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Bagging non-differentiable estimators in complex surveys 

Jianqiang C. Wang, Jean D. Opsomer and Haonan Wang1 

Abstract 

Bagging is a powerful computational method used to improve the performance of inefficient estimators. This 
article is a first exploration of the use of bagging in survey estimation, and we investigate the effects of bagging 
on non-differentiable survey estimators including sample distribution functions and quantiles, among others. 
The theoretical properties of bagged survey estimators are investigated under both design-based and model-
based regimes. In particular, we show the design consistency of the bagged estimators, and obtain the 
asymptotic normality of the estimators in the model-based context. The article describes how implementation 
of bagging for survey estimators can take advantage of replicates developed for survey variance estimation, 
providing an easy way for practitioners to apply bagging in existing surveys. A major remaining challenge in 
implementing bagging in the survey context is variance estimation for the bagged estimators themselves, and 
we explore two possible variance estimation approaches. Simulation experiments reveal the improvement of 
the proposed bagging estimator relative to the original estimator and compare the two variance estimation 
approaches. 

 
Key Words: Bootstrap; Distribution function; Quantile estimation. 

 
 
1  Introduction 
 

Bagging, short for “bootstrap aggregating”, is a resampling method originally introduced to improve 
“weak” learning algorithms. Bagging was proposed by Breiman (1996), who heuristically demonstrated 
how it improved the performance of tree-based predictors. Since then, bagging has been applied to a wide 
range of settings and analyzed by many authors. Bühlmann and Yu (2002) showed the smoothing effect of 
bagging and its variations on hard-decision classification algorithms, and formalized the notion of 
“unstable predictors”. Chen and Hall (2003) derived theoretical results on bagging estimators defined by 
estimating equations. Buja and Stuetzle (2006) considered bagging U-statistics, and claimed that bagging 
“often but not always decreases variance, whereas it always increases bias”. Friedman and Hall (2007) 
examined the impact of bagging on nonlinear estimators. More recently, Hall and Robinson (2009) 
discussed the effects of bagging on cross-validation choice of smoothing parameters, and presented 
intriguing results on improving the order of the cross-validation selected kernel bandwidth by bagging. 

The aforementioned literature studied the effects of bagging on various estimators, especially 
nonlinear, non-differentiable estimators, under the iid  (independent and identically distributed) sampling 
assumption. For dependent data, Lee and Yang (2006); Inoue and Kilian (2008) studied the effects of 
bagging on economic time series. The former authors studied the bagging effect on non-differentiable 
predictors like sign functions and quantiles, and the latter focused on bagging pretest predictors with 
application to U.S. consumer price inflation forecasting. 

As this brief literature review shows, bagging is a promising method used to improve the efficiency of 
estimators. To date, however, bagging for survey estimators has not been considered. This article is a first 
exploration of the use of bagging in the survey context, including an evaluation of the potential efficiency 
gain, a number of theoretical results, and a discussion of implementation and variance estimation issues. 

mailto:jopsomer@stat.colostate.edu
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Corresponding with general survey practice, we will only consider estimators that can be written as 
functions of Horvitz-Thompson (HT) estimators. More specifically, we will consider the following three 
types of estimators. Firstly, many commonly used survey estimators can be written as differentiable 
functions of HT estimators. For instance, the Hajek estimator, ratio estimator, generalized regression 
estimator can all be regarded as differentiable functions of HT estimators. Secondly, there are other survey 
estimators that are non-differentiable, including the Dunstan and Chambers estimator (Dunstan and 
Chambers 1986), the Rao-Kovar-Mantel estimator (Rao, Kovar, and Mantel 1990), the endogenous post-
stratification estimator (Breidt and Opsomer 2008), and estimators of low-income proportion (Berger and 
Skinner 2003), among others. Thirdly, other estimators are only defined as solutions to weighted 
estimating equations. For more information on estimating equations in the survey context, see Godambe 
and Thompson (2009); Fuller (2009), and references therein. 

While bagging can be considered a type of replication method, it is quite different from bootstrapping 
and other replication methods that are designed for variance estimation. Unlike these other methods, 
bagging is introduced to improve the actual estimator itself. The bagging method can be naturally 
embedded in large-scale complex surveys, since we can take advantage of replication weights that are 
readily available in many practical surveys. In this paper, we will show how replicates created for 
bootstrap variance estimation can be modified and used in bagging the original estimator. Unfortunately, 
one difficulty in implementing bagging in surveys is the lack of a design-based variance estimator. We 
will discuss a number of proposals on how to estimate the variance of bagged survey estimators, but 
further work is still required in this area. 

The remainder of this paper is organized as follows. We define our target survey estimators and 
introduce the bagged version of each estimator in Section 2. We then present the theoretical properties of 
the bagged estimators in Section 3. Section 4 shows how to use survey replicates to implement bagged 
versions of estimators, and addresses variance estimation for the resulting bagged estimators. We report 
on simulation results in Section 5, and conclude the paper with some final remarks in Section 6. 

 
2  Bagging survey estimators 
 

2.1  General approach 
 

In this section, we discuss the implementation of bagging in the context of survey estimation. We first 
introduce necessary notation. Let U  represent a finite population of size ,N  in which each element i U∈  
is associated with a vector of measurements, iy , in the q -dimensional Euclidean space .q  The sampling 
design ( )p  is used to draw a random sample A U⊆  of sample size .n  We denote by { }= |i i A∈y  the 

collection of sample observations. Here, the sampling design could be simple random sampling without 
replacement (SRSWOR), Poisson sampling or a complex design with stratification and/or multiple stages. 
Under each design, the probability of an element i  being included in the sample is denoted by .iπ  

The population mean of the measurement vector y  is denoted by .μ  It can be estimated by the 
Horvitz-Thompson (HT) estimator defined as  

 
=1

1 1ˆ = = ,
N

i i
i

i ii A i

I
N Nπ π∈
∑ ∑y yμ   (2.1) 
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where iI  is the sample membership indicator for the -thi  element. More generally, let θ  denote a 
population quantity of interest, and ( )θ̂   is the estimator of θ  based on the sample observations . The 

estimator ( )θ̂   will be abbreviated as θ̂  when there is no confusion. As noted in the previous section, we 

assume that θ̂  can be written as a function of simpler estimators of the form (2.1). 

