4. Anticipated variance

Piero Demetrio Falorsi and Paolo Righi

Previous | Next

Prior to sampling, the y r k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhada WgaaWcbaGaamOCaiaadUgaaeqaaaaa@3BBF@  values are not known and the variance expressed in formula (3.4) cannot be used for planning the sampling precision at the design phase. In practice, it is necessary to either obtain some proxy values or predict the y r k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhada WgaaWcbaGaamOCaiaadUgaaeqaaaaa@3BBF@  values based on superpopulation models that exploit auxiliary information. The increasing availability of auxiliary information (deriving by integration of administrative registers and survey frames) facilitates the use of predictions. Under a model-based inference, the y r k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhada WgaaWcbaGaamOCaiaadUgaaeqaaaaa@3BBF@  values are assumed to be the realization of a superpopulation model M . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eaca GGUaaaaa@3A32@  The model we study has the following form:

{ y rk = f r ( x k ; β r )+ u rk E M ( u rk )=0   k;  E M ( u rk 2 )= σ rk 2 ;  E M ( u rk , u rl )=0   kl   ,(4.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaaba qbaeaabkqaaaqaaiaadMhadaWgaaWcbaGaamOCaiaadUgaaeqaaOGa eyypa0JaamOzamaaBaaaleaacaWGYbaabeaakmaabmqabaGaaCiEam aaBaaaleaacaWGRbaabeaakiaacUdacaWHYoWaaSbaaSqaaiaadkha aeqaaaGccaGLOaGaayzkaaGaey4kaSIaamyDamaaBaaaleaacaWGYb Gaam4AaaqabaaakeaacaWGfbWaaSbaaSqaaiaad2eaaeqaaOWaaeWa beaacaWG1bWaaSbaaSqaaiaadkhacaWGRbaabeaaaOGaayjkaiaawM caaiabg2da9iaaicdacaqGGaGaaeiiaiabgcGiIiaabccacaWGRbGa ai4oaiaabccacaWGfbWaaSbaaSqaaiaad2eaaeqaaOWaaeWabeaaca WG1bWaa0baaSqaaiaadkhacaWGRbaabaGaaGOmaaaaaOGaayjkaiaa wMcaaiabg2da9iabeo8aZnaaDaaaleaacaWGYbGaam4Aaaqaaiaaik daaaGccaGG7aGaaeiiaiaadweadaWgaaWcbaGaamytaaqabaGcdaqa deqaaiaadwhadaWgaaWcbaGaamOCaiaadUgaaeqaaOGaaiilaiaadw hadaWgaaWcbaGaamOCaiaadYgaaeqaaaGccaGLOaGaayzkaaGaeyyp a0JaaGimaiaabccacaqGGaGaeyiaIiIaaeiiaiaadUgacqGHGjsUca WGSbaaaaGaay5EaaGaaeiiaiaabccacaGGSaGaaGzbVlaaywW7caaM f8UaaiikaiaaisdacaGGUaGaaGymaiaacMcaaaa@8353@

where x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahIhada WgaaWcbaGaam4Aaaqabaaaaa@3ACB@  is a vector of predictors (available in the sampling frame), β r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahk7ada WgaaWcbaGaamOCaaqabaaaaa@3B0F@  is a vector of regression coefficients and f r ( x k ; β r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgada WgaaWcbaGaamOCaaqabaGcdaqadeqaaiaahIhadaWgaaWcbaGaam4A aaqabaGccaGG7aGaaCOSdmaaBaaaleaacaWGYbaabeaaaOGaayjkai aawMcaaaaa@41A1@  is a known function, u r k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhada WgaaWcbaGaamOCaiaadUgaaeqaaaaa@3BBB@  is the error term and E M ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweada WgaaWcbaGaamytaaqabaGcdaqadeqaaiabgwSixdGaayjkaiaawMca aaaa@3E54@  denotes the expectation under the model. The parameters β r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahk7ada WgaaWcbaGaamOCaaqabaaaaa@3B0F@  and the variances σ r k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGYbGaam4Aaaqaaiaaikdaaaaaaa@3D41@  are assumed to be known, although in practice they are usually estimated. The model (4.1) is variable-specific and different models for different variables may be used and this does not create additional difficulty. As a measure of uncertainty, we consider the Anticipated Variance (AV) (Isaki and Fuller 1982):

