(see Legg and Fuller 2009, for the properties of estimators under three-phase sampling). 

Usually, kp  and kjq  are unknown and should be estimated. A nonresponse adjusted estimator is then 

constructed by replacing kp  and kjq  with estimates ˆ kp  and ˆkjq  in (2.1). The following sections provide 

details with this regard. 

 

3  Estimating response probabilities 
 

3.1  Using logistic regression to estimate kp  
 

Different methods to estimate kp  are proposed in the literature. All of these methods are based on the 

use of auxiliary information known on the population or sample level. In the case of non-ignorable 
nonresponse, the variable of interest is itself the cause (or one of the causes) of the response behavior, and 
a covariance between the former and the response probability is produced through a direct causal relation 
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(see Groves 2006). In such a case, the response probability kp  could be modeled for k s  using logistic 

regression as follows  

     0 1

1
= = 1 = ,

1 expk k kj
kj

p P R y
a a y  

 (3.1) 

or as follows  

     0 1

1
= = 1 , = ,

1 exp
z

z αk k kj k
kj k

p P R y
a a y    

 (3.2) 

where  1= , ,k k ktz z z   is a vector with the values taken by 1t   covariates on unit ,k  and 0 1, ,a a  

and α  are parameters. 

Nonresponse bias in the unadjusted respondent total of the variable of interest jy  depends on the 

covariance between the values kjy  and kp  (see Bethlehem 1988). An example of a covariate that reduces 

the covariance between kjy  and kp  is the interest in the survey topic, such as knowledge, attitudes, and 

behaviors related to the survey topic (see Groves, Couper, Presser, Singer, Tourangeau, Acosta and 
Nelson 2006). The set of covariates kz  could be also related to the variable of interest jy  to reduce 

sampling variance (Little and Vartivarian 2005). 

Since kjy  is only observed on respondents, Models (3.1) and (3.2) cannot be estimated. Therefore, 

usually, the values of kz  that are known for both respondents and nonrespondents and are related to the 

s’kjy  by a ‘hopefully strong regression’ (Cassel, Särndal and Wretman 1983) are used in the following 

model  

  
  0

1
= = 1 = .

1 exp
z

z αk k k
k

p P R
a   

 (3.3) 

Then, maximum likelihood can be used to fit Model (3.3) using the data  ,k kR z  for .k s  This leads to 

estimate 0â  and α̂  and to the estimated response probabilities    0 ˆ= 1 1 expˆ ˆk kp a    z α  to be 

used in (2.1). This procedure provides some protection against nonresponse bias if kz  is a powerful 

predictor of the response probability and/or of the variable of interest (Kim and Kim 2007). 

In what follows, we propose a reweighting adjustment system based on an auxiliary variable that 
measures the propensity of each unit to participate to the survey. To this end, further assumptions on the 
response model are introduced in order to assume a dependence of the ’skp  on one latent auxiliary 

variable that is connected to the propensity scores of Rosenbaum and Rubin (1983). The proposed 
approach can be used when no other auxiliary information is available on .k s  

 

3.2  Latent variables as auxiliary information 
 

To obtain a measure of response propensities, we consider the case in which item nonresponse on the 
variables of interest is also present. Then, following Chambers and Skinner (2003, page 278) ‘from a 
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theoretical perspective the difference between unit and item nonresponse is unnecessary. Unit 
nonresponse is just an extreme form of item nonresponse’, we assume that item response on the variables 
of interest is driven on respondents by the same attitude and factors that drive unit response. Latent 
variable models can be used to estimate such factors that, therefore, can be used as covariates in a logistic 
response model. 

As we have already mentioned we assume that item nonresponse affects m  survey variables of 
particular interest. A second response indicator is introduced for each item .  For each item   and each 
unit ,k  a binary variable kx   is defined that takes value 1 if unit k  answers to item   and 0 otherwise. 

Let  1= , , , ,k k k kmx x x x    denote the vector of response indicators for unit k  to the m  items and 

let  1= , , , ,k k k kmy y y y    be the study variable vector for unit .k  Thus ky   is the response value of 

unit k  to item   and kx   is its response indicator. 

Suppose the ’skx   are related to an assumed underlying latent continuous scale; they are the indicators 

of a latent variable denoted by .k  De Menezes and Bartholomew (1996) call the variable k  the 

‘tendency to respond’ to the survey. We call it here the ‘will to respond to the survey’ of unit .k  A latent 
trait model with a single latent variable is used to compute k  for each k s  (we will see later how; see 

Section 4.4). Assume for the moment that k  is known on all sample units and, as with usual auxiliary 

information, can be used as a covariate. In the absence of other covariates, Model (3.3) is rewritten as  

  
  0 1

1
= = 1 = .