In its most general form, the bagging algorithm for survey estimation is as follows: 
 
1. For = 1,2, , :b B  

a. Draw resample bA  from the random sample ,A  and denote the observations in the 
resample as { }* = | .b i bi A∈y   

b. Calculate the parameter estimate based on the resample ,bA  denoted by ( )*ˆ .bθ    

 

2. Average over the replicated estimates ( ) ( ) ( )* * *
1 2

ˆ ˆ ˆ,  ,  ,  Bθ θ θ    to obtain the bagged survey 

estimator,  

 ( )*

=1

1ˆ ˆ= .
B

bag b
bB

θ θ∑    (2.2) 

In the bagging literature, the resamples bA  are often referred to as bootstrap samples (Breiman 1996), 
and we will do the same here despite the fact that we will not use them for variance estimation. 

In the algorithm, the bootstrap samples could be drawn according to the sampling design rather than 
the empirical distribution of the sample observations, which is more commonly used in the ordinary 
bagging literature (Breiman 1996) and equivalent to simple random sampling (with or without 
replacement). For example, if the sample A  is drawn using stratified or cluster sampling, such design 
scheme could be taken into consideration when selecting the resamples. More generally in the survey 
context, step 1 of the proposed bagging algorithm can be treated in the framework of two-phase sampling: 
the first phase corresponds to the original sample A  and the second phase to the resample .bA  Thus the 
classical expansion estimator for two-phase designs Särndal, Swensson and Wretman (1997) is 
implemented in calculating the replicated estimator ( )*ˆ .bθ   In the resample ,bA  the pseudo inclusion 

probability for the -thi  element is *
|=i i i Aπ π π  where ( )| = Pr |i A bi A i Aπ ∈ ∈  is the inclusion probability of 

the -thi  element in resample bA  given that it is included in sample .A  Hence, the bagged estimator is an 
approximation to the expectation of the two-phase estimator with respect to the second sampling phase, 
which is also referred to as bootstrap expectation in ordinary bagging methods (Bühlmann and Yu 
2002). Although a general design for the bootstrap samples is possible, in the theoretical portions of this 
article we will restrict ourselves to SRSWOR. To broaden the scope of our discussion, in the variance 
estimation and numerical section, we introduce the case in which the bootstrap samples are drawn by 
stratified SRSWOR with the same strata as the original sample ,A  which is a useful and realistic 
extension. 

As an example, we consider the HT estimator as defined in (2.1). The bootstrap resampling from the 
realized sample A  is drawn under SRSWOR of size .k  Under this resampling scheme, the replicated 
sample estimator is defined as  
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 ( )* 1ˆ = ,
b

i
b

i A iN π ∗
∈
∑ yμ    (2.3) 

where the pseudo inclusion probability |= = .i i i A ik nπ π π π∗  Then the bagged version of the classical 

-estimatorπ ∗  can be calculated using (2.2). Straightforward calculation shows that the bagged estimator is 
identical to the original HT estimator if all SRSWOR samples of size k  are enumerated in calculating 
(2.2). The same result holds for any other linear survey estimator. In general, the calculation of the bagged 
estimator b̂agθ  is not as easy. In the rest of this section, we will focus on such calculations for the three 

types of nonlinear survey estimators discussed in Section 1. 

 
2.2  Bagging differentiable survey estimators 
 

For the survey estimators that are differentiable functions of HT estimators, the population quantity of 
interest can also be written as a differentiable function of population means; that is, ( )= ,d mθ μ  where 

( )m ⋅  is a known differentiable function. The subscript “ ”d  stands for differentiable in contrast to non-
differentiable ( )ndθ  and estimating equation ( )eeθ  coming later. A direct plug-in estimator of ,dθ  
based on sample observations  , can be written as  

 ( )ˆ ˆ= ,d mθ μ   (2.4) 

where μ̂  is defined in (2.1). Thus, the replicated sample version of d̂θ  can be expressed as  

( ) ( )( )* *ˆ ˆ= ,d b bmθ μ   

where ( )*ˆ bμ   is defined by (2.3). Then the bagged estimator of ,dθ  denoted by ,
ˆ ,d bagθ  is defined using 

(2.2). 

 
2.3  Bagging explicitly defined non-differentiable estimators 
 

As an example of this type of estimators, consider the estimation of the proportion of households with 
income below the poverty line for a population. Such quantity can be written as ( ) ( )=1

1 ,
N

i Ni
N I y λ≤∑  

where iy  is the income value for the -thi  household in the population, and Nλ  is the population poverty 
line. It can be seen that this quantity of interest is the mean of indicator kernel functions, and the kernel 
function is non-differentiable with respect to .Nλ  Here, we consider a more general class in which the 
kernel is an arbitrary non-differentiable but bounded function. This type of population quantity can be 
expressed as  

( )
=1

1= ,
N

nd i N
i

h
N

θ −∑ y λ  

where Nλ  is an unknown population parameter, for example, the mean, a quantile or other population 
quantity, and ( ) : ph − →y λ    is a non-differentiable function of .λ  The population quantity ndθ  

generalizes the notion of the proportion below an estimated level and resembles the general form of a U-
statistic. 
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Wang and Opsomer (2011) studied a class of U-statistics-like estimators, namely, non-differentiable 
survey estimators,  

 ( )1 1ˆ ˆ= ,nd i
ii A

h
N

θ
π∈

−∑ y λ   (2.5) 

where λ̂  is a design-based estimator of .Nλ  In the non-survey context, estimators of this type are 
regarded as “non-differentiable functions of the empirical distribution” (Bickel, Götze and van Zwet 
1997). The study of appropriate bootstrap procedures for such estimators was carried out by Beran and 
Srivastava (1985) and Dümbgen (1993), among others. We define the replicated version of n̂dθ  based on 
resample bA  as  

( ) ( )( )* *1 1ˆ ˆ= ,
b

nd b i b
i A i

h
N

θ
π ∗

∈

−∑ y λ   

where ( )*ˆ
bλ   solely depends on the bootstrap resample ,bA  and the bagged estimator is then defined by 

averaging replicated estimators. Suppose that the resampling process is SRSWOR of size ,k  and every 
subsample is selected in calculating the bagging estimator, then the bagging estimator takes the following 
form after manipulation, 

 ( )( )*
,

1 1ˆ ˆ= ,
1
1

b

nd bag i b
i A A i

i

h
nN
k

θ
π∈ ∋

−
− 

 − 

∑ ∑ y λ    (2.6) 

which replaces ( )ˆ
ih −y λ  in (2.5) by a “smoothed” quantity ( )( )* 1ˆ ,

1
b

i b
A i

n
h

k∋

− 
−  − 

∑ y λ   by averaging the 

“jumps” in the estimator. Very often, variance reduction can be achieved by this replacement. The 

summand ( )( )* 1ˆ
1

b

i b
A i

n
h

k∋

− 
−  − 

∑ y λ   is the bootstrap expectation of ( )ih − ⋅y  and can be approximated 

using the convolution of ( )ih − ⋅y  with the sampling distribution of ( )*ˆ .bλ   Study of the theoretical 

aspects of ,n̂d bagθ  is deferred until Section 3.  

