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Small area estimation under a Fay-Herriot model with 
preliminary testing for the presence of random area effects 

Isabel Molina, J.N.K. Rao and Gauri Sankar Datta1 

Abstract 

A popular area level model used for the estimation of small area means is the Fay-Herriot model. This model 
involves unobservable random effects for the areas apart from the (fixed) linear regression based on area level 
covariates. Empirical best linear unbiased predictors of small area means are obtained by estimating the area 
random effects, and they can be expressed as a weighted average of area-specific direct estimators and 
regression-synthetic estimators. In some cases the observed data do not support the inclusion of the area 
random effects in the model. Excluding these area effects leads to the regression-synthetic estimator, that is, a 
zero weight is attached to the direct estimator. A preliminary test estimator of a small area mean obtained after 
testing for the presence of area random effects is studied. On the other hand, empirical best linear unbiased 
predictors of small area means that always give non-zero weights to the direct estimators in all areas together 
with alternative estimators based on the preliminary test are also studied. The preliminary testing procedure is 
also used to define new mean squared error estimators of the point estimators of small area means. Results of a 
limited simulation study show that, for small number of areas, the preliminary testing procedure leads to mean 
squared error estimators with considerably smaller average absolute relative bias than the usual mean squared 
error estimators, especially when the variance of the area effects is small relative to the sampling variances. 

 
Key Words: Area level model; Empirical best linear unbiased predictor; Mean squared error; Preliminary testing; Small 

area estimation. 

 
 

1  Introduction 
 

A basic area-level model, called the Fay-Herriot (FH) model, is often used to obtain efficient 
estimators of area means when the sample sizes within areas are small. This model involves unobservable 
area random effects, and the empirical best linear unbiased predictor (EBLUP) of a small area mean is 
obtained by estimating the associated random effect. The EBLUP is a weighted combination of a direct 
area-specific estimator and a regression-synthetic estimator that uses all the data. An estimator of the 
mean squared error (MSE) of the EBLUP was obtained first by Prasad and Rao (1990) using a moment 
estimator of the random effects variance and later by Datta and Lahiri (2000) for the restricted maximum 
likelihood (REML) estimator of the variance. Rao (2003, Chapter 7) gives a detailed account of EBLUPs 
and their MSE estimators for the FH model. 

Sometimes the observed data do not support the inclusion of the area effects in the model. Excluding 
the area effects leads to the regression-synthetic estimator. Using this idea, Datta, Hall and Mandal (2011) 
proposed to do a preliminary test for the presence of the area random effects at a specified significance 
level, and then to define the small area estimator depending on the result of the test. If the null hypothesis 
of no area random effects is not rejected, the model without the area effects is considered to estimate the 
small area means, i.e., the regression-synthetic estimator is used. If the null hypothesis is rejected, the 
usual EBLUP under the FH model with area effects is used. Datta et al. (2011) remarked that the above 
preliminary test estimator (PTE) could lead to significant efficiency gains over the EBLUP, particularly 
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when the number of small areas is only modest in size. For preliminary testing, they considered a 
normality-based test as well as a bootstrap test that avoids the normality assumption. 

When the estimated area effects variance is zero, the EBLUP becomes automatically the regression-
synthetic estimator. However, the estimated MSE obtained by Prasad and Rao (1990) or Datta and Lahiri 
(2000) does not reduce to the estimated MSE of the regression-synthetic estimator. Thus, the usual MSE 
estimators are biased for small random effects variance. For this reason, we propose MSE estimators of 
the EBLUP based on the preliminary testing procedure. If the random effects variance is not significant 
according to the test, we consider the MSE estimator of the synthetic estimator. Otherwise, we consider 
the usual MSE estimators of the EBLUP. 

The EBLUP attaches zero weight to the direct estimates for all areas when the estimated area effects 
variance is zero. On the other hand, survey practitioners often prefer to attach a strictly positive weight to 
the direct estimates, because the latter make use of the available area-specific unit level data and also 
incorporate the sampling design. Li and Lahiri (2010) introduced an adjusted maximum likelihood (AML) 
estimator of the variance of random effects that is always positive and therefore leads to EBLUPs giving 
strictly positive weights to direct estimators. As we shall see, a price is paid in terms of bias when using 
the EBLUP based on the AML estimator. We propose here alternative small area estimators that always 
give a positive weight to the direct estimators but with a smaller bias. 