1 expk k k
k

p P R 
     

 (3.4) 

Covariate k  can be viewed as a variable explaining the behavior related to the survey topic, and thus 

having good properties to reduce the covariance between kjy  and kp  and, therefore, nonresponse bias. If 

other suitable auxiliary information is available, it can be inserted in the model as supplementary 
covariates. Now, to estimate the parameters of Model (3.4), the value of k  has to be available for all 

units in the sample. The following sections provide details on how to obtain estimated values of k  for 

both respondents and nonrespondents. 

 
4  Computing response propensities using latent trait models 
 

The variable k  can be computed using a latent trait model. In general, latent variable models are 

multivariate regression models that link continuous or categorical responses to unobserved covariates. A 
latent trait model is essentially a factor analysis model for binary data (see Bartholomew, Steele, Moustaki 
and Galbraith 2002; Skrondal and Rabe-Hesketh 2007). 

We start by creating the matrix with elements   ; =1, , .k k s mx     Figure 4.1 shows a schematic of the 

indicators kx   for respondents and nonrespondents. Then, we assume that the factors that drive unit 

response are the same as those that drive item response on selected variables of interest. In other words, 
item nonresponse is assumed nonignorable. 
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Figure 4.1 Schematic representing variables kx   for the sets r  and r  

 
Let kq   be the probability of response of unit k  for item ,  for all = 1, , m   and .k r  As in the 

case of unit nonresponse, kq   is modelled as a function of the variable of interest using logistic regression 

as follows  

  
  0 1 2

1
= = 1 , , = 1 = ,

1 expk k k k k
k k

q P x y R
y


         

   

 (4.1) 

for = 1, , ,m   and ,k r  where 0 1,      and 2   are parameters. Since ky   is known only for units 

with = 1,  ,kx k r  Model (4.1) cannot be estimated. As in the case of unit nonresponse, we propose to 

estimate kq   as a function of an auxiliary variable related to the variable of interest, that is .k  Model 

(4.1) is rewritten  

  
  0 1

1
= = 1 , = 1 = ,

1 expk k k k
k

q P x R
      

 

 (4.2) 

for = 1, , ,m   and .k r  Model (4.2) is not an ordinary logistic regression model, because the ’sk  

are unobservable values taken by a latent variable. Latent trait models can be used in this case to estimate 
,  k kq   and the model parameters. Note that in the area of educational testing and psychological 

measurement, latent trait modelling is termed Item Response Theory. 

The Rasch model (Rasch 1960) is a first simple latent trait model that is well known in the 
psychometrical literature and used to analyze data from assessments to measure variables such as abilities 
and attitudes. It takes the following form  

 
  0 1

1
= for = 1, ,  and .

1 expk
k

q m k r
     



   (4.3) 

The parameters 0   are estimated for each item   and reflect the extremeness (easiness) of item :  

larger values correspond to a larger probability of a positive response at all points in the latent space. The 

units

units

items
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parameter 1  is known as the ‘discrimination’ parameter and can be fixed to some arbitrary value without 

affecting the likelihood as long as the scale of the individuals’ propensities is allowed to be free. In many 
situations the assumption that item discriminations are constant across items is too restrictive. The two-
parameter logistic (2PL) model generalizes the Rasch model by allowing the slopes to vary. Specifically, 
the 2PL model assumes the form given in Equation (4.2). The parameters 1   are now estimated for each 

item   and provide a measure of how much information an item provides about the latent variable .k  To 

achieve identifiability of Model (4.2), we can fix the value of one or more parameters 0   and 1   in the 

estimation process. Moran (1986) showed that in the 2PL model, all the parameters are identifiable under 
wide conditions, provided the number of items exceeds two, and all the slopes are assumed to be strictly 
positive. A further generalization to Model (4.2) is considered in the literature - the 3PL model - that 
includes another parameter, the guessing parameter, to model the probability that a subject with a latent 
variable tending to   responds to an item. Such an extension does not seem necessary in the context at 
hand and will not be considered further. 
 

4.1  Assumptions in latent trait models 
 

Latent trait models typically rely on the following assumptions. The first one is the so-called 
conditional independence assumption, which postulates that item responses are independent given the 
latent variable (i.e., the latent variable accounts for all association among the observed variables ).kx   

Consequently, given ,k  the conditional probability of kx  is  

    
=1

= .
m

k k k kP P x x 


  

Following Bartholomew et al. (2002, page 181) ‘the assumption of conditional independence can only be 
tested indirectly by checking whether the model fits the data. A latent variable model is accepted as a good 
fit when the latent variables account for most of the association among the observed responses.’ 

A second assumption of Models (4.2) and (4.3) is that of monotonicity: as the latent variable k  

increases, the probability of response to an item increases or stays the same across intervals of .k  In 

other words, for two values of ,k  say a  and ,b  and arbitrarily assuming that < ,a b  monotonicity 

implies that    = 1 = < = 1 =k k k kP x a P x b    for = 1, , .m   Larger values of k  are 

associated with a greater chance of a response to each item. 