 
2.4  Bagging estimators defined by non-differentiable estimating equations 
 

Finally, we explain how to bag estimators defined by non-differentiable estimating equations. For ease 
of presentation, we consider a one-dimensional parameter of interest. The population parameter eeθ  of 
interest is defined as  

( ){ }= inf : 0 ,ee Sθ γ γ ≥  

where  

( ) ( )
=1

1= ,
N

i
i

S y
N

γ ψ γ−∑  

and ( )ψ ⋅  is a non-differentiable real function. We can estimate the population parameter eeθ  by ˆ ,eeθ  
where  
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 ( ){ }ˆ = inf : 0ee Sθ γ γ ≥  

with  

 ( ) ( )1 1= .i
ii A

S y
N

γ ψ γ
π∈

−∑  

A frequently encountered estimator of this type is the sample quantile defined by inverting the sample 
cumulative distribution function (Francisco and Fuller 1991), where ( ) ( )=i yi

y I
γ

ψ γ α
≤

− −  for the 

-quantile.α  

Conceptually, there are two versions of bagging ˆ ,eeθ  one is to solve the “bagged estimating equation” 
defined by bagging the score function, and another is to average over resampled estimates of ˆ .eeθ  
Similarly to the discussion in Section 2.1, the first version results in an estimator equivalent to the original 
estimator, because the bootstrap expectation of bootstrap samples of ( )Ŝ γ  is equal to ( )Ŝ γ  for fixed .γ  

We therefore only consider the latter version. To define the bagged estimating equation estimator, we first 
define the replicated score function ( )ˆ

bS γ  based on resample bA  as  

( ) ( )1 1ˆ = .
b

b i
i A i

S y
N

γ ψ γ
π ∗

∈

−∑  

Then the replicated estimator based on bA  is defined as ( ) ( ){ }*ˆ ˆ= inf : 0 .ee b bSθ γ γ ≥  Thus the overall 

bagging estimator is defined as  

 ( )*
,

1ˆ ˆ= ,ee bag ee bn
k

θ θ
 
 
 

∑    (2.7) 

where the average is over all possible without-replacement samples of size k  selected from .A  Chen and 
Hall (2003) discussed bagging estimators defined by nonlinear estimating equations under the iid  setup, 
and they stated that bagging does not always improve the precision of estimators under study. 

 
3  Theoretical results 
 

We begin by briefly describing the asymptotic analysis of the bagging estimators under general 
sampling design from a finite population, i.e. the design-based setting. We do this under the usual 
increasing-population framework, where we consider an increasing sequence of nested populations, say 

,  = 1,2, ,NU N   with finite population means .Nμ  Associated with the sequence of populations is a 
sequence of sampling designs used to draw random sample N NA U⊆  of sample size ,Nn  with associated 
inclusion probabilities .iNπ  As commonly done in the survey literature, we suppress the N  subscript in 
the sample ,A  the sample size n  and the inclusion probabilities .iπ  For the sake of brevity, only design-
based asymptotic results for bagging differentiable estimator d̂θ  and non-differentiable n̂dθ  are provided. 
The formal assumptions under which the results are obtained and the theorems for differentiable and non-
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differentiable estimators are in Appendix A.1. The main result we are able to obtain in this design-based 
setting is that, if we are starting from a design-consistent estimator and we let the number of bootstrap 
samples k  grow with ,n  the bagged versions of the estimators are also design consistent. This is clearly a 
key property of these estimators, since there would be no reason to consider them unless they satisfied this 
design consistency. 

Unfortunately, the above design-based results are quite limited and in particular, do not provide an 
asymptotic distribution with which one might be able to perform inference, another highly desirable 
property of survey estimators. We therefore also consider a model-based setting, under which we are able 
to obtain an asymptotic variance approximation. In presenting model-based results, we assume the 
sampling design selecting the original sample A  is an equal probability design, and the population 
characteristics can be regarded as an iid  sample from a superpopulation distribution. Under this 
framework, the bagging estimator can be treated as a U-statistic. Thus we can apply the theory on U-
statistics to obtain asymptotic expansion of bagging estimators. The analysis parallels that of Bühlmann 
and Yu (2002) and Buja and Stuetzle (2006). For the current paper, we restrict ourselves to bootstrap 
samples of size k  where k  is bounded and fixed. Under this asumption, the bagging estimators can be 
regarded as fixed-degree U-statistics, for which asymptotic theory has been well developed. A more 
interesting case is when the resample size k  grows with sample size ,n  and this leads to infinite-degree 
U-statistics. Infinite-degree U-statistics have applications in studying the Kaplan-Meier estimator and 

-out-of-m n  bootstrap estimators, and the readers are referred to Frees (1989); Heilig (1997); Heilig and 
Nolan (2001), and the references therein on their statistical properties. Schick and Wefelmeyer (2004) 
studied the statistical properties of infinite-degree U-statistics constructed from moving averages of 
innovations in time series. The study of bagging estimators by viewing them as infinite-degree U-statistics 
is out of the scope of the current paper, and hence we limit ourselves to the case of fixed and bounded 
bootstrap sample size in the model-based case. 

We first consider bagged estimator (2.5). Under SRSWOR, estimator (2.5) can be simplified to  

( )1ˆ ˆ=nd i
i A

h
n

θ
∈

−∑ y λ  

and the bagged version of n̂dθ  is defined as  

 ( )( )*
,

=1

1 1ˆ ˆ=
1
1

b

n

nd bag i b
i A i

h
nn
k

θ
∋

−
− 

 − 

∑ ∑ y λ    (3.1) 

where ( )*ˆ
bλ   only depends on resample .bA  For ease of presentation, we take ( )*ˆ

bλ   as the sample 

mean. In this case, straightforward algebra reveals that  

,
1 1 1 1ˆ = ,

b b

nd bag i j
A i A j i

kh
n k k k
k

θ
∈ ∈ ≠

  − −         
 

∑ ∑ ∑y y


 

where   is the collection of subsets of size k  from set { }1,2, , .n  The estimator ,n̂d bagθ  is a degree-k  

U-statistic with kernel  
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( )1
=11

1 1 1, , =
k k

k i j
ji
j i

kg y y h
k k k=

≠

 
− − 

 
 

∑ ∑y y  

provided that k  remains finite. 