This paper studies empirically the properties of PTEs of small area means, in comparison with the 
usual EBLUPs and other proposed estimators. In particular, we study the choice of the significance level 
for the area estimates and for the MSE estimates based on the preliminary test (PT). EBLUPs based on the 
AML estimator of the random effects variance of Li and Lahiri (2010), which give non-zero weights to the 
direct estimators in all areas, are also studied and compared to PT versions of AML (PT-AML). Different 
MSE estimators of these PT-AML estimators are also studied with respect to relative bias. Based on 
simulation results, the EBLUPs and the associated MSE estimators that performed well are recommended. 
Finally, coverage and length of normality-based prediction intervals, obtained using the EBLUPs and the 
associated MSE estimators, are examined. 

The paper is organized as follows. Section 2 describes the FH model and the EBLUPs of small area 
means. Section 3 comments on MSE estimation. PTEs of small area means and MSE estimators based on 
the PT are introduced in Section 4. Section 5 describes small area estimators and associated MSE 
estimators under AML estimation of the area effects variance. Alternative estimators that also attach 
positive weights to direct estimators together with proposed MSE estimators are introduced in Section 6. 
Section 7 reports the results of the simulation study. Finally, Section 8 gives some concluding remarks. 

 
2  Estimation of small area means  
 

Consider a population partitioned into m  areas and let i  be the mean of the variable of interest for 

area , = 1, , .i i m  We assume that a sample is drawn independently from each area. Let iy  be a design-

unbiased direct estimator of i  obtained using survey data from the sampled area .i  Direct estimators are 

very inefficient for areas with small sample sizes. We study small area estimation under an area level 
model, in which the values of area level covariates are available for all areas. The basic model of this type 
is the Fay-Herriot model, introduced by Fay and Herriot (1979), to estimate per capita income for small 
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places in the United States. This model consists of two parts. The first part assumes that direct estimators, 
,iy  of small area means, ,i  are design unbiased, satisfying 

  
ind

= ,    0, ,    = 1, , .i i i i iy e e N D i m    (2.1) 

Here, the sampling variance  = Vari i iD y   is assumed to be known for all areas = 1, , .i m  In 

practice, the ’siD  are ascertained from external sources or by smoothing the estimated sampling variances 

using a generalized variance function method (Fay and Herriot 1979). 

In the second part, the Fay-Herriot model treats i  as random and assumes that a p- vector of area 

level covariates, ,x i  linearly related to ,i  is available for each area ,i  i.e., 

  
iid

= ,    0, ,    = 1, , ,i i i iv v N A i m x β   (2.2) 

where iv  is the random effect of area ,i  assumed to be independent of ie  and 0A   is the variance of 

the random effects. Observe that marginally, 

  
ind

, ,    = 1, , .i i iy N D A i m x β   (2.3) 

Letting    1 1= , , , = , ,m my y  y X x x   and  1= diag , , ,D mD D  model (2.3) may be 

expressed in matrix notation as   ,N Ay Xβ Σ  with   = ,Σ D I mA A  where Im  denotes the 

m m  identity matrix. If A  is known, the componentwise best linear unbiased predictor (BLUP) of 

 1= , ,θ m
   is given by 

              1
1= , , = ,mA A A A A A A   θ Xβ Σ y Xβ     (2.4) 

where 

 

      

   

11 1

1

1 1

=1 =1

m m

i i i i i i
i i

A A A

A D A D y

 


 

 

    
 
 

β X Σ X X Σ y

x x x



 (2.5) 

is the weighted least squares (WLS) estimator of .β  In practice, however, A  is not known. Substituting a 

consistent estimator Â  for A  in the BLUP (2.4), we get the EBLUP given by 

    1
1

ˆ ˆˆ ˆ ˆ ˆˆ= , , = ,m A    θ Xβ Σ y Xβ  (2.6) 

where  ˆ ˆ=β β A  and ˆˆ = .Σ D I mA  For the thi  area, the EBLUP of i  can be expressed as a convex 

linear combination of the regression-synthetic estimator ˆx βi  and the direct estimator ,iy  as 

     ˆ ˆ ˆ ˆ= 1 ,i i i i iB A B A y  x β  (2.7) 
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where the weight attached to the regression-synthetic estimator ˆx βi  is given by  ˆ ,iB A  where 
   = .i i iB A D A D  Observe that the weight increases with the sampling variance .iD  Thus, when 

the direct estimator is not reliable, i.e., iD  is large as compared with the total variance ˆ ,iA D  more 

weight is attached to the regression-synthetic estimator ˆ.x βi  On the other hand, when the direct estimator 

is efficient, iD  is small relative to ˆ ,iA D  and then more weight is given to the direct estimator .iy  

Several estimators of A  have been proposed in the literature including moment estimators without 
normality assumption, ML estimator and restricted (or residual) ML estimator (REML) estimator. The ML 

estimator of A  is  *
ML ML

ˆ ˆ= max 0, ,A A  where *
MLÂ  can be obtained by maximizing the profile likelihood 

function given by 

      1 2 1
= exp ,

2PL A c A A   
 

Σ y P y   

where c  denotes a generic constant and 

           11 1 1 1= .A A A A A
    P Σ Σ X X Σ X X Σ   

The REML estimator of A  is  *
RE RE

ˆ ˆ= max 0, ,A A  where *
REÂ  is obtained by maximizing the 

restricted/residual likelihood, given by 

        1 2 1 21
RE

1
= exp .