Finally, the third, and possibly strongest, assumption of Models (4.2) and (4.3) is that of 
unidimensionality, implying that a single latent variable fully explains the willingness of unit k  to answer 
the questionnaire. All these basic assumptions imply that the dependence between the items kx   may be 

explained by the latent variable k  which represents the units’ willingness and that the probability that a 

unit k  responds to a given variable increases with .k  

 

4.2  Estimation of the model 
 

In what follows we focus on the two-parameter logistic (2PL) model given in (4.2). Let 

 0 1= ,  β     and  = , = 1, , .mβ β     Model (4.2) can be fitted using maximum likelihood or 

bayesian methods. We focus here on the former. Under the maximum likelihood approach, three major 
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methods - joint, conditional and marginal maximum likelihood - are developed. Here, we will concentrate 
on marginal maximum likelihood that can be applied to fit the 2PL model. This method is also used in the 
simulation studies of Section 6. It consists of maximizing the likelihood of the model after the k  are 

integrated out on the basis of a common distribution assumed on these parameters. In particular, it is 
assumed that k  is a random variable following a distribution with the density function   ;h   typically 

 0,1 .k N   It is also assumed that the response vectors kx  are independent of one another and the 

conditional independence assumption holds. 

For a set of rn  respondents having the response vectors , = 1, , ,k rk nx   the marginal likelihood can 

be expressed as  

    1
=1

; , , = ,
r

r

n

n k
k

L fβ x x x β   

where      = , ,k k k k kf g h d



  x β x β  

    
  
 

1 0 1

=1 =1 0 1

exp
, = 1 = ,

1 exp
kk

m m
x k kx

k k k k
k

x
g q q     

 
     x β    

 
   

  

and h  now denotes the density of the  0,1N  distribution. The method consists in maximizing the 

corresponding log-likelihood, given by  

     1
=1

log ; , , = log ,
r

r

n

n k
k

L fβ x x x β   

with respect to β  using, for example, the EM algorithm. Estimates of 0   and 1 , = 1, , m     are thus 

provided. Afterwards, k  is estimated using the empirical Bayes method by maximizing the posterior 

density  

  
   

 
   

,
= , ,k k k

k k k k k
k

g h
h g h

g

 
   

x β
x x β

x
  

with respect to k  and keeping item parameters and observations fixed. Estimates of kq   are obtained 

using Expression (4.2), where 0 1,    and k  are replaced with their estimates. 

 
4.3  Goodness-of-fit measures of the model 
 

Different goodness-of-fit measures are proposed in the literature to test whether the model given in 
(4.2) adequately fits the data (see e.g., Bartholomew et al. 2002). One uses two-way and three-way 
margins of the response items. Discrepancies between the expected  E  and observed  O  counts in 

these tables are measured using the statistic   2= .R O E E  Large values of R  for the second-order 

or third-order margins will identify sets of items for which the model does not fit well. Note that the 

residuals  2O E E  are not independent and they cannot be summed to give an overall test statistics 
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distributed as a chi-squared (see Bartholomew et al. 2002, page 186). Item fit indexes (Bond and Fox 
2007) can be used to this end as well. On the basis of estimated latent variables and item parameters, the 
expected response of a unit to an item can be computed. The similarity between the observed and expected 
responses to any item can be assessed through two fit mean-square statistics: the outlier-sensitive fit 
statistic (item outfit) and the information-weighted fit statistic (item infit). The estimate produced by the 
item outfit is relatively more affected by unexpected responses different from a person’s measure, i.e., it is 
more sensitive to unexpected observations by units on items that are relatively very easy or very hard for 
them to answer. The item infit has each observation weighted by the information and, on the other side, is 
relatively more affected by unexpected responses closer to a person’s measure, i.e., it is more sensitive to 
unexpected patterns of observations by units on items that are roughly targeted on them according to their 
latent variable value. The expected value for both statistics is one. For infit and outfit values greater/less 
than one indicate more/less variation between the observed and the predicted response patterns, a range of 
0.5 to 1.5 is generally acceptable (Bond and Fox 2007). 

In addition, point-measure correlations (Olsson, Drasgow and Dorans 1982) can be used to estimate 
the correlation between the latent variable and the single item response. Items for which such measures 
take negative or zero values should be removed from the analysis or may be evidence that the latent 
construct is not unidimensional. Unidimensionality can be tested by running a Principal Components 
Analysis (PCA) of the standardized residuals for the items (Wright 1996). In this way the first component 
(dimension) has already been removed, and it is possible to look at secondary dimensions, components or 
contrasts. Unidimensionality is supported by observing that the eigenvalue of the first PCA component in 
the correlation matrix of the residuals is small (usually less than 2.0). If not, the loadings on the first 
contrast indicate that there are contrasting patterns in the residuals. 

Finally, when items are used to form a scale, they need to have internal consistency. Cronbach alpha 
can be used to test whether items have the reliability property, i.e., if they all measure the same thing, then 
they should be correlated with one another. 
 
4.4  Estimation of kp  
 

Two solutions are shown here to estimate kp  using information from the latent trait model. The first 

solution uses logistic regression to estimate kp  for all ,k s  and a two-stage approach. 