AV ( t ^ ( d r ) ) = E M E p ( t ^ ( d r ) t ( d r ) ) 2 . ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGwbWaaeWabeaaceWG0bGbaKaadaWgaaWcbaWaaeWabeaacaWGKbGa amOCaaGaayjkaiaawMcaaaqabaaakiaawIcacaGLPaaacqGH9aqpca WGfbWaaSbaaSqaaiaad2eaaeqaaOGaamyramaaBaaaleaacaWGWbaa beaakmaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGaamizai aadkhaaiaawIcacaGLPaaaaeqaaOGaeyOeI0IaamiDamaaBaaaleaa daqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaaabeaaaOGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaakiaac6cacaaMf8UaaGzbVlaa ywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaikdacaGGPaaaaa@5DF3@

A general expression for the AV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGwbaaaa@3A4B@  under linear models was derived by Nedyalkova and Tillé (2008). Their formulation is obtained by considering a linear function f r ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgada WgaaWcbaGaamOCaaqabaGcdaqadeqaaiabgwSixdGaayjkaiaawMca aaaa@3E9A@  and a unique set of auxiliary variables, x k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahIhada WgaaWcbaGaam4AaaqabaGccaGGSaaaaa@3B85@  used for both the prediction of the y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhaaa a@39AB@ values and for balancing the sample. In our context, we have introduced x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahIhada WgaaWcbaGaam4Aaaqabaaaaa@3ACB@  and z k = π k δ k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahQhada WgaaWcbaGaam4AaaqabaGccqGH9aqpcqaHapaCdaWgaaWcbaGaam4A aaqabaGccaWH0oWaaSbaaSqaaiaadUgaaeqaaOGaaiilaaaa@41D6@  highlighting that the auxiliary variables can be different for prediction and balancing. The variables x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahIhada WgaaWcbaGaam4Aaaqabaaaaa@3ACB@  must be as predictive of y r k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhada WgaaWcbaGaamOCaiaadUgaaeqaaaaa@3BBF@  as possible, while the variables z k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahQhada WgaaWcbaGaam4Aaaqabaaaaa@3ACD@  play an instrumental role in controlling the sample sizes for sub-populations.

In the context considered here, inserting the approximate variance (3.4) in the equation (4.2), we obtain the approximate expression of the AV : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGwbGaaiOoaaaa@3B09@

AAV ( t ^ ( d r ) ) = [ N / ( N H ) ] k U ( 1 / π k 1 ) E M ( η ( d r ) k 2 ) , ( 4.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGbbGaaeOvamaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaey ypa0ZaamWabeaadaWcgaqaaiaad6eaaeaadaqadeqaaiaad6eacqGH sislcaWGibaacaGLOaGaayzkaaaaaaGaay5waiaaw2faamaaqababa WaaeWabeaadaWcgaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaGaam4A aaqabaGccqGHsislcaaIXaaaaaGaayjkaiaawMcaaiaadweadaWgaa WcbaGaamytaaqabaGcdaqadeqaaiabeE7aOnaaDaaaleaadaqadeqa aiaadsgacaWGYbaacaGLOaGaayzkaaGaam4Aaaqaaiaaikdaaaaaki aawIcacaGLPaaaaSqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHris5 aOGaaiilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaais dacaGGUaGaaG4maiaacMcaaaa@6BAC@

where the terms η ( d r ) k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeE7aOn aaDaaaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaGaam4A aaqaaiaaikdaaaaaaa@3F9D@  in (3.4) are replaced by E M ( η ( d r ) k 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweada WgaaWcbaGaamytaaqabaGcdaqadeqaaiabeE7aOnaaDaaaleaadaqa deqaaiaadsgacaWGYbaacaGLOaGaayzkaaGaam4Aaaqaaiaaikdaaa aakiaawIcacaGLPaaacaGGUaaaaa@43B5@  By defining

y ˜ r k = f r ( x k ; β r ) , ( 4.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga acamaaBaaaleaacaWGYbGaam4AaaqabaGccqGH9aqpcaWGMbWaaSba aSqaaiaadkhaaeqaaOWaaeWabeaacaWH4bWaaSbaaSqaaiaadUgaae qaaOGaai4oaiaahk7adaWgaaWcbaGaamOCaaqabaaakiaawIcacaGL PaaacaGGSaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG inaiaac6cacaaI0aGaaiykaaaa@51CD@