2
L A c A A A

     
 

X Σ X Σ y P y   

In this paper, we focus on the REML estimator REÂ  which is frequently used in practice, and we denote 

by  RE RE,1 RE,
ˆ ˆˆ = , ,θ m

   the EBLUP given in (2.6) obtained with RE
ˆ ˆ= .A A  

 
3  Mean squared error  
 

Note that the BLUP  
i A  of the small area mean i  is a linear function of .y  Hence, its MSE can be 

easily calculated and it is given by the sum of two terms: 

       
1 2MSE = ,i i iA g A g A    

where  
1ig A  is due to the estimation of the random area effect iv  and  

2ig A  is due to the estimation of 

the regression parameter ,β  with 

 
    
      

1

12 1
2

1 ,

.

i i i

i i i i

g A D B A

g A B A A


 

  x X Σ X x
  

However, the EBLUP ˆ
i  given in (2.7) is not linear in y  due to the estimation of the random effects 

variance .A  Using a moments estimator of ,A  Prasad and Rao (1990) obtained a second order correct 

approximation for the MSE of the EBLUP. Later, Datta and Lahiri (2000) and Das, Jiang and Rao (2004) 
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obtained second order correct MSE approximations under ML and REML estimation of .A  When using 
the REML estimator of ,A  their approximation to the MSE, for large ,m  is given by 

          1
RE, 1 2 3

ˆMSE = ,i i i ig A g A g A o m      (3.1) 

where 

    
 

 

 

RE2
3 RE

2

=1

2
=  and  = .i i m

i
i

i

V A
g A B A V A

A D
A D 


  

Note that as        1
1 2, = 1 , =i im g A O g A O m    and    1

3 = ,ig A O m   so  
1ig A  is the 

leading term in the MSE for large .m  However, for small  
1, iA g A  is approximately zero and then 

 
3ig A  might be the leading term for small .m  For example, taking only one covariate  = 1p  with 

constant values = 1ix  and constant sampling variances = , = 1, ,iD D i m  and letting = 0,A  we 

obtain    
1 20 = 0, 0 =i ig g D m  and  

3 0 = 2 ;ig D m  that is,  
3 0ig  is twice as large as  

2 0 .ig  

Datta and Lahiri (2000) obtained an estimator of the MSE of the EBLUP RE,
ˆ

i  given by 

        RE, 1 RE 2 RE 3 RE
ˆ ˆ ˆ ˆmse = 2 .i i i ig A g A g A    (3.2) 

The MSE estimator (3.2) is second-order unbiased in the sense that 

       1
RE, RE,

ˆ ˆmse = MSE .i iE o m      

In the case that = 0,A  the BLUP RE,i  of i  becomes the regression-synthetic estimator 

 
SYN,

ˆ = 0 .x βi i
   But surprisingly, the approximation to the MSE of the EBLUP given in (3.1) can be 

very different from the MSE of the synthetic estimator. Note that the latter is  

        
SYN, 2 2 3

ˆMSE = 0 < 0 0 ,i i i ig g g    

because  
3 0ig  is strictly positive even for = 0.A  In fact, in the simple example with only one covariate 

 1p   with constant values = 1ix  and constant sampling variances = , = 1, , ,iD D i m  we have 

   
SYN, 2

ˆMSE = 0 =i ig D m  whereas the approximation to the MSE of the EBLUP given in (3.1) with 

= 0A  gives      
RE, 2 3

ˆMSE 0 0 = 3 ,i i ig g D m    three times larger. It turns out that (3.1) is not a 

good approximation of the MSE of the EBLUP when = 0A  and, instead, we should use 

   
RE, 2

ˆMSE = 0 .i ig  Moreover, since for = 0A  this quantity does not depend on any unknown 

parameter, we can take it also as MSE estimator, i.e., we can take    
RE, 2

ˆmse = 0 .i ig  

In practice, the true value of A  is not known but we have the consistent estimator RE
ˆ .A  When 

RE
ˆ = 0,A  the EBLUP becomes the regression-synthetic estimator for all areas, that is 

  
RE, SYN,

ˆ ˆ= = 0 , = 1, , .i i i i m  x β    

In this case,  1 RE
ˆ = 0ig A  for all areas and the MSE estimator given in (3.2) reduces to 
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         RE, 2 3 2 SYN,
ˆ ˆmse = 0 2 0 > 0 = MSE , = 1, , .i i i i ig g g i m     