 
Stage 1: First, an estimate ˆ

k  of k  is provided. To compute a value ˆ
k  for ,k r  we assume again 

that unit nonresponse is just an extreme form of item nonresponse. Thus, a nonrespondent does not answer 

any item   and thus = 0,kx   for all = 1, , .m   The computation of ˆ
k  for k r  is handled as 

follows: we add to the set r  a phantom respondent unit k  having kx   equal to 0, for all = 1, , .m   We 

denote this new set by  = .r r k   We estimate the parameters of Model (4.2) using all units ,k r   

and compute the values ˆ , .k k r    Model (4.2) allows the computation of ˆ
k  for all .k r   Unit k  has 

an estimated value 
ˆ .

k
  We assign to all units k r  an estimate ˆ

k  equal to 
ˆ .

k
  Thus, the same value of 

ˆ
k  is provided for all .k r  Using this method, each unit k s  has associated an estimate ˆ .k  This is 

the key feature for the estimation of the response probabilities kp  provided in the next stage.  
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Stage 2: We use the estimate ˆ ,k  for ,k s  provided in the first stage as a covariate in Model (3.4) 

instead of the unknown value of ;k  in particular  

     0 1

1ˆ= = 1 = , for all .
ˆ1 exp

k k k

k

p P R k s 
     

 (4.4) 

Model (4.4) provides estimates ˆ kp  of ,kp  for all .k s   
 

One of the Referees suggested the following solution to estimate .kp  Let 
=1

=
m

k kS x 
 be the raw 

score for unit ,k  i.e., the number of items unit k  has responded to: if ,k r  then = 0;  if ,kS k r  

then > 0.kS  Then kp  can be estimated by modelling  > 0 .k kP S   By the conditional independence 

assumption we have  

 

      
  

=1

=1

> 0 = 1 = 0 = 1 = 0

1 1 = 1 .

m

k k k k k k k

m

k k

p P S P S P x

P x

     

   







  

We have         = 1 = = 1 = 1 , = 1 = 0 = 1 ,k k k k k k k k k k kP x P R P x R P R P x       

= 0 ,k k kR p q   because  = 1 , = 0 = 0.k k kP x R  As a result, we obtain  

  
=1

= 1 1 , .
m

k k kp p q k r   


  

The estimated response probability ,  ˆ kp k r  is obtained as a solution to the polynomial equation  

  
=1

= 1 1 .ˆ ˆ ˆ
m

k k kp p q  


  

This solution, although very elegant, has two drawbacks. If m  is large, the above polynomial equation is 
difficult or even impossible to solve. If it possible to solve the polynomial equation for moderate ,m  the 

real solutions are not necessarily in (0, 1). This solution has not been considered here further. 

 
5  The proposed estimator and its variance estimation 
 

Recall that we have a variable of particular interest jy  and that item nonresponse is present for it. If 

we wish to estimate the population total jY  of ,jy  then a naive estimator that does not correct neither for 

unit nor for item nonresponse is given by  

 ,naive

1ˆ = .
j j

kj
j

k r k rk k

y
Y N

     (5.1) 

Reweighting item responders is also an approach to handle item nonresponse. Moustaki and Knott 
(2000) propose to weight item responders by the inverse of the fitted probability of item response ,ˆ kq   
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assuming > 0.ˆ kq   Therefore, a possible adjustment weight for item and unit nonresponse associated 

with unit jk r  is given by  1 .ˆ ˆk kjp q  We propose using the three-phase estimator adjusted for item and 

unit nonresponse via reweighting given by  

 ,
ˆ = ,

ˆ ˆ
j

kj
j pq

k r k k kj

y
Y

p q   (5.2) 

where ˆ kp  is provided by Model (4.4), and ˆkjq  by Model (4.2). Proposals that use imputation of kjy  

values for \ jk r r  to deal with item nonresponse are also considered but not reported for reasons of 

space. They are available from the Authors upon request. 

The properties of the proposed estimator (5.2) depend on the assumptions made about the unit and the 
item nonresponse mechanisms. In particular, Estimator (5.2) assumes a second phase of sampling with 
unknown response probabilities. If we ignore estimation of k  in Model (4.4), the results in Kim and Kim 

(2007) on design consistency of the two-phase estimator that uses estimated response probabilities hold 
here as well when considering maximum likelihood estimates for the parameters 0  and 1.  Again, 

ignoring estimation of the latent variable k  and using marginal maximum likelihood estimates for the 

parameters 0   and 1   in Model (4.2), estimator ,
ˆ

j pqY  will be consistent if the models for unit and item 

nonresponse probabilities are correctly specified. 

We can consider replication methods for variance estimation of the proposed estimator and combine 
proposals for two-phase sampling (Kim, Navarro and Fuller 2006) and for generalized calibration in the 
presence of nonresponse (Kott 2006). In particular, the replicate variance estimator can be written as  

    2

, ,
=1

ˆ ˆ ˆ= ,
L

l
r l j pq j pq

l

V c Y Y   

where  
,

ˆ l
j pqY  is the thl  version of ,

ˆ
j pqY  based on the observations included in the thl  replicate, L  is the 

number of replications, lc  is a factor associated with replicate l  determined by the replication method. 