the equation (4.3) may be reformulated as

AAV ( t ^ ( d r ) ) = [ N / ( N H ) ] [ k U 1 π k ( y ˜ r k 2 + σ r k 2 ) γ d k k U ( y ˜ r k 2 + σ r k 2 ) γ d k AAV 3 ( d r ) ] , ( 4.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGbbGaaeOvamaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaey ypa0ZaamWabeaadaWcgaqaaiaad6eaaeaadaqadeqaaiaad6eacqGH sislcaWGibaacaGLOaGaayzkaaaaaaGaay5waiaaw2faamaadmaaba WaaabeaeaadaWcaaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaGaam4A aaqabaaaaOWaaeWabeaaceWG5bGbaGaadaqhaaWcbaGaamOCaiaadU gaaeaacaaIYaaaaOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadkhacaWG RbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabeo7aNnaaBaaaleaaca WGKbGaam4AaaqabaGccqGHsisldaaeqaqaamaabmqabaGabmyEayaa iaWaa0baaSqaaiaadkhacaWGRbaabaGaaGOmaaaakiabgUcaRiabeo 8aZnaaDaaaleaacaWGYbGaam4AaaqaaiaaikdaaaaakiaawIcacaGL PaaacqaHZoWzdaWgaaWcbaGaamizaiaadUgaaeqaaOGaeyOeI0Iaae yqaiaabgeacaqGwbWaaSbaaSqaaiaaiodadaqadeqaaiaadsgacaWG YbaacaGLOaGaayzkaaaabeaaaeaacaWGRbGaeyicI4Saamyvaaqab0 GaeyyeIuoaaSqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHris5aaGc caGLBbGaayzxaaGaaiilaiaaywW7caGGOaGaaGinaiaac6cacaaI1a Gaaiykaaaa@84DB@

where the third variance component of AAV ( t ^ ( d r ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGbbGaaeOvamaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaaaaa@4142@  is

AAV 3 ( d r ) = k U ( 1 π k ) a ( d r ) k ( π ) [ 2 y ˜ r k γ d k π k a ( d r ) k ( π ) ] + k U ( 1 π k ) [ 2 b ( d r ) k ( π ) π k c ( d r ) k ( π ) ] ( 4.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabaqGcm aaaeaacaqGbbGaaeyqaiaabAfadaWgaaWcbaGaaG4mamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGcbaGaeyypa0dabaWaaa beaeaadaqadeqaaiaaigdacqGHsislcqaHapaCdaWgaaWcbaGaam4A aaqabaaakiaawIcacaGLPaaacaWGHbaaleaacaWGRbGaeyicI4Saam yvaaqab0GaeyyeIuoakmaaBaaaleaadaqadeqaaiaadsgacaWGYbaa caGLOaGaayzkaaGaam4AaaqabaGcdaqadeqaaiaahc8aaiaawIcaca GLPaaadaWadeqaaiaaikdaceWG5bGbaGaadaWgaaWcbaGaamOCaiaa dUgaaeqaaOGaeq4SdC2aaSbaaSqaaiaadsgacaWGRbaabeaakiabgk HiTiabec8aWnaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaWa aeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaiaadUgaaeqaaOWaae WabeaacaWHapaacaGLOaGaayzkaaaacaGLBbGaayzxaaaabaaabaGa ey4kaScabaWaaabeaeaadaqadeqaaiaaigdacqGHsislcqaHapaCda WgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaSqaaiaadUgacqGH iiIZcaWGvbaabeqdcqGHris5aOWaamWaaeaacaaIYaGaamOyamaaBa aaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaGaam4Aaaqa baGcdaqadeqaaiaahc8aaiaawIcacaGLPaaacqGHsislcqaHapaCda WgaaWcbaGaam4AaaqabaGccaWGJbWaaSbaaSqaamaabmqabaGaamiz aiaadkhaaiaawIcacaGLPaaacaWGRbaabeaakmaabmqabaGaaCiWda GaayjkaiaawMcaaaGaay5waiaaw2faaaaacaaMf8UaaGzbVlaaywW7 caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaiAdacaGGPaaaaa@98E4@

and a ( d r ) k ( π ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadggada WgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaiaadUga aeqaaOWaaeWabeaacaWHapaacaGLOaGaayzkaaGaaiilaaaa@41AA@   b ( d r ) k ( π ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkgada WgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaiaadUga aeqaaOWaaeWabeaacaWHapaacaGLOaGaayzkaaaaaa@40FB@  and c ( d r ) k ( π ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadogada WgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaiaadUga aeqaaOWaaeWabeaacaWHapaacaGLOaGaayzkaaaaaa@40FC@  are real numbers defined respectively in equations (A1.4), (A1.7) and (A1.8) of Appendix A1.