Thus, the MSE estimator given in (3.2) can be seriously overestimating the MSE for RE
ˆ = 0.A  To reduce 

the overestimation, we consider a modified MSE estimator of RE,
ˆ

i  given by 

  
     

2 RE
0 RE,

1 RE 2 RE 3 RE RE

ˆif = 0,ˆmse =
ˆ ˆ ˆ ˆ2 if > 0,

i
i

i i i

g A

g A g A g A A


 

 
 (3.3) 

where     11
2 2= 0 = , = 1, , .i i i ig g i m

 x X D X x   

In fact, for A  close to zero, it may happen that 2ig  is closer to the true MSE than the full MSE 

estimator  RE,
ˆmse ,i  but the question of when is A  close enough to zero arises. This question motivates 

the use of a preliminary testing procedure of = 0A  to define alternative MSE estimators of the EBLUP 

in Section 4. 

 
4  Preliminary test estimators  
 

The estimator of A  used in the EBLUP of i  introduces uncertainty, which might not be negligible for 

small .m  Indeed, the term 3ig  in the MSE estimator (3.2) arises due to the estimation of .A  However, 

when the value of A  is small enough relative to the sampling variances, this uncertainty could be avoided 
by using the regression-synthetic estimator  0x βi   instead of the EBLUP. Datta et al. (2011) proposed a 

small area estimator based on a preliminary testing procedure of 0 : = 0H A  against 1 : > 0.H A  When 

0H  is not rejected, the regression-synthetic estimator is taken as the estimator of ;i  otherwise, the usual 

EBLUP is used. They proposed the test statistic 

    1
PT PT

ˆ ˆ= ,T  y Xβ D y Xβ   

where   11 1
PT

ˆ =β X D X X D y
    is the WLS estimator of β  obtained assuming that 0 : = 0H A  is true. 

The test statistic T  is distributed as 2
m pX   with m p  degrees of freedom under 0 .H  Then, for a 

specified significance level ,  the PTE of θ  defined by Datta et al. (2011) is given by 

  
2

PT ,

PT PT,1 PT, 2
RE ,

ˆ if ;
ˆ ˆˆ = , , =

ˆ if > ,

m p

m

m p

T X

T X

 

 

  


Xβ
θ

θ
   

where 2
,m pX    is the upper - point of 2 .m pX   The PTE is especially designed to handle cases with a 

modest number of small areas, say 15.m    

Here we propose to use the PT procedure for the estimation of MSE of the EBLUP, by considering 
only the MSE of the synthetic estimator 2ig  whenever the null hypothesis is not rejected and the full MSE 

estimate otherwise. But observe that the test statistic T  in the PT procedure does not depend on the 

estimator of .A  This means that, even when 0H  is rejected, it may happen that RE
ˆ = 0.A  Thus, here we 

define the PT estimator of the MSE of the EBLUP RE,
ˆ

i  as 
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  
     

2
2 , RE

PT RE, 2
1 RE 2 RE 3 RE , RE

ˆif or = 0,
ˆmse =

ˆ ˆ ˆ ˆ2 if > and > 0.

i m p

i

i i i m p

g T X A

g A g A g A T X A

 

 

 
 

 (4.1) 

 
5  Adjusted maximum likelihood 
 

The estimation methods for A  described in Section 2 might produce zero estimates. In this case, the 
EBLUPs will give zero weight to the direct estimators in all areas, regardless of the efficiency of the direct 
estimator in each area. On the other hand, survey sampling practitioners often prefer to give always a 
strictly positive weight to direct estimators because they are based on the area-specific unit level data for 
the variable of interest without the assumption of any regression model. For this situation, Li and Lahiri 
(2010) proposed the AML estimator that delivers a strictly positive estimator of .A  This estimator, 

denoted here AML
ˆ ,A  is obtained by maximizing the adjusted likelihood defined as 

   
AML = .PL A A L A  

The EBLUP given in (2.6) with AML
ˆ ˆ=A A  will be denoted hereafter as  AML AML,1 AML,

ˆ ˆˆ = , , .θ m
   

Note that AMLθ̂  assigns strictly positive weights to direct estimators. 