The thl  replicate of ,
ˆ

j pqY  can be written as    
, 3

ˆ = ,
j

l l
j pq k kjk r

Y w y
  where  

3
l
kw  denotes the replicate weight 

for the thk  unit in the thl  replication. These replicate weights are computed using a two-step procedure. 

First, note that, if we ignore for the moment the presence of item nonresponse, the two-phase estimator 

, 2
ˆ = ,j p k kjk r

Y w y
  has weights  

    2 1 0 1
ˆ= 1 = ; , ,k k k k kw p w F      

with,     1 0 1 0 1
ˆ ˆ= 1 , ; , = 1 expk k k kw F           (see Equation (4.4)). Let 1 =ẑ  

1 1zk kk s
w

  be the first phase estimate of the total of variable 1z  defined as  1
ˆ= 1, .k k k kp  z  Then, 

parameters 0  and 1  are such that  

  1 0 1 1 1
ˆ ; , = .ˆz zk k k

k r

w F


    (5.3) 
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This procedure is equivalent to obtaining unweighted maximum likelihood estimates, but is convenient to 
set it as a non-linear generalized calibration problem. In this way, it is possible to use the approach in Kott 
(2006), combined with that in Kim et al. (2006), to obtain replicate weights using the following steps. 
 

Step 1: Compute the first phase estimate of the total of 1kz  with thl  observation deleted, i.e., 
   
1 1 1= ,ˆ l l

k kk s
w

z z  where  
1

l
kw  is the classical jackknife replication weight for unit k  in replication .l  

Compute the jackknife weights for the second phase sampling using  
1ˆ lz  as a benchmark. In particular, 

 
2
l
kw  are chosen to be      2 2 1 0 1 1

ˆ ; ,l l
k k k k kw w w F w     with 0  and 1  such that  

    
2 1 1= .ˆl l

k k
k r

w

 z z   

This procedure provides weights that are very similar to those considered in Kott (2006) and can be 
computed using existing software that handles generalized calibration. 

 

Item nonresponse is handled similarly by considering    3 2 0 1
ˆ= 1 = ; ,k k k kj k k j jw p q w F     

(compare Equation (4.3)). A major approximation here is to assume that, given ˆ ,k  parameters 0j  and 

1j  are estimated using a classical logistic model (instead of a 2PL model) and are such that  

  2 0 1 2 2
ˆ ; , = ,ˆ

j

k k j j k
k r

w F


   z z   

where 2 2 2=ˆ k kk r
w

z z  and  2
ˆ= 1, .

T

k k k kj kp q z  Another drawback is that auxiliary variables 2kz  

depend on j  and, therefore, different sets of weights have to be produced for the different variables of 

interest. 
 

Step 2: Third phase jackknife weights are obtained by first computing the second phase estimate of the 
total of 2kz  with unit l  removed by using weights coming from Step 1, i.e., 

   

2 2 2= .ˆ l l
k kk r

w
z z  Then, 

using  
2ˆ lz  as a benchmark,  

3
l
kw  are chosen to be      3 3 2 0 1 2

ˆ= ; ,l l
k k k k j j kw w w F w    with 0j  and 1j  

computed via  

    
3 2 2= .ˆ

j

l l
k k

k r

w

 z z   

 
6  Simulation studies 
 

We evaluate the performance of the estimator presented in Section 5 by means of a Monte Carlo 
simulation under two different settings. The first one uses a real data set as the population and considers 
variables of interest that are all binary, while the second one uses simulated population data with variables 
of interest that are continuous. Results from the first setting are presented in Section 6.1, while those from 
the second setting are presented in Section 6.2. 
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In both settings, simple random sampling without replacement is employed and the following 
estimators are considered: 
 

 HT = :kj kk s
y


  the Horvitz-Thompson estimator in the case of full response is computed 

as a benchmark in the absence of nonresponse.  

 ,naive
ˆ :jY  the naive estimator given in (5.1); no explicit action is taken to adjust for unit and item 

nonresponse. Note that for simple random sampling without replacement, it reduces to 

,naive
ˆ = ,

jj
j kj rk r

Y N y n
  where 

jrn  is the size of the set ,jr  and it is the same as the Horvitz-

Thompson estimator adjusted for unit nonresponse that assumes uniform response probabilities 
estimated by .

jrn n   

 ,
ˆ :j pqY  the three-phase estimator proposed in Section 5, Equation (5.2).  

 , , true
ˆ :j pqY  the three-phase estimator that uses the true values for the response probabilities kp  

and kjq  is also computed for comparison with ,
ˆ

j pqY  to understand the effect of estimating the 

response probabilities.  
 

The simulations are carried out in R version 2.15, using the R package ‘ltm’ (Rizopoulos 2006) to fit 
the latent trait models. The following performance measures are computed for each estimator, generically 
denoted below by Ŷ  where suffix j  is dropped for ease of notation (Y  denotes the population total): 
 

 the Monte Carlo Bias  

  sim
ˆB = ,E Y Y   

where  sim =1
ˆ ˆ ˆ= ,  

M

i ii
E Y Y M Y  is the value of the estimator Ŷ  at the thi  simulation run and M  is 

total number of simulation runs;  

 the Relative Bias  

 
B

RB = ;
Y

  

 the Monte Carlo Standard Deviation  

   2

sim
=1

1 ˆ ˆVAR = ;
1

M

i
i

Y E Y
M


    

 the Monte Carlo Mean Squared Error  

 2MSE = B VAR.   

 

6.1  Simulation setting 1 
 

We consider the Abortion data set formed by four binary variables extracted from the 1986 British 
Social Attitudes Survey and concerning the attitude towards abortion. The data is available in the R 
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package ‘ltm’ (Rizopoulos 2006). = 379N  individuals answered the following questions after being 

asked if the law should allow abortion under the circumstances presented under each item:  
 

1. The woman decides on her own that she does not wish to keep the baby.  

2. The couple agrees that they do not wish to have a child.  

3. The woman is not married and does not wish to marry the man.  

4. The couple cannot afford any more children.  
 

The variable of interest jy  is selected to be the second one  = 2j  with a total = 225jY  in the 

population. 

The data is analyzed by Bartholomew et al. (2002) as an example in which a latent variable can be 
found that measures the attitude towards abortion. At the population level, we compute the latent variable 
(denoted here by )a

k  using Model (4.2) on the   =1, , ; =1, ,4k k Ny      data. The correlation between the values 

ky   and a
k  is approximatively equal to 0.85, for = 1, , 4.   Afterwards, we have set ˆ= ,a

k k   for all 

= 1, , .k N  

At the population level, the unit response probabilities are generated using the following response 
model  

    2= 1 1 exp 0.7 0.2 ,k k k kp y        (6.1) 

with  0,1 ,k U   to simulate nonignorable nonresponse. The population mean of kp  is approximately 

0.74. 

To generate item response probabilities at the population level, the following model is used 

    = 1 1 exp ,   for = 1, , 4,k k kq b a y           (6.2) 

where = 3,b  for = 1, , 4,   while a   takes different values according to ;  in particular, 

1 2 31, = 0, = 0.5a a a   and 4 = 1.a  The nominal item nonresponse rate for the four items in the 

population is 35%, 42%, 47%, 31%, respectively. 

We draw = 10,000M  simple random samples without replacement from the population using two 
sample sizes: = 50n  and = 100.n  In each sample ,s  the units are classified as respondents according to 

Poisson sampling, using the probabilities kp  computed as in Equation (6.1) and resulting in the set .r  

Then, given ,r  the matrix   ; =1,...,4k k rx    is constructed where the values kx   are drawn using Poisson 

sampling with probabilities kq   defined in (6.2). In each simulation run, Model (4.2) and the respondents 

set r  are used to compute the variable ˆ
k  for all k s  as described in Section 4.4. Model (4.4) is fitted 

to obtain .ˆ kp  The average item nonresponse rate over simulations for the four items is found to be 26%, 

33%, 38% and 23%. The jackknife variance estimator was computed as described in Section 5 using the 
gencalib() function in R package ‘sampling’ (Tillé and Matei 2012) and the logistic distance (Deville, 
Särndal and Sautory 1993). 

Table 6.1 reports the results for = 50n  and = 100.n  As expected, HT  and , , true
ˆ

j pqY  have almost 

zero bias, with the second one showing a relatively larger MSE that is due uniquely to the smaller sample 
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size. The naive estimator shows a very large negative bias. This is due to the fact that units with a zero 
value of jy  are less likely to respond and the total is clearly underestimated. The estimator ,

ˆ
j pqY  shows a 

much smaller bias than the naive estimator. Note that the performance of the proposed estimator is mostly 
driven by absolute bias, so that the performance is not particularly different when increasing the sample 
size, apart from a decrease in variance. If we compare , , true

ˆ
j pqY  and ,

ˆ ,j pqY  we note that ,
ˆ

j pqY  still suffers 

from some bias that comes from response model misspecification (we are not accounting for the variables 
of interest values). 

For the proposed estimator, the jackknife variance estimator was also tested by looking at the empirical 

coverage of a 95% confidence interval computed for each replicate as ,
ˆ ˆ1.96 .j pq rY V  For = 50,n  the 

mean value of ˆ
rV  over simulations was 54.8, while for = 100,n  53.3, with a 95% coverage rate of 

94.6% and 96.3%, respectively. The replicate estimator overestimates the Monte Carlo standard deviation 
reported for ,

ˆ
j pqY  in Table 6.1 in both cases, but shows good coverage rates. 