One can see that the bagging estimator ,n̂d bagθ  is a symmetric statistic of ,iy  and standard theory on 

symmetric statistics (Lee 1990) applies. The results are stated in Theorem 1, with assumptions and proofs 
in Appendix A.2. 

 

Theorem 1 Under Assumptions M.1-M.4 on the superpopulation distribution, sampling and resampling 
designs,   

 ( ) ( ) ( )
1/2

, , ,
ˆ ˆAV 0,1 ,

p

nd bag nd bag nd Nθ θ θ
−

∞− →   (3.2) 

where the limiting value ( ),
ˆ= lim E ,nd in

hθ ∞ →∞
 − y λ  the asymptotic variance  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

,
1 2 11ˆAV = Var Var Cov , ,nd bag i i i i

k k
u v u v

n n n
θ

− −
     + +     y y y y   (3.3) 

and  

( ) ( )( )
( ) ( )( )

1 2 1

1 1 2 1

ˆ= E , , , , ,

ˆ= E , , , , .

k

k

u h

v h

−

−

 − 
 − 

y y λ y y y y

y y λ y y y y





 

As indicated by (3.3), the asymptotic variance of the bagging estimator depends on unknown functions 
( )u y  and ( ) ,v y  which are expectations of ( )h ⋅  with respect to the superpopulation distribution. In ( )u y  

and ( ) ,v y  ( )1 2 1
ˆ , , , ,k−λ y y y y  is calculated from 1 2 1, , , k−y y y  together with an arbitrary vector .y  The 

expectation is with respect to the distribution of iid  random vectors 1 2 1, , , .k−y y y  This high-dimensional 
expectation is difficult to calculate and may not have an explicit expression in general. The exact form of 

( )u ⋅  and ( )v ⋅  can not be obtained but can be approximated via a resampling-based approach. The 
unknown functions ( )u ⋅  and ( )v ⋅  are defined as expectations of respective quantities with respect to the 
superpopulation distribution, which can be approximated by the expectation with respect to the empirical 
distribution.  

The model-based asymptotic variance can be estimated along with the process of bagging. We can 
calculate integrands ( )( )1 2 1

ˆ , , , ,kh ∗ ∗ ∗
−−y λ y y y y  and ( )( )1 1 2 1

ˆ , , , ,kh ∗ ∗ ∗
−−y λ y y y y  based on each bootstrap 

sample, with y  denoting where we want to evaluate ( )u ⋅  and ( ),v ⋅  and 1 2 1, , , k
∗ ∗ ∗

−y y y  denoting resampled 
values. Then we can average each quantity to approximate the expectation. Finally, the variance can be 
estimated by computing the sample variance of the expectations evaluated at each of the sample points. 
For nonsmooth estimators like the ones we are dealing with, it is often recommended to use smoothed 
bootstrap in variance approximation (Efron 1979; Davison and Hinkley 1997). We apply the smoothed 
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bootstrap and add a small amount of noise to each resampled value to smooth the underlying function. The 
detailed algorithm will be explained in Section 5 through an example. 

We now study the model-based result of bagging estimators defined by estimating equations (2.7). A 
special case in this framework is bagging sample quantiles, which was studied by Knight and Bassett 
(2002). Knight and Bassett (2002) considered both bootstrap and SRSWOR for resampling, and studied 
the effects of bagging on the remainder term in the Bahadur representation of quantiles (Bahadur 1966). 
We take a slightly different perspective and treat the bagging estimator as a U-statistic. Assumptions and 
proof are again in Appendix A.2. Note that Assumption M.5 requires that the non-differentiable estimating 
function have a smooth limit. In the next theorem, we provide linearization of the bagging estimating 
equation estimator and give an expression for the asymptotic variance. 

 

Theorem 2 Under Assumptions M.1-M.3 and M.5, the following asymptotic result holds for the bagged 
estimating equation estimator (2.7),  

 ( ) ( ) ( )
1/2

, , ,
ˆ ˆAV 0,1 ,

p

ee bag ee bag ee Nθ θ θ
−

∞− →   (3.4) 

where ,eeθ ∞  denotes the asymptotic limit of population quantity ,eeθ  the asymptotic variance of ,êe bagθ  is  

 ( ) ( )
2

,
ˆAV = Var ,ee bag i

k u y
n

θ      (3.5) 

and  

 ( ) ( ) ( )
1

=1

1 1= E inf : 0 .
k

i
i

u y y y
k k

γ ψ γ ψ γ
− 

− + − ≥ 
 

∑   (3.6) 

As we saw for the bagged estimator (3.1), the asymptotic results in Theorem 2 involve an unknown 
function. This function can again be computed using resampling that takes advantage of the available 
replicate samples.  

 
4  Variance Estimation 
 

While the model-based approach makes it possible to obtain asymptotic distributions and hence 
perform inference that is asymptotically correct, we are most interested here in the design-based 
applications of bagging. In the design-based context, the construction of the bagging estimator can be 
naturally combined with the variance estimation of the original statistic, by taking advantage of the 
replication samples released by the statistical agencies. In this article, we take stratified simple random 
sampling as a specific example, with a bootstrap sampling design of stratified SRSWOR. 

We begin by applying a version of the Rao and Wu (1988) bootstrap procedure to estimate the variance 
of the survey estimators prior to bagging. Let ,  h hN n  and hk  denote the population size, sample size and 
sub-sample size in the -thh  stratum, = 1,2, , .h H  Here, B  bootstrap samples are drawn by stratified 
simple random sample without replacement of size hk  for computing the bootstrap variance of the 
original statistic and the bagging estimator. For each bootstrap sample, we assign a weight of  
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( ) ( )
1/2 1/2

1/2 1/21/2 1/21 11 1 1 1 1h h h h
h h h h

h h h h

N n N nk n k n
N N n N N k

− −
     − − − + − −        

 

to each sampled element in the -thh  stratum, and  

( )
1/2

1/21 2 11 1 1h h
h h

h h

N nk n
N N n

−
   − − −    

 

to the nonsampled elements. We then use the ordinary variance of the replicated sample estimators as 
variance estimator. The aforementioned weighting scheme is algebraically identical to equation 4.1 of Rao 
and Wu (1988), in which the finite population correction is incorporated into replication weights. The 
resampling variance estimator derived from the weighting method reduces to ordinary variance estimator 
under stratified SRSWOR and guarantees design unbiasedness. In order to combine bagging with 
bootstrap variance estimator, we use the same bootstrap samples to construct the bagging estimators for 
the population quantities of interest. 