Li and Lahiri (2010) proposed a second order unbiased MSE estimator of AML,
ˆ

i  given by  

 
       

   
AML, 1 AML 2 AML 3 AML

2
AML AML AML

ˆ ˆ ˆ ˆmse 2

ˆ ˆ ,

i i i i

i

g A g A g A

B A b A

   


 (5.1) 

where  
AMLb A  is the bias of AMLÂ  and it is given by 

 
    

  

1

AML 2

trace 2
= .

trace

A A A
b A

A





 P Σ

Σ
 

 
6  Combined estimators 
 

The strictly positive AML estimator of A  has typically a larger bias than ML or REML estimators for 
A  small relative to the ’s.iD  Thus, if we still wish to obtain a small area estimator that attaches a strictly 

positive weight to the direct estimator, to reduce the mentioned bias it will be better to use the AML 
estimator only when strictly necessary; that is, either when data does not provide enough evidence against 

= 0A  or when the resulting REML estimator of A  is zero. This section introduces two small area 
estimators of θ  that give a strictly positive weight to the direct estimator, which are obtained as a 

combination of the EBLUP based on the AML method and the EBLUP based on REML estimation. 

In the first combined proposal, the AML method is used to estimate A  when the preliminary test does 
not reject the null hypothesis and in the second combined proposal, when the REML estimate is non 
positive. Specifically, the first combined estimator, called hereafter PT-AML, is defined by 
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2

AML , RE

PTAML 2
RE , RE

ˆ ˆif or = 0,
ˆ =

ˆ ˆif > and > 0.

m p

m p

T X A

T X A

 

 





θ
θ

θ
 (6.1) 

The second combined estimator, called REML-AML, is given by 

 AML RE
REAML

RE RE

ˆ ˆif = 0,ˆ =
ˆ ˆif > 0,

A

A





θ
θ

θ
 (6.2) 

see Rubin-Bleuer and Yu (2013). For the estimation of MSE of REAML
ˆ ,θ  these authors proposed 

    
 

AML, RE
REAML,

RE, RE

ˆ ˆmse if = 0,ˆmse =
ˆ ˆmse if > 0.

i
i

i

A

A

  


 (6.3) 

Using  AML ,
ˆmse i  when RE

ˆ = 0A  leads to substantial overestimation if the true value of A  is small 

because AML,
ˆ

i  will be closer to the regression-synthetic estimator. Hence, we propose the alternative 

MSE estimator 

  
 

2 RE
0 REAML,

RE, RE

ˆif = 0,
ˆmse =

ˆ ˆmse if > 0.

i
i

i

g A

A

 


 (6.4) 

Again, since for small  RE,
ˆ, mse iA   might still be overestimating the true MSE of REAML,

ˆ ,i  we consider 

also the following PT estimator 

    

2
2 , RE

PT REAML, 2
RE, , RE

ˆif or = 0,
ˆmse =

ˆ ˆmse if > and > 0.

i m p

i

i m p

g T X A

T X A

 

 

 


 (6.5) 

 
7  Simulation experiments 
 

A simulation study was designed with the following purposes in mind: 
 

(a) To study the properties, in terms of bias and MSE, of the PT estimators as   varies for fixed A  
and as A  varies for fixed .  We would like to see which values of   are adequate for a 
given .A  

(b) To compare the PTEs with the EBLUPs based on REML and with the EBLUPs based on AML.  

(c) To study the performance of the proposed MSE estimators in terms of relative bias and also in 
terms of coverage and length of prediction intervals. 

(d) To compare the three introduced small area estimators that give strictly positive weight to the 
direct estimator for all areas, namely EBLUP based on AML, PT-AML and REML-AML 
estimators. 

 

To accomplish the above goals, data were generated from the Fay-Herriot model given by (2.1)-(2.2) 
with a constant mean, that is, with = 1, =βp   and = 1, = 1, , .x i i m  We let = 0  without loss of 
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generality, number of areas = 15m  and = 1, = 1, , .iD i m  The simulation study was repeated for 

increasing values of the model variance,  0.01, 0.02, 0.05, 0.1, 0.2,1 ,A   and also for six significance 

levels of the test of 0 : = 0H A  against 0 : > 0,H A  namely  = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 .  For each 

combination of A  and ,  the following steps were performed for each simulation run = 1, , L   with 
= 10,000L  runs: 

1. Generate data from the assumed model with constant zero mean; i.e., 

 
       

         

ind

ind

,    0, ,

,    0, ,    = 1, , .

i i i

i i i i i

v v N A

y e e N D i m

 

  

  

    




  

2. Calculate the following estimators of :θ  the EBLUP based on REML estimation of 
 

RE
ˆ, ,θA   

the PT estimate 
 

PT
ˆ ,θ   the EBLUP based on AML estimation of 

 

AML
ˆ, ,θA   the combined PT-

AML estimate 
 

PTAMLθ̂   and the REML-AML estimate 
 

REAML
ˆ .θ   

3. For each area = 1, , ,i m  calculate: the three estimates of the MSE of the EBLUP RE,
ˆ

i  given 

in (3.2), (3.3) and (4.1), denoted respectively by        RE , 0 RE ,
ˆ ˆmse , msei i    and 

   PT RE ,
ˆmse ,i  and the three estimates (6.3), (6.4) and (6.5) of the MSE of the combined small 

area estimator REAML,
ˆ ,i  denoted        REAML, 0 REAML,

ˆ ˆmse , msei i    and    PT REAML,
ˆmse i  

respectively. 