 
Table 6.1 
Simulation results for setting 1 - Abortion data set 
 

Estimator   B  VAR   MSE  % RB 

= 50n      
HT    0.05  24.5  600.5  < 0.1  

,naive
ˆ

jY    -126.5  19.4  16,378.6  -56.2 

,
ˆ

j pqY    20.6  32.4  1,474.1  9.1 

, ,true
ˆ

j pqY    0.02  35.0  1,225.0  < 0.1  

= 100n      
HT    -0.06  16.0  255.5  < 0.1  

,naive
ˆ

jY    -126.9  13.5 16,284.1  -56.4 

,
ˆ

j pqY    17.9  21.9 802.2 8.0 

, ,true
ˆ

j pqY    -0.1  23.7  559.9 < 0.1  

 
To study the performance of the latent model on the population level and the correlation between the 

variable of interest and the estimated latent variable, we apply the procedure described earlier using kq   

defined in (6.2) to construct the matrix   =1, , ; =1,...,4k k Nx     for all population units. We fit Model (4.2) on 

the population level and compute the variable k  for all = 1, , .k N  The Cronbach’s alpha measure 

takes value 0.83 showing a good internal consistency of the items. The correlation coefficient between the 
variable of interest and the estimated latent variable takes value 0.76, indicating that the latent auxiliary 
information has a strong power of predicting 2 ,ky  as advocated in the model of Cassel et al. (1983). 

Inspection of the two-way margins for the matrix  kx   gives the residuals  2O E E  between 0.03 

and 0.23. Similarly, the three-way margins for the matrix  kx   give residuals between 0 and 1.19. This 

indicates that we have no reason to reject here the one-factor latent Model (4.2) (see Bartholomew et al. 
2002, page 186). 
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6.2  Simulation setting 2 
 

We generate  1 6, , ,k k ky y   for = 1, ,  = 2,000k N  using a multivariate normal distribution 

with mean 1. The degree of correlation between y   and y   is 0.8, with ,  = 1, , 6,  .       We set 

the variable of interest to be 6y  and consider different degrees of correlation between its values and those 

taken by ,k  namely 0.3, 0.5, 0.8. The values of k  are afterwards standardized to have mean 0 and 

variance 1. 

The response probabilities are obtained by first computing  

    1= 1 1 exp 0.5 ,   for = 1, , ,k k kp y k N       (6.3) 

and then rescaling them to take values between 0.1 and 0.9, with a population mean approximatively equal 
to 0.7. 

The item response probabilities are generated by first computing  

    = 1 1 exp ,   for = 1, ,  and = 1, , 6,k k kq b a y k N    
        (6.4) 

where    =1, ,6 = 1, 0, 0.5,1, 0, 0.5a      and    =1, ,6 = 1,1,1,1.5,1.5,1.5 ,b    and then rescaling the 

values to be between 0.1 and 0.95. 

We draw = 10,000M  samples by simple random sampling without replacement of size = 200.n  

For each sample ,s  a response set r  is created by carrying out Poisson sampling with parameter kp  

defined in (6.3). Each element of the matrix   , =1, ,6k k rx     is generated using Poisson sampling with 

parameter kq   defined in (6.4). Item nonresponse rates over simulations take approximately value 18%, 

28%, 35%, 19%, 29%, 34%, for = 1, , 6,   respectively. For each simulation run, Model (4.2) is used to 

compute the variable ˆ
k  for all .k s  Model (4.4) is then fitted to obtain .ˆ kp  

 

Table 6.2 
Simulation results for setting 2 - Simulated continuous data 
 

Estimator   B  VAR   MSE   RB% 
correlation coefficient 0.3     
HT    -0.7  131.6 17,331.2    -0.0 

,naive
ˆ

jY    825.6  177.1 713,039.3  41.0 

,
ˆ

j pqY    -227.4  188.0 87,033.0  -11.3 

, ,true
ˆ

j pqY    48.4  231.8 56,073.2 2.4 

correlation coefficient 0.5     
HT    0.1  135.0 18,220.5  0.0 

,naive
ˆ

jY    972.6  176.2 977,009.5 50.7 

,
ˆ

j pqY    -180.0  175.5 63,552.0 -9.4 

, ,true
ˆ

j pqY    74.8  212.7 50,844.0 3.9 

correlation coefficient 0.8     
HT   -0.1  134.1 17,992.0  -0.0 

,naive
ˆ

jY   1,154.6  168.1 1,361,388.1 57.7 

,
ˆ

j pqY   -184.8  164.4 61,173.0 -9.2 

, ,true
ˆ

j pqY   100.6  196.2 48,597.9  5.0 
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Table 6.2 reports on the performance of the estimators for the three values taken by the nominal 
correlation coefficient between 1ky  and : 0.3, 0.5k  and 0.8.  The proposed estimator is always able to 

reduce bias over the naive estimator, even when the correlation between the variable of interest and the 
latent variable gets smaller. The relative bias takes acceptable values in most cases. Bias deserves a closer 
look. The naive estimator in all cases largely overestimates the total. This is expected, because the values 

6, ,k k kp q   and 6ky  all go in the same direction. Therefore, in our respondents sample, we are more 

likely to find relative larger values for 6y  by this providing overestimation for the naive estimator. On the 

other hand, ,
ˆ

j pqY  underestimates the total because it is based only on the observed units of jr  that do have 

relatively large values for 6 ,y  but also relatively large values for kp  and 6kq  and, therefore, end up 

having a small weight. 

The matrix of population values   =1; ;2,000; =1, ,6k kx      is constructed in the same way as in Section 6.1 

to validate the assumptions behind the 2PL model. The Cronbach’s alpha takes approximately value 0.5 
for the correlation coefficient equal to 0.3, 0.6 for 0.5, and 0.7 for 0.8; the pairwise association between 
the six items reveals -p values smaller than 0.01. Inspection of the two-way and three-way margins of the 

matrix  kx   gives residuals  2O E E  that all take values smaller than 4. Therefore, the one factor 

latent model can be accepted and items all seem to be measuring the same latent trait. 

 
7  Discussion and conclusions 
 

We have proposed a reweighting system to compensate for non-ignorable nonresponse based on a 
latent auxiliary variable. This variable is computed for each unit in the sample using a latent model 
assuming the existence of item nonresponse and that the same latent structure is hidden behind item and 
unit nonresponse. Unit response probabilities are then estimated by a logistic model that uses as a 
covariate the latent trait extracted by the response patterns using a latent trait model. The proposed 
reweighting system is then used in a three-phase estimator to handle nonresponse, together with a 
replication method to estimate its uncertainty. The main goal is to reduce nonresponse bias in the 
estimation of the population total. The proposed estimator performs well in our simulation studies 
compared with the naive estimator, and the gain in efficiency is substantial in certain cases. Reductions in 
bias are also seen when the correlation between the latent trait and the variable of interest is modest. 

By design, the estimated latent variable ˆ
k  is related to the response indicators kjx  for the variable of 

interest ;jy  since nonresponse is assumed to be non-ignorable, kjy  and kjx  are related as well. If the 

following condition holds,  

 2 2
ˆ, ,

> 1,
j j j

y x x
     

where the correlation coefficients ˆ, ,
, > 0,

j j j
y x x

   then jy  and ̂  are positively correlated (see 

Langford, Schwertman and Owens 2001). Note that the minimum degree of correlation between the 
variable of interest and the latent variable capable of reducing the nonresponse bias was found to be 0.3 in 
simulation setting 2 (Section 6.2). Of course, bias reduction depends on model assumptions. If response 
indicators are not good predictors of unit response behavior, then model misspecification is present and, of 
course, reduction in bias may not be present and variance could be introduced in estimation. Nonetheless, 
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diagnostic tools from item response theory can be used to assess the goodness of fit of the latent trait 
model employed to estimate values for .k  

We have considered the case in which no auxiliary information is available at the sample or population 
level to reduce nonresponse bias. Observed covariates (if available) and the latent variable can be, 
however, used together in the estimation of response probabilities. Moreover, latent trait models can, 
themselves, be fitted with covariates. The introduction of covariates in these models should be carried out 
with increasing prudence on variance. 

The proposed estimator is a three-phase estimator using a reweighting system based on ˆ kp  and .ˆ kjq  It 

is known that small values of ˆ kp  and ˆkjq  may lead to unstable reweighted estimators because of large 

nonresponse weights. To overcome this problem, the propensity score method (e.g., Eltinge and Yansaneh 
1997) is often used in practice, providing a good solution against extreme weights adjustments. In order to 
apply this method in our framework, the respondents to jy  should be grouped in different classes given 

by the quantiles of  1 .ˆ ˆk kjp q  The final step is the calculation of a weight for each class. 

Final remarks concern the conditional independence assumption in latent trait models. In nonresponse 
literature, it is usual to use Poisson sampling to model unit response behavior by assuming that units in the 
set r  are selected with unknown response probabilities and that response is independent from unit to unit. 
The conditional independence assumption in the latent trait models is a similar condition applied to items. 
Both assumptions are strong, sometimes they are in doubt, yet they are necessary in the statistical 
inferential process. 

Different methods were developed in psychometric literature to relax the conditional independence 
assumption. We cite here the partial independence approach by Reardon and Raudenbush (2006), 
developed for the case where responses to earlier questions determine whether later questions are asked or 
not, and where the usual conditional independence assumption of standard models fails. This approach 
could be used in our framework for the case where kq   is defined as ( = 1 ,k kjP x x  for some 

 1, , , , )kj m j     instead of  = 1 ,  .k kP x k r   Another useful approach for cases where 

items are clustered is the latent trait hierarchical modeling. A random effect is introduced into a latent trait 
model to account for potential residual dependence due to the common sources of variation shared by 
clusters of items (see e.g., Scott and Ip 2002). Further research should be done to accommodate these 
approaches in the survey sampling framework. 
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