Under the design-based framework, no analytic variance estimator is available for the bagged estimator 
in general. For now, we would suggest the following two variance estimation approaches in practice: 

 
(Var. 1) Use the estimated variance of the original estimator even though the bagged estimator may have a 

smaller variance. This method provides confidence intervals of the same width but outperforms 
the original confidence interval in having larger coverage rate.  

 
(Var. 2) Multiply the estimated variance of the original estimator by an adjustment factor accounting for 

the likely improvement in efficiency. One possible choice for such a factor is the efficiency gain 
assuming the sample is an iid  sample from an infinite superpopulation. The factor can be 
determined by using the results of Theorems 1 and 2, or by a nonparametric bootstrap 
experiment. One such possible bootstrap procedure is double bootstrap, which is implemented by 
drawing ordinary bootstrap resamples to estimate the variance of the original estimator, and 
another level of SRSWOR resamples to determine the variance of the bagging estimator. One can 
estimate the ratio of the variance of bagging estimator to original estimator using these nested 
bootstrap samples, and multiply the design variance of the original estimator by this ratio.  

 
We will explore both approaches in the simulations in Section 5, but this is clearly an area in which 

further research is warranted. 

 
5  Simulations 
 

To evaluate the practical behavior of bagging in the survey context, we generate a finite population of 
size = 2,000N  with three strata. The size of each stratum is denoted as hN  with = 1,2,3,h  and the 
stratum proportions are fixed at ( ) ( )1 2 3, , = 0.5,0.3,0.2 .N N N N  The distribution of the target variable iy  



Survey Methodology, December 2014 199 
 

 
Statistics Canada, Catalogue No. 12-001-X 

within each stratum is ( ) ( )1 21,1 ,  1,1i iy N y− Γ   and ( )3 3,2 .iy N  An auxiliary variable ix  is 

generated via ( )0 1 2=i i ix A A y A G α β+ + −  where 0 1 2= = 2,  = 1,  = 2,  = 1A A A α β  and ( )2,1 .
iid

iG Γ  

We repeatedly draw samples of size n  using stratified simple random sampling from the population of 
interest and the sample size allocation is ( ) ( )1 2 3, , = 0.3,0.3,0.4 .n n n n  In this set-up, the design is clearly 
informative, because the observations are not iid  in the overall population and are correlated with the 
inclusion probabilities. 

We are interested in three population quantities: a population -quantile,α  a population proportion 
below a given fraction of a population quantile (see Berger and Skinner 2003, for an example) and the 
Rao-Kovar-Mantel (RKM) estimator of the distribution function (Rao et al. 1990). The former is an 
example of a non-differentiable estimating equation-based estimator, while the latter two are explicitly 
defined non-differentiable estimators. The sample estimator of the quantile is found by inverting the 
estimated cumulative distribution function. The sample estimator of the proportion below a given fraction 
of a population quantile is the HT estimator of the proportion of observations below the sample median of 
a variable of interest times a constant ,c   

( )med
ˆ  

1 1ˆ = I ,
i

pr y c
ii AN θ

θ
π ≤

∈
∑  

where medθ̂  denotes the sample median of the .iy  The design-based RKM difference estimator based on a 
ratio model is  

 

( ) ( ) ( )RKM
=1

1 1 1= I I I ,
i i i

N

y t Rx t Rx t
i ii A i i AN

θ
π π≤ ≤ ≤

∈ ∈

 
+ − 

 
∑ ∑ ∑   (5.1) 

where R̂  denotes the estimated ratio between y  and .x  

The design variance of these non-differentiable estimators is somewhat cumbersome to estimate. For 
variance and interval calculations for sample quantiles, the readers are referred to Francisco and Fuller 
(1991), Sitter and Wu (2001), and references therein. For proportion below an estimated level, see Shao 
and Rao (1993) and Berger and Skinner (2003). 

The design variances of the original estimators ˆ ˆ,  qr prθ θ  and RKM
ˆ ,θ  are estimated via the without-

replacement bootstrap procedure described in the previous section. We employ a bootstrap sample size of 
= 2.h hk n  The so-constructed bagging estimators are often referred to as subagging estimators 

(Bühlmann and Yu 2002). It was established that without-replacement samples of size 2n  produces 
similar results to with replacement samples of size n  in bagging (Buja and Stuetzle 2006; Friedman and 
Hall 2007). We apply the two variance approaches for bagging estimators proposed in the previous 
section, i.e. one identical to that of unbagged estimator (Var. 1) and another one that multiplies the 
original variance estimate by a model-based adjustment factor (Var. 2). The factor is determined by 
double bootstrap on one particular sample. In principle, one should repeat the exercise for each sample, 
but this is precluded by the heavy computational burden. The confidence intervals of all three estimators 
are constructed by normal approximation. The confidence intervals for the proportion and the RKM 
estimator are constructed by normal approximation on logit  transformed scale, ( )ˆ ˆlog 1θ θ −   or 

( )ˆ ˆlog 1 ,bag bagθ θ −   and then back transformation (Agresti 2002; Korn and Graubard 1998). 
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Table 5.1 summarizes the bias, standard deviation and MSE ratio of the original and bagged sample 
quantiles and Table 5.2 examines the variance estimators and confidence intervals. The sample sizes are 
chosen to be = 100n  and 200.  From Table 5.1, we can see that the bagged quantile estimator is more 
efficient than the original estimator since the MSE ratio is less than one in this simulation experiment. The 
smoothing effects of bagging generally become more prominent as we decrease the sample size. In 
Table 5.2, we compare the two confidence intervals with bagging point estimator to that of original 
confidence intervals. As expected, the confidence interval constructed via method 1 has the same length 
and higher coverage than the original. In this example, the confidence intervals via method 2 are narrower 
but maintain coverage level close to nominal. 

 
Table 5.1 
Bias, standard deviation and MSE ratios of sample quantiles and bagged sample quantiles; population size 

= 2,000,N  number of bootstraps = 2,000,B  and results are from 2,000  simulations 
 

 = 100,  = 50n k   = 200,  = 100n k  
α  0.2 0.3 0.5 0.7 0.8  0.2 0.3 0.5 0.7 0.8 

( )ˆbias qtθ  0.002 0.008 0.000 -0.005 -0.035  -0.008 0.005 0.006 0.007 -0.005 

( ),
ˆbias qt bagθ  0.018 0.019 -0.001 -0.007 -0.043  -0.006 0.009 0.005 0.006 -0.022 

( )ˆsd qtθ  0.093 0.124 0.149 0.181 0.212  0.070 0.076 0.103 0.136 0.148 

( ),
ˆsd qt bagθ  0.089 0.112 0.138 0.167 0.197  0.065 0.073 0.099 0.127 0.139 

( )
( )

,
ˆ

ˆ
p qt bag

p qt

MSE

MSE

θ

θ

 

0.946 0.844 0.859 0.854 0.875 
 

0.866 0.924 0.919 0.862 0.912 

 
Table 5.2 
Relative bias, coverage probability and confidence interval width of bootstrap variance estimators for sample 
quantiles and unadjusted ( )1V  and adjusted ( )2V  variance estimators for bagged sample quantiles; 
simulation setting is the same as in Table 5.1 
 

   = 100,  = 50n k   = 200,  = 100n k  
α  0.2 0.3 0.5 0.7 0.8  0.2 0.3 0.5 0.7 0.8 

( )
( )

ˆˆE

ˆ
boot qt

qt

V

V

θ

θ

 
   1.208 1.091 1.099 1.135 1.205  1.067 1.117 1.093 1.098 1.180 

( )
( )
1 ,

,

ˆˆE

ˆ
qt bag

qt bag

V

V

θ

θ

 
   1.327 1.325 1.279 1.331 1.402  1.224 1.217 1.188 1.273 1.326 

( )
( )
2 ,

,

ˆˆE

ˆ
qt bag

qt bag

V

V

θ

θ

 
   1.307 1.217 1.196 1.184 1.383  1.245 1.249 1.392 1.107 1.104 

C.P.(C.I.)  0.944 0.934 0.924 0.928 0.922  0.938 0.951 0.942 0.935 0.950 

( )C.P. C.I.1.bag  0.950 0.946 0.938 0.938 0.939  0.942 0.950 0.946 0.943 0.954 

( )C.P. C.I.2.bag  0.949 0.934 0.932 0.929 0.938  0.944 0.952 0.958 0.927 0.936 

Width(C.I.)             

( )Width C.I.1.bag

 

0.386 0.492 0.597 0.729 0.880  0.277 0.309 0.414 0.544 0.612 

( )Width C.I.2.bag

 

0.383 0.472 0.577 0.688 0.874  0.279 0.313 0.448 0.508 0.559 
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Tables 5.3 and 5.4 summarize design-based results on the low-income proportion estimator. Based on 
the MSE ratio, we can see that the bagging estimator is uniformly more efficient than the original 
estimator, and the MSE of bagging estimator is less than 50%  of that of original estimator in a few cases 
(see = 1.2c ). The likely reason for this is that the estimator involves two “levels” of non-differentiability: 
the sample median being a non-differentiable estimator, whose efficiency gain was shown in Table 5.1, 
and the low-income proportion being a non-differentiable function of the sample median. The “jumps” in 
the estimators are smoothed out by bagging, resulting in a more stable estimator. The confidence interval 
comparison in Table 5.4 leads to results similar to the quantile case. 

 
Table 5.3 
Bias, standard deviation and MSE ratio of estimated proportion below a constant c  multiplied by estimated 
median and the bagged proportion estimator; population size = 2,000,N  number of bootstraps = 2,000,B  
and results are from 2,000  simulations 
 

 = 100,  = 50n k   = 200,  = 100n k  
c  0.2 0.4 0.6 1.2 1.5  0.2 0.4 0.6 1.2 1.5 

( )ˆbias prθ  -0.002 -0.002 -0.003 0.011 0.006  0.000 -0.002 -0.005 -0.004 -0.004 

( ),
ˆbias pr bagθ  -0.004 -0.004 -0.007 0.017 0.009  -0.001 -0.005 -0.009 -0.001 -0.004 

( )ˆsd prθ  0.034 0.039 0.038 0.034 0.046  0.023 0.027 0.026 0.026 0.036 

( ),
ˆsd pr bagθ  0.031 0.035 0.031 0.020 0.034  0.022 0.025 0.022 0.017 0.029 

( )
( )

,
ˆ

ˆ
p pr bag

p pr

MSE

MSE

θ

θ

 

0.861 0.821 0.709 0.538 0.581  0.883 0.860 0.783 0.434 0.671 

 
Table 5.4 
Relative bias, coverage probability and confidence interval width of bootstrap variance estimators for sample 
proportions and unadjusted ( )1V  and adjusted ( )2V  variance estimators for bagged sample proportions; 
simulation setting is the same as in Table 5.3. We use “C.I.T.” to denote confidence intervals obtained with 
logit transformation 
 

   = 100,  = 50n k   = 200,  = 100n k  
c  0.2 0.4 0.6 1.2 1.5  0.2 0.4 0.6 1.2 1.5 

( )
( )

ˆˆE

ˆ
boot pr

pr

V

V

θ

θ

 
   1.122 1.191 1.325 1.472 1.281  1.140 1.191 1.251 1.350 1.217 

( )
( )
1 ,

,

ˆˆE

ˆ
pr bag

pr bag

V

V

θ

θ

 
   1.323 1.471 1.959 4.095 2.307  1.293 1.428 1.766 3.064 1.821 

( )
( )
2 ,

,

ˆˆE

ˆ
pr bag

pr bag

V

V

θ

θ

 
   1.240 0.963 1.190 1.174 1.149  1.145 1.262 1.319 2.039 1.524 

C.P.(C.I.T.)  0.969 0.970 0.984 0.991 0.980  0.964 0.974 0.977 0.983 0.946 

( )C.P. C.I.T.1.bag  0.979 0.983 0.995 0.998 0.995  0.974 0.980 0.988 0.998 0.976 

( )C.P. C.I.T.2.bag  0.976 0.944 0.973 0.922 0.942  0.962 0.969 0.968 0.993 0.957 

Width(C.I.T)             

( )Width C.I.T.1.bag

 

0.144 0.166 0.168 0.157 0.197  0.098 0.115 0.114 0.113 0.149 

( )Width C.I.T.2.bag

 

0.139 0.134 0.131 0.085 0.140  0.093 0.108 0.099 0.092 0.136 
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Tables 5.5 and 5.6 summarize the design-based results on the RKM estimator. Again, we observe the 
efficiency gain by applying the bagging method, and the gain is between 2% and 12%. Both variance 
estimators of the bagging quantity perform quite well. Both versions of confidence intervals for bagging 
estimators have actual coverage rates close to 95%, and the confidence intervals using the adjustment 
factor approach (Var. 2) are slightly shorter than method 1. 

 
Table 5.5 
Bias, standard deviation and MSE ratios of RKM estimator and bagging RKM estimator (5.1); population 
size = 2,000,N  number of bootstraps = 2,000,B  and results are from 2,000  simulations 
 

 = 100,  = 50n k   = 200,  = 100n k  
t  0.5 1.5 2.5 3.5 4.5  0.5 1.5 2.5 3.5 4.5 

( )RKM
ˆbias θ  0.000 0.000 0.000 0.000 0.000  -0.001 0.001 0.000 0.000 0.001 

( )RKM,
ˆbias bagθ  -0.001 0.000 -0.001 0.000 0.000  -0.001 0.001 0.000 0.001 0.001 

( )RKM
ˆsd θ  0.043 0.044 0.030 0.015 0.012  0.030 0.030 0.020 0.011 0.009 

( )RKM,
ˆsd bagθ  0.042 0.042 0.028 0.014 0.012  0.030 0.029 0.019 0.011 0.009 

( )
( )
RKM,

RKM

ˆ

ˆ
p bag

p

MSE

MSE

θ

θ
 0.965 0.911 0.877 0.914 0.917  0.976 0.928 0.917 0.918 0.981 

 
Table 5.6 
Relative bias, coverage probability and confidence interval width of bootstrap variance estimators for the 
RKM estimator (5.1) and unadjusted ( )1V  and adjusted ( )2V  variance estimators for bagging RKM 
estimators; simulation setting is the same as in Table 5.5 
 

   = 100,  = 50n k   = 200,  = 100n k  
t  0.5 1.5 2.5 3.5 4.5  0.5 1.5 2.5 3.5 4.5 

( )
( )

RKM

RKM

ˆˆE

ˆ
bootV

V

θ

θ

 
   1.081 1.192 1.078 1.082 1.078  1.016 1.045 1.138 1.121 1.016 

( )
( )
1 RKM,

RKM,

ˆˆE

ˆ
bag

bag

V

V

θ

θ

 
   1.115 1.324 1.183 1.198 1.156  1.038 1.138 1.223 1.210 1.062 

( )
( )
2 RKM,

RKM,

ˆˆE

ˆ
bag

bag

V

V

θ

θ

 
   1.087 1.117 0.962 1.042 1.019  1.009 1.083 1.106 1.118 1.002 

C.P.(C.I.)  0.958 0.963 0.955 0.956 0.959  0.954 0.956 0.966 0.964 0.948 

( )C.P. C.I.1.bag  0.958 0.968 0.958 0.967 0.964  0.958 0.964 0.970 0.970 0.956 

( )C.P. C.I.2.bag  0.957 0.954 0.937 0.951 0.950  0.955 0.958 0.959 0.960 0.948 

Width(C.I.)             

( )Width C.I.1.bag  0.171 0.183 0.116 0.074 0.052  0.122 0.122 0.083 0.049 0.034 

( )Width C.I.2.bag  0.169 0.168 0.105 0.069 0.049  0.120 0.120 0.079 0.047 0.033 
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In the context of nonsmooth estimators such as those considered here, it is often recommended that one 
uses a smoothed bootstrap instead of the simple bootstrap in variance estimation. We considered 
perturbing each resampled observation *

hiy  in the -thh  stratum to obtain,  

 ( ) ( )1/2* 2 * *= 1 ,hi h Z hi h hy y y y s Zσ
−

+ + − +   (5.2) 

where ,  h hy s  denote the sample mean and standard deviation of the original sample stratum, hiy∗  denotes 

the originally resampled value and Z ∗  denotes random noise with ( )20, .
iid

ZZ N σ∗
  The variance of Z ∗  

controls the amount of smoothing. We applied this method to quantile estimation and the proportion 
below an estimated level, but it did not appear to improve the performance of the estimation procedure. 
One possible explanation is that noise contamination “jitters” duplicated observations arising from with-
replacement sample and stabilizes subsequent variance estimator to some extent. Since we used without-
replacement sampling, this problem was already mostly avoided. More careful study is necessary to 
understand the effect of smoothing in the context. 

 
6  Conclusions 
 

In this article, we have explored the use of bagging procedures for nonlinear and non-differentiable 
survey estimators. We presented theoretical results on bagging estimator both under design-based and 
model-based framework. The bagging estimator can be treated as the expectation of a two-phase estimator 
conditioning on the first phase, and this expectation smoothes out “jumps” in the non-differentiable 
estimator. The empirical study has revealed the potential of bagging non-differentiable survey estimators, 
and while the relative performance of bagging varies from one scenario to another, the results are certainly 
promising. 

How to estimate the variance of bagged survey estimators remains an open question when the 
sampling design is a general complex design. We have proposed two ideas for variance estimation for 
practical use, but further theoretical study of variance estimation under design-based framework is 
certainly warranted. 

 
Appendix 
 

A.1  Design-based theory 
 

Assumptions D.1-D.6 are used to show the design-based results given below (Theorems 3 and 4). 
Assumption D.1 specifies moment conditions on the study variable ,iy  and Assumption D.2 specifies 

conditions on the second order inclusion probability of the sampling design. Assumption D.3 guarantees 
that the size of each resample converges to infinity in the limit. Assumption D.4 specifies smoothness 
conditions on ( )m ⋅  in the differentiable estimator. Assumptions D.5-D.6 are used to show the design 

consistency of bagging non-differentiable survey estimators. 
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(D.1) The study variable iy  has finite 2 δ+  population moment for arbitrarily small > 0,δ  

2

=1

1  <  ,lim
N

i
N iN

δ+

→∞
∞∑ y 

 

where each element of 2
i

δ+y  is the original element raised to the power of 2 δ+  and ⋅   denotes 
Euclidean norm. 

 
(D.2) For all ,N  min > 0,

Ni U i Nπ π ∗
∈ ≥  where ,NNπ ∗ →∞  and  

  max < ,lim sup ij i j
N

n π π π
→∞

⋅ − ∞  

where ijπ  denotes the joint inclusion probability of elements ,  .i j  

 
(D.3) The resampling process generating bA  is SRSWOR of size ,k  with ( )= ,  (0,1].k O nκ κ ∈  Further, 

every bootstrap resample of size k  is used in calculating the bagged estimator. 

 
(D.4) The function ( )m ⋅  is differentiable and has nontrivial continuous second derivative in a compact 

neighborhood of .Nμ  

 
(D.5) The estimator λ̂  is n -consistent for the population target ,Nλ  lim =N N→∞ ∞λ λ  and the 

estimator λ̂  is a symmetric statistic.  

 
(D.6) The function ( )h ⋅  is bounded and the population quantity is “compactly differentiable in a weak 

sense” (Dümbgen 1993). There exists a function ( )g ⋅  such that,  

( ) ( ) ( )
1 1

1 1 0,sup
N N

i i
C i i

h N h g N
N N

α α− −
∞ ∞ ∞

∈ = =

− − − − − →∑ ∑
ss

y λ s y λ λ s  

where Cs  is a large enough compact set in ,  0 < 1 2p α ≤  and ( )g ∞λ  is bounded. 

 
The following theorem gives several asymptotic approximations for the bagged estimator, depending 

on the rate of convergence of k  relative to .n  In all three cases, the bagged estimator is design consistent. 
Intuitively speaking, the bagging estimator behaves like the original estimator when the resample size k  
is large (approaches infinity no slower than 1/2n ), but converges at a different speed when the resample 
size is small. 

 

Theorem 3 Under Assumptions D.1-D.4, the bagged differentiable estimator ,d̂ bagθ  admits the following 

second-order expansion,  
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where > 0κ  is such that the resample size ( )= .k O nκ  

 
Proof of Theorem 3:  

The proof easily follows from a Taylor expansion of the individual resample-based estimator ( )( )ˆ bm ∗μ   

around .Nμ  The linear expansion term reduces to ( ){ } ( )ˆT
N Nm′ −μ μ μ  based on an earlier argument. 

Under D.1 and D.3, the quadratic term has the same order as the SRSWOR variance of ( )ˆ b
∗μ   and hence 

is ( )1 .po k   

 
Next, Theorem 4 gives the design consistency of the non-differentiable bagged estimator. 

 
Theorem 4 Under Assumptions D.1-D.3 and D.5-D.6, the bagged non-differentiable estimator ,n̂d bagθ  is 

design consistent for its population target ,ndθ  i.e., ( ),
ˆ = 1 .nd bag nd poθ θ−   

 
Proof of Theorem 4:  

We can establish that ( ) ( ) ( )1 1 i i Ni A
N hπ

∈
−∑ y λ  is design consistent for ndθ  as a result of D.2 and the 

fact that ( )h ⋅  is bounded (D.6). Then it suffices to show that 

( ) ( ) ( ) ( ),
ˆ 1 1 = 1 ,nd bag i i N pi A

N h oθ π
∈

− −∑ y λ  or  

( )( ) ( ) ( )*1 1 1 ˆ = 1
1
1

b

i b i N p
ii A A i

h h o
nN
k

π∈ ∋

 
 
 − − − −    −  

∑ ∑ y λ y λ  

following (2.6). We can establish that the collection of resample-based estimators ( )ˆ
b
∗λ   are uniformly 

contained in a neighborhood of ,Nλ  or, ( ) ( )ˆsup =
bA b N O N α∗ −−λ λ s  for some > 0.α  Then we can 

apply D.6 to conclude the design consistency of the bagging estimator.  
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A.2  Model-based theory 
 

Assumptions M.1-M.4 are used to show the model-based results (Theorems 1 and 2). Assumption M.1 
specifies superpopulation distribution of population characteristics .iy  Assumptions M.2 and M.3 assume 
simple random without replacement sampling for both the design and the resampling process. Assumption 
M.5 is needed for showing the model-based asymptotic results for the bagging estimator defined by 
estimating equations. 

 
(M.1) The sequence of population characteristics iy  constitute an iid  sample from a probability 

distribution with density ( ).Yf y  

 
(M.2) The sampling design is ignorable, or equivalently, the sampled and unsampled observations are 

subject to the same distribution.  

 
(M.3) The resampling process generating bA  is SRSWOR of size ,k  where the bootstrap sample size k  

is bounded. Further, every bootstrap resample of size k  is used in calculating the bagged 
estimator. 

 
(M.4) The function ( )h ⋅  is bounded. 

 
(M.5) Let ( ) ( )= E iS yγ ψ γ∞ −  be a continuous function of ,γ  and ,eeθ ∞  be the smallest root of 

( ) = 0;S γ∞  for an arbitrary y  in the support of the random variable ,iy  the quantity  

( ) ( )
1

=1

1 1inf : 0
k

i
i

y y
k k

γ ψ γ ψ γ
− 

− + − ≥ 
 

∑  

belongs to a compact set with probability 1. 

 
Proof of Theorem 1: 

The bagging estimator ,n̂d bagθ  is a symmetric statistic, provided that λ̂  is symmetric (Lee 1990). We can 
project it onto a single dimension, say, 1.y  But projections onto other observations are equivalent due to 
symmetry,  

{ }

( )( ) ( )( )

( ) ( )

, 1

* *
1 1 1 1

1 { ,1}, 1

ˆE =

1 1 1 1ˆ ˆ       =E = E =
1 1
1 1

1 1       = .

b b
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b b
A A i i

nh h
n nn n
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ku v
n n

θ

∋ ∋ ≠

   
   

−   − + −   − −            − −      
−

+

∑ ∑

y y

y λ y y y λ y y

y y

   
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Then we can derive the following linearization of bagging estimator using the theory of symmetric 
statistics,  

( ){ } ( ){ } ( )1/2
, , , ,

=1 =1

1 1ˆ = ,
n n

nd bag nd i nd i nd p
i i

ku v o n
n n

θ θ θ θ −
∞ ∞ ∞

−
− − + − +∑ ∑y y  

where ( ),  ( )u v⋅ ⋅  and ,ndθ ∞  are defined in Theorem 1. The asymptotic variance (3.3) can be easily derived 

given the iid  sampling assumption.  

 

Proof of Theorem 2:  
The bagged estimator defined in (2.7) can be treated as a one-sample -thk  order U-statistic, with kernel 
function  

( ) ( )1 2
=1

1, , , = inf : 0 .
k

k i
i

h y y y y
k

γ ψ γ
 

− ≥ 
 

∑  

We can directly apply a well-known formula for linearizing U-statistic (Serfling 1980 and van der Vaart 
1998, p. 161) to obtain the linearization 

 

( ){ } ( )1/2
, , ,

=1

ˆ = ,
n

ee bag ee i ee p
i

k u y o n
n

θ θ θ −
∞ ∞− − +∑  

where  

( ) ( )

( ) ( )

1 2 1

1

=1

= E , , , ,

1 1= E inf : 0 .

k

k

i
i

u y h y y y y

y y
k k

γ ψ γ ψ γ

−

− 
− + − ≥ 

 
∑



 

The bagged estimating equation estimator (2.7) can be linearized as  

 ( ){ } ( )1/2
, , ,

=1

ˆ = .
n

ee bag ee i ee p
i

k u y o n
n

θ θ θ −
∞ ∞− − +∑   (A.1) 

The asymptotic variance of ,êe bagθ  can be directly obtained from linearization (A.1). 
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