4. For each area = 1, , ,i m  obtain the normality-based 1    prediction intervals for the small 

area mean i  based on the three considered MSE estimators of the EBLUP: 

 

       

       

       

RE, 2 RE,

0, RE, 2 0 RE,

PT, RE, 2 PT RE,

ˆ ˆCI mse ,

ˆ ˆCI mse ,

ˆ ˆCI mse ,

i i i

i i i

i i i

Z

Z

Z







  

  

  

  

  

  







  

where 2Z   is the upper 2 - point of a standard normal distribution.  

5. Repeat Steps 1-4 for = 1, , ,L   for = 10,000.L  Then, for each small area estimator 

 RE , PT , AML, PTAML, REAML,
ˆ ˆ ˆ ˆ ˆ ˆ, , , , , = 1, , ,i i i i i i i m         compute its empirical bias and MSE 

as 

               2

=1 =1

1 1ˆ ˆ ˆ ˆ= ,    MSE = .
L L

i i i i i iB
L L

           

 

  

Then obtain the average over areas of absolute biases and MSEs as  

        
=1 =1

1 1ˆ ˆˆ ˆAB = ,    AMSE = MSE .
m m

i i
i i

B
m m

  θ θ   
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6. Calculate the relative bias of each MSE estimator,  ˆmse ,i  as follows 

           
=1

1ˆ ˆ ˆ ˆRB mse = mse MSE MSE .
L

i i i iL

 
     

 
 


  

Calculate the average over areas of the absolute relative biases as 

      
=1

1 ˆˆARB mse = RB mse .
m

i
im

θ   

7. For each type of prediction interval       CI = , ,i i iL U    for 
        0, PT,CI CI , CI , CIi i i i     given 

in Step 4, calculate the empirical coverage rate (CR) and the average length (AL) as 

 
    

      
=1

# CI 1
CR(CI ) = ,    AL CI = .

L
i i

i i i iU L
L L

 


 
 



  

Finally, average over areas the coverage rates and average lengths, as 

        
=1 =1

1 1
CR CI = CR CI ,    AL CI = AL CI .

m m

i i
i im m    

 
Figures 7.1 and 7.2 plot the average MSEs of the PTEs for each  0.05, 0.1, 0.2 ,A   together with the 

average MSE of the EBLUPs based on REML and AML, against the significance level .  Note that when 
A  is small, for large   the PT procedure is rejecting 0H  more often and therefore the PTE becomes 

more often the usual EBLUP, whereas for small   the PT procedure rejects 0H  less often and the 

regression-synthetic estimator is then more often used. In contrast, for a large value of ,A  the PTE 

becomes the EBLUP more frequently regardless of .  The absolute biases of the estimators are not shown 
here because they are roughly the same for all the PTEs across   values. The reason for this is that when 

the model holds, both components of the PTE, the synthetic estimator and the EBLUP, are unbiased for 
the target parameter. Note that the synthetic estimator is unbiased even when > 0.A  The first conclusion 
arising from Figures 7.1 and 7.2 is that the MSE of the PTE is practically constant across 0.1.   See 
also that the average MSE of the PTE for a given   increases with A  because the PTE reduces to the 
EBLUP more often as A  increases and the MSE of the EBLUP increases with .A  Observe also that the 
PTE and the EBLUP based on REML perform very similarly for 0.2.   However, for < 0.2,  the 

PTE becomes more efficient than the EBLUP as soon as A  moves close to the null hypothesis 
 < 0.1 ,A  which agrees with the remark of Datta et al. (2011). 

Turning to the EBLUP based on AML, Figures 7.1 and 7.2 show that its average MSE is significantly 
larger than that of the other two estimators, but the differences with the other ones decrease as A  
increases. This is due to bias of the AML estimator of A  for small .A  We shall study later the combined 

small area estimators PT-AML and REML-AML, which use the EBLUP based on AML only when null 
hypothesis is not rejected or when the realized estimate of A  is zero. 
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Figure 7.1 Average MSEs of PTE, EBLUP based on REML and EBLUP based on AML against ,  for a) 

= 0.05A  and b) = 0.1.A  

 
 

Datta et al. (2011, page 366) recommended 0.2   for the PTE. Moreover, the literature on PT 
estimation for fixed effects models suggests that a good choice of   in terms of bias and MSE is 

= 0.2  (Bancroft 1944; Han and Bancroft 1968). But the above results suggest that for 0.2,   the 

PTE is practically the same as the EBLUP and therefore one might choose to always use the EBLUP. 
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Figure 7.2 Average MSEs of PTE, EBLUP based on REML and EBLUP based on AML against ,  for 
= 0.2.A  

 

Now we study the properties of the PT for MSE estimation in terms of .  Figure 7.3 plots the average 
absolute relative bias of the MSE estimators  PT RE ,

ˆmse i  labelled PT, against the significance level ,  

for each value  0.05, 0.1, 0.2,1 .A   When   is taken very small < 0.1,  the null hypothesis 

0 : = 0H A  is less often rejected and  PT RE ,
ˆmse i  becomes often 2 ,ig  which leads to underestimation. 

For   large  > 0.2 ,  the null hypothesis is more often rejected and  PT RE ,
ˆmse i  becomes the usual 

MSE estimator of the EBLUP, which severely overestimates the true MSE for small .A  The value 
= 0.2  appears to be a good compromise choice, with an average absolute relative bias around 10% for 

0.1A   and 20% for = 0.05.A  

 

 

 

 

 

 

 

 

 

 
 
Figure 7.3 Average over areas of absolute relative biases of the MSE estimator  PT RE,

ˆmse ,i  labelled PT, 

for  0.05, 0.1, 0.2, 1A   against significance level .  
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The above results suggest that = 0.2  is a good choice when using the PT procedure to estimate the 

MSE of the usual EBLUP. This has been more thoroughly studied by looking at the (signed) relative 
biases of  PT RE ,

ˆmse i  for each area. These results are plotted in Figures 7.4 and 7.5 with four plots, one 

for each value of  0.05, 0.1, 0.2,1 .A   The figures appearing in the legends of these plots are the 

significance levels   for the PT MSE estimator  PT RE ,
ˆmse .i  These plots confirm our previous 

observations: the MSE estimator based on the PT,  PT RE ,
ˆmse ,i  underestimates  RE ,

ˆMSE i  for small 

  and overestimates for large .  It turns out that  PT RE ,
ˆmse i  with = 0.2  is a good candidate for all 

values of .A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.4 Relative biases of  PT RE,

ˆmse ,i  for each significance level  0.05, 0.1, 0.2, 0.3, 0.4, 0.5 ,   

against area ,i  for a) = 0.05A  and b) = 0.1.A  
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Figure 7.5 Relative biases of  PT RE,

ˆmse ,i  for each significance level  0.05, 0.1, 0.2, 0.3, 0.4, 0.5 ,   

against area ,i  for a) = 0.2A  and b) = 1.A  

 
Let us now compare  PT RE ,

ˆmse i  for the selected significance level = 0.2  with the other two 

MSE estimators  0 RE ,
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ˆmse i  for all considered values of A  except for = 1,A  where the differences 
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usual MSE estimator,  RE ,

ˆmse ,i  can be severely biased for small ,A  with an average absolute relative 
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bias over 50% for < 0.2A  and exponentially growing as A  tends to zero. The conclusion is that, when 

0H  is not rejected, even if the realized estimate of A  is positive, it seems better to omit the 3ig  term in 

the MSE estimator and consider only 2 .ig  
 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.6 Average over areas of absolute relative biases of MSE estimators  PT RE,
ˆmse i  with = 0.2,  

labelled PT,  RE,
ˆmse i  labelled REML and  0 RE,

ˆmse i  labelled REML0, against .A  

 

We now turn to the small area estimators that attach strictly positive weight to the direct estimator for 

all areas: EBLUP based on AML, AML
ˆ ,θ  and the two combined estimators, PT-AML given in (6.1), and 

REML-AML given in (6.2). Average MSEs are plotted in Figure 7.7 for these three estimators. In this 

plot, AMLθ̂  seems to be a little less efficient, followed by PT-AML. The combined estimator REML-AML 

seems to perform slightly better than its two counterparts for small ,A  although for 0.2A   the PT-

AML estimator is very close to it. For MSE estimation, we focus on REML-AML because of its better 
performance. 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.7 Average over areas of MSEs of PT-AML estimator with = 0.2,  EBLUP based on AML and 

REML-AML estimator against .A  
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For the combined estimator REML-AML, Figure 7.8 shows that the MSE estimator based on the PT, 

 PT REAML ,
ˆmse ,i  which uses only 2ig  whenever RE

ˆ = 0A  or the null hypothesis is not rejected, has 

average absolute relative bias less than 10% for 0.1A   and it is smaller than the corresponding values 
for  REAML,

ˆmse i  and  0 REAML ,
ˆmse ,i  especially for 0.4.A   

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.8 Average over areas of absolute relative biases of the MSE estimators  REAML,
ˆmse ,i  

 0 REAML,
ˆmse i  and  PT REAML,

ˆmse ,i  labelled respectively REML-AML, REML-AML0 and 

PT, against .A  

 
Finally, we analyze the average over areas of coverage rates and average lengths of normality-based 

prediction intervals for the small area mean i  using the EBLUP based on REML as point estimate and 

the three different MSE estimators of the EBLUP, namely    RE , 0 RE ,
ˆ ˆmse , msei i   and  PT RE ,

ˆmse .i  

Figure 7.9 shows the coverage rates of these three types of intervals, where the MSE estimators based on 
the PT procedure were obtained taking = 0.2, 0.3.  It seems that the good relative bias properties of the 

MSE estimator based on the PT,  PT RE ,
ˆmse ,i  for small A  cannot be extrapolated to coverage based on 

normal prediction intervals, showing undercoverage especially for = 0.2.A  In this case, taking a larger 
significance level = 0.3  reduces a little the undercoverage of the prediction intervals obtained using 

 PT RE ,
ˆmse .i  Still, the coverage rates of  0 RE ,

ˆmse i  are better for all values of .A  As expected, the 

usual MSE estimator  RE ,
ˆmse i  provides overcoverage for small values of ,A  which is due to the severe 

overestimation of the MSE. On the other hand, the intervals showing undercoverage also lead to shorter 
prediction intervals as shown by Figure 7.10. 

It is worthwhile to mention that the construction of prediction intervals for i  based on the Fay-

Herriot model with accurate coverage rates is not an obvious task. Several papers have appeared in the 
literature for this problem. For example, Chatterjee, Lahiri and Li (2008) proposed prediction intervals 
with second order correct coverage rate using only the 1ig  term as MSE estimate and applying a bootstrap 

procedure to find the calibrated quantiles. Diao, Smith, Datta, Maiti and Opsomer (2014) have recently 
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obtained prediction intervals with second order correct coverage rate avoiding the use of resampling 
procedures and using the full MSE estimator. Obtaining prediction intervals with accurate coverage using 
other MSE estimates is still a challenge and it is out of scope of this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 Average over areas of coverage rates of normality-based prediction intervals for i  using the 

MSE estimators    RE, 0 RE,
ˆ ˆmse , msei i   and  PT RE,

ˆmse i  with = 0.2, 0.3,  labelled 

respectively REML, REML0 and PT, against .A  

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.10 Average over areas of average lengths of normality-based intervals for i  using the MSE 

estimators    RE, 0 RE,
ˆ ˆmse , msei i   and  PT RE,

ˆmse i  with = 0.2, 0.3,  labelled respectively 

REML, REML0 and PT, against .A  
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This simulation study described above was repeated for several patterns of unequal sampling variances 
.iD  Although results are not reported here, conclusions are very similar as long as the variance pattern is 

not extremely uneven. 

 
8  Conclusions  
 

The following major conclusions may be drawn from the results of our simulation study on the 
estimation of small area means, based on the Fay-Herriot area-level model when the number of areas is 
modest in size  say = 15 :m  1) Under the Fay-Herriot model with a value of random effects variance, 

,A  clearly away from zero, the PTE does not seem to noticeably improve efficiency relative to the usual 
EBLUP unless the significance level is taken small ( 0.1   in our simulation study). 2) Our simulation 

results indicate that using the PT procedure with a moderate ,  in particular = 0.2,  to estimate the 

MSE of the usual EBLUP leads to a reduction in bias as compared with the usual MSE estimator. Hence, 
we recommend the use of  PT RE ,

ˆmse ,i  given by (4.1), to estimate the MSE of the EBLUP. 3) Among 

the estimators that attach a strictly positive weight to the direct estimator for all areas, we recommend the 
combined estimator REML-AML given by (6.2), because it achieves slightly higher efficiency than the 
EBLUP based on AML and the PT-AML given by (6.1). 4) For estimating the MSE of the recommended 
REML-AML estimator, the estimator  PT REAML,

ˆmse i  given by (6.5) performs better than the alternative 

ones. 5) Our results on prediction intervals, based on normal theory, indicate that the good performance of 
the proposed MSE estimators may not translate to coverage properties of these intervals. Construction of 
prediction intervals that lead to accurate coverages, using the proposed MSE estimates, appears to be a 
difficult task. 

Smooth alternatives to the preliminary test estimates in the case of location parameters have been 
proposed in the literature using weighted means of the estimates obtained under the null and alternative 
hypotheses, with weights depending on the test statistic, see e.g., Saleh (2006). Mean squared error 
estimates of this kind have not been studied and we leave this subject for further research. 
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