Remark 4.1. Expression (4.5) is a cumbersome formula but, for all practical purposes, calculations may be simplified by considering a slight upward approximation by setting b ( d r ) k ( π ) = c ( d r ) k ( π ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkgada WgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaiaadUga aeqaaOWaaeWabeaacaWHapaacaGLOaGaayzkaaGaeyypa0Jaam4yam aaBaaaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaGaam4A aaqabaGcdaqadeqaaiaahc8aaiaawIcacaGLPaaacqGH9aqpcaaIWa aaaa@4C0F@  in (4.6). The proof is given in Appendix A3. An upward approximation is a safe choice in this setting, since it averts from the risk of defining an insufficient sample size for the expected accuracy.

Remark 4.2. The SSRSWOR design is obtained if the planned domains define a unique partition of population (Option 1 of the example in Section 2) and the model (4.1) is specified so that the predicted values are: y ˜ r k = Y ¯ r h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga acamaaBaaaleaacaWGYbGaam4AaaqabaGccqGH9aqpceWGzbGbaeba daWgaaWcbaGaamOCaiaadIgaaeqaaaaa@3FE4@  with σ r k 2 = σ r h 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGYbGaam4AaaqaaiaaikdaaaGccqGH9aqpcqaHdpWC daqhaaWcbaGaamOCaiaadIgaaeaacaaIYaaaaaaa@42E1@  (for k U h ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadUgacq GHiiIZcaWGvbWaaSbaaSqaaiaadIgaaeqaaOGaaiykaiaac6caaaa@3E7E@ The AAV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGbbGaaeOvaaaa@3B0F@  becomes

AAV ( t ^ ( d r ) ) = [ N / ( N H ) ] d = 1 D h H d σ r h 2 N h ( N h / n h 1 ) , ( 4.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGbbGaaeOvamaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaey ypa0ZaamWabeaadaWcgaqaaiaad6eaaeaadaqadeqaaiaad6eacqGH sislcaWGibaacaGLOaGaayzkaaaaaaGaay5waiaaw2faamaaqadaba WaaabeaeaacqaHdpWCdaqhaaWcbaGaamOCaiaadIgaaeaacaaIYaaa aaqaaiaadIgacqGHiiIZcaWGibWaaSbaaWqaaiaadsgaaeqaaaWcbe qdcqGHris5aOGaamOtamaaBaaaleaacaWGObaabeaakmaabmqabaWa aSGbaeaacaWGobWaaSbaaSqaaiaadIgaaeqaaaGcbaGaamOBamaaBa aaleaacaWGObaabeaakiabgkHiTiaaigdaaaaacaGLOaGaayzkaaaa leaacaWGKbGaeyypa0JaaGymaaqaaiaadseaa0GaeyyeIuoakiaacY cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOl aiaaiEdacaGGPaaaaa@6ED4@

where H d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeada WgaaWcbaGaamizaaqabaaaaa@3A90@  is the set of planned domains included in U d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaamizaaqabaaaaa@3A9D@  (see Appendix A4). Note that the expression (4.7) agrees with the Result 2 of Nedyalkova and Tillé (2008), but for the term N / ( N H ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaamOtaaqaamaabmqabaGaamOtaiabgkHiTiaadIeaaiaawIcacaGL PaaaaaGaaiOlaaaa@3E60@  If [ N / ( N H ) ] ( 1 / N h ) 1 / ( N h 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaadmqaba WaaSGbaeaacaWGobaabaWaaeWabeaacaWGobGaeyOeI0IaamisaaGa ayjkaiaawMcaaaaaaiaawUfacaGLDbaadaqadeqaamaalyaabaGaaG ymaaqaaiaad6eadaWgaaWcbaGaamiAaaqabaaaaaGccaGLOaGaayzk aaGaeyisIS7aaSGbaeaacaaIXaaabaWaaeWabeaacaWGobWaaSbaaS qaaiaadIgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaaaaa@4B9C@  the expression (4.7) would approximate the variance of the HT estimate in the SSRSWOR design. The above approximation is proved true when the number of domains H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqLqpepC0xbbL8F4rqqrVepeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeaaa a@399C@  remains small compared to the overall population size N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqLqpepC0xbbL8F4rqqrVepeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eaca GGSaaaaa@3A52@  and when the domain sizes N h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada WgaaWcbaGaamiAaaqabaaaaa@3A9A@  are large.

Previous | Next

Date modified: