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Frequentist and Bayesian approaches for comparing 
interviewer variance components in two groups of survey 

interviewers 

Brady T. West and Michael R. Elliott1 

Abstract 

Survey methodologists have long studied the effects of interviewers on the variance of survey estimates. 
Statistical models including random interviewer effects are often fitted in such investigations, and research 
interest lies in the magnitude of the interviewer variance component. One question that might arise in a 
methodological investigation is whether or not different groups of interviewers (e.g., those with prior 
experience on a given survey vs. new hires, or CAPI interviewers vs. CATI interviewers) have significantly 
different variance components in these models. Significant differences may indicate a need for additional 
training in particular subgroups, or sub-optimal properties of different modes or interviewing styles for 
particular survey items (in terms of the overall mean squared error of survey estimates). Survey researchers 
seeking answers to these types of questions have different statistical tools available to them. This paper aims to 
provide an overview of alternative frequentist and Bayesian approaches to the comparison of variance 
components in different groups of survey interviewers, using a hierarchical generalized linear modeling 
framework that accommodates a variety of different types of survey variables. We first consider the benefits 
and limitations of each approach, contrasting the methods used for estimation and inference. We next present a 
simulation study, empirically evaluating the ability of each approach to efficiently estimate differences in 
variance components. We then apply the two approaches to an analysis of real survey data collected in the U.S. 
National Survey of Family Growth (NSFG). We conclude that the two approaches tend to result in very similar 
inferences, and we provide suggestions for practice given some of the subtle differences observed. 

 
Key Words: Interviewer variance; Bayesian analysis; Hierarchical generalized linear models; Likelihood ratio testing. 

 
 

1  Introduction 
 

Between-interviewer variance in survey methodology (e.g., West, Kreuter and Jaenichen 2013; West 
and Olson 2010; Gabler and Lahiri 2009; O’Muircheartaigh and Campanelli 1998; Biemer and Trewin 
1997; Kish 1962) occurs when survey responses nested within interviewers are more similar than 
responses collected from different interviewers. Between-interviewer variance can increase the variance of 
survey estimates of means, and may arise due to correlated response deviations introduced by an 
interviewer (e.g., Biemer and Trewin 1997), given the complexity of survey questions (e.g., Collins and 
Butcher 1982) or interactions between the interviewer and the respondent (e.g., Mangione, Fowler and 
Louis 1992), or nonresponse error variance among interviewers (West et al. 2013; Lynn, Kaminska and 
Goldstein 2011; West and Olson 2010).  

Survey research organizations train interviewers to eliminate this component of variance in survey 
estimates, as it is sometimes larger than the component of variance due to cluster sampling (Schnell and 
Kreuter 2005). In reality, an interviewer variance component can never be equal to 0 (which would imply 
that means on the variable of interest are identical across interviewers), but survey managers aim to 
minimize this component via specialized interviewer training. For example, interviewers may practice the 
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administration of selected questions under the direct supervision of training staff, and then receive 
feedback on any variance in administration that is noted by the staff (in an effort to standardize the 
administration; see Fowler and Mangione 1990). In some non-interpenetrated designs, where interviewers 
are generally assigned to work exclusively in a single primary sampling area (e.g., the U.S. National 
Survey of Family Growth; see Lepkowski, Mosher, Davis, Groves and Van Hoewyk 2010), interviewer 
effects and area effects are confounded, preventing estimation of the variance in survey estimates that is 
uniquely attributable to the interviewers. Elegant interpenetrated sample designs (Mahalanobis 1946) 
enable interviewers to work in multiple sampling areas, and in these cases, cross-classified multilevel 
models can be used to estimate the components of variance due to interviewers and areas (e.g., Durrant, 
Groves, Staetsky and Steele 2010; Gabler and Lahiri 2009; Schnell and Kreuter 2005; O’Muircheartaigh 
and Campanelli 1999; O’Muircheartaigh and Campanelli 1998).  

In general, estimating the overall magnitude of interviewer variance in the measures of a given survey 
variable or data collection process outcome is a useful exercise for survey practitioners. If random 
subsamples of sample units are assigned to interviewers following an interpenetrated design, one can 
estimate the component of variance due to interviewers and subsequently the unique effects of 
interviewers on the variance of an estimated survey mean (e.g., Groves 2004, p. 364). Large estimates can 
indicate potential measurement difficulties that certain interviewers are experiencing, or possible 
differential success in recruiting particular types of sampled units. Given a relatively large estimate of an 
interviewer variance component and an appropriate statistical test indicating that the component is 
significantly larger than zero (or “non-negligible”, given that variance components technically cannot be 
exactly equal to zero; see Zhang and Lin 2010), survey managers can use various methods to compute 
predictions of the random effects associated with individual interviewers, and identify interviewers who 
may be struggling with particular aspects of the data collection process. 

While the estimation of interviewer variance components and subsequent adjustments to interviewer 
training and data collection protocols have a long history in the survey methodology literature (see 
Schaeffer, Dykema and Maynard 2010 for a recent review), no studies in survey methodology to date have 
examined the alternative approaches that are available to survey researchers for comparing variance 
components in two independent groups of survey interviewers. In general, alternative statistical 
approaches are available for estimating interviewer variance components, and estimates (and 
corresponding inferences about the variance components) may be sensitive to the estimation methods that 
a survey researcher employs. The same is true for survey researchers who may desire to compare the 
variance components associated with different groups of interviewers, for various reasons (e.g., 
identifying groups that need more training or more optimal modes for certain types of questions): different 
statistical approaches to performing these kinds of comparisons exist, and inferences about the differences 
may be sensitive to the approach used. With this paper, we aim to evaluate alternative frequentist and 
Bayesian approaches to making inference about the differences in variance components between two 
independent groups of survey interviewers, and provide practical guidance to survey researchers interested 
in this type of analysis.  

The paper is structured as follows. In Section 2, we introduce the general modeling framework that 
enables these comparisons of interviewer variance components for both normal and non-normal (e.g., 
binary, count) survey variables, and review existing literature comparing the frequentist and Bayesian 
approaches to estimation and inference, highlighting the advantages and disadvantages of each approach. 
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We then present a simulation study in Section 3, evaluating the ability of the two approaches to efficiently 
estimate differences in variance components between two hypothetical groups of interviewers. Section 4 
applies the two approaches to real survey data collected in the U.S. National Survey of Family Growth 
(NSFG) (Lepkowski et al. 2010; Groves, Mosher, Lepkowski and Kirgis 2009). Finally, Section 5 offers 
concluding thoughts, suggestions for practitioners, and directions for future research. We include SAS, R, 
and WinBUGS code that readers can use to implement the two approaches in the Appendix. 

 
2  Alternative approaches for comparing variance components in 
Hierarchical Generalized Linear Models 
 

We first consider a general class of models that survey researchers can employ to compare variance 
components in different groups of interviewers. Hierarchical Generalized Linear Models (HGLMs) are 
flexible analytic tools that can be used to model observations on both normal and non-normal (e.g., binary, 
count) survey variables of interest, where observations nested within the same interviewer cannot be 
considered independent (Raudenbush and Bryk 2002; Goldstein 1995). We consider alternative 
approaches to making inferences about interviewer variance components in a specific class of HGLMs, 
where the interviewer variance components for two independent groups of interviewers defined by a 
known interviewer characteristic need not be equal. This type of HGLM can be written as  

 
( ) ( ) ( ) ( )

( ) ( )
0 1 (1) (2)

2 2
(1) 1 (2) 2

| 1 1 2

~ 0, ,  ~ 0, ,

β β

τ τ

  = + = + = + = ij i i ii i i

i i

g E y u I Group u I Group u I Group

u N u N
 (2.1) 

where ( )g x  is the link function relating a transformation of the expected value of the dependent variable, 

,ijy  to the linear combination of the fixed and random effects (e.g., ( ) ( )  1  = −g x log x x  for an 

assumed Bernoulli distribution [binary outcome], ( ) ( )  =g x log x  for an assumed Poisson distribution 
[count outcome]), i  is an index for the interviewer, j  is an index for the respondent nested within an 
interviewer, and ( )I  represents an indicator variable, equal to 1 if the condition inside the parentheses is 
true and 0 otherwise. The random interviewer effects from Group 1, (1) ,iu  are assumed to follow a normal 

distribution with mean 0 and variance 2
1 ,τ  while the random interviewer effects from Group 2, (2) ,iu  are 

assumed to follow a normal distribution with mean 0 and variance 2
2 .τ  Other distributions may be posited 

for the random effects, and the general model in (2.1) can accommodate over-dispersion in the observed 
dependent variable relative to the posited distribution for that variable. The key aspect of the specification 
in (2.1) is that random effects for different groups of interviewers have different variances. The fixed 
effect parameter 1β  in (2.1) represents a fixed effect of Group 1 on the outcome relative to Group 2 in the 
HGLM, and fixed effects of other covariates can easily be included. Similarly, additional subgroups of 
interviewers can be considered by including additional random effects (k) ,iu  for 2.>k  Analytic interest 

lies in the magnitude of the difference in the variance components.  
Models of the form in (2.1) can be applied when methodological studies are designed to compare two 

different groups of interviewers in terms of their variance components. For example, there exists a debate 
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in the survey methodology literature regarding whether interviewers should use standardized or 
conversational interviewing. Proponents of standardized interviewing argue that all interviewers should 
administer surveys in the exact same way, allowing respondents to interpret questions as they see fit (e.g., 
Fowler and Mangione 1990). Other research has shown that more flexible interviewing using a 
conversational style may increase respondent understanding of survey questions and reduce measurement 
error (e.g., Schober and Conrad 1997). To test a hypothesis that one interviewing style results in lower 
between-interviewer variance, a researcher might randomize interviewers to two groups trained in the two 
different styles, collect survey data on a variety of variables, and then fit model (2.1), including indicator 
variables for the two groups of interviewers. This same approach could be used to compare the interviewer 
variance components in two groups of interviewers randomly assigned to different data collection modes 
(e.g., CAPI vs. CATI). To date, no published studies have attempted these kinds of comparisons, but they 
are important for understanding the overall impacts of these design decisions on the mean squared error 
(MSE) of survey estimates.  

Frequentist approaches to the estimation of parameters in HGLMs rely on various numerical or 
theoretical approaches to approximating complicated likelihood functions, especially for models such as 
(2.1) that involve complex random effects structures (e.g., Faraway 2006, Chapter 10; Molenberghs and 
Verbeke 2005). In general, inferences are based on these approximate likelihood-based approaches, which 
include residual pseudo-likelihood (which is different from the pseudo-maximum likelihood estimation 
approach developed by Binder (1983) for design-based analyses of data from complex sample surveys), 
penalized quasi-likelihood, and maximum likelihood based on a Laplace approximation. Previous work 
has found favorable simulation results for the residual pseudo-likelihood approach, which indicate nearly 
unbiased estimation of the variance components in an HGLM as compared to maximum likelihood using 
Laplace approximation or adaptive quadrature (Pinheiro and Chao 2006). These findings are similar to the 
case of restricted maximum likelihood (REML) estimation in a model for a normally distributed outcome 
variable. For binary outcome variables, marginal or penalized quasi-likelihood techniques can lead to 
downward bias in parameter estimates and convergence problems, and fully Bayesian approaches may 
have favorable properties in this case (Browne and Draper 2006; Rodriguez and Goldman 2001). We 
therefore consider the residual pseudo-likelihood approach in the simulations and applications presented 
in this study, and contrast this approach with a fully Bayesian approach.   

There are two approaches available for making inference about differences in variance components in 
the frequentist setting. The first approach involves testing the null hypothesis that 2 2

1 2 ,τ τ=  versus the 
alternative hypothesis that 2 2

1 2 .τ τ≠  Conceptually, this is a simple hypothesis test to perform using 
frequentist methods, as the null hypothesis defines an equality constraint rather than setting a parameter to 
a value on the boundary of a parameter space. The model under the null hypothesis is nested within the 
model under the alternative hypothesis, where 2 2

2 1 .τ τ= + k  The null hypothesis can thus be rewritten as 
0,=k  versus the alternative that 0.≠k  A test statistic is computed by fitting a constrained version of the 

model in (2.1), with the random effect variance components in the two groups specified as equal, and then 
fitting the model with the more general form in (2.1). The positive difference in the approximate -2 log-
likelihood values of these two models is then computed, and referred to a chi-square distribution with one 
degree of freedom.   
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The second approach involves computing the difference of the pseudo-ML estimates, 1 2ˆ ˆ ,τ τ−  and an 
associated 95% Wald-type confidence interval for the difference, given by 

( ) ( ) ( )1 2 1 2 1 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1.96 var var 2cov , .τ τ τ τ τ τ− ± + −  This interval requires asymptotic estimates of the 

variances and covariances of the two estimated variance components, which are computed based on the 
Hessian (second derivative) matrix of the objective function used for the maximum likelihood estimation 
procedure. If the resulting Wald interval includes zero, one would conclude that there is not enough 
evidence against the null hypothesis. Confidence intervals for differences in variance components can also 
be computed using inversions of profile likelihood tests (e.g., Viechtbauer 2007), although standard 
software does not include options for implementing this procedure (to our knowledge).   

These two frequentist approaches to making inference about differences in interviewer variance 
components do have limitations. When the number of interviewers in each group is small (say, less than 
30; see Hox (1998) for discussion), asymptotic results for the likelihood ratio test (Zhang and Lin 2010) 
may no longer hold. Frequentist (maximum likelihood) methods also tend to overstate the precision of 
estimates, given that they ignore the uncertainty in estimates of the variance components (Carlin and 
Louis 2009, p. 335-336), which is especially problematic for small samples (Goldstein 1995, p. 23). 
Bayesian approaches allow analysts to place prior distributions on variance components to reflect this 
uncertainty, unlike frequentist approaches. Furthermore, Molenberghs and Verbeke (2005, p. 277) argue 
that likelihood ratio tests should not be used to test hypotheses when models are fitted using pseudo-
likelihood methods. Approximate maximum likelihood estimation methods can also lead to invalid (i.e., 
negative) estimates of variance components in these models when variance components are very small. 
Software that does not use estimation procedures constraining these variance components to be greater 
than zero generally responds to this problem by setting negative estimates of variance components equal 
to zero (with no accompanying standard error), which prevents computation of the Wald-type confidence 
interval described above.  

A Bayesian approach to fitting the HGLMs described in (2.1) uses the MCMC-based Gibbs sampler 
and the adaptive rejection sampling methodology (Gilks and Wild 1992) to simulate draws from the 
posterior distribution for the parameters in the model defined in (2.1). In general, the posterior 
distributions for the parameters in an HGLM are not of known distributional forms and need to be 
simulated (Gelman, Carlin, Stern and Rubin 2004, Section 16.4). Diffuse, non-informative priors for the 
fixed effects and the variance components in (2.1) can be specified for the simulations, to let the data 
provide the most information about the posterior distributions of the parameters (Gelman and Hill 2007; 
Gelman 2006, Section 7). This approach enables inferences based on simulated draws from the marginal 
posterior distributions of the two fixed effect parameters, the two variance parameters, the random 
interviewer effects, and any functions of these parameters. This study focuses on the marginal posterior 
distribution of the difference in the random effect variances for two groups of interviewers defined by a 
known interviewer-level characteristic, computed using the simulated draws of the two variance 
components.  

Given that traditional hypothesis tests are not meaningful in the Bayesian setting, Bayesian inference 
will focus on the difference in the interviewer variance components. Inference for the difference is based 
on several thousand draws of the two variance components from the joint posterior distribution estimated 
using the Gibbs sampler. For each draw d  of the two variance components, the difference in the variance 
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components, defined as 2( ) 2( )
1 2 ,τ τ−d d  can be computed. Inferences will then be based on the marginal 

distribution of these differences, ignoring the draws of the random interviewer effects and the other 
nuisance parameters. The median and the 0.025 and 0.975 quantiles (for a 95% credible set) of the 
simulated differences of the two variance components will be computed based on the effective number of 
simulation draws of the two variance components from the estimated joint posterior distribution. In a 
given analysis, several thousand draws from the posterior distribution can be generated using the Gibbs 
sampler, with a large number of initial draws discarded as burn-in draws, and the effective number of 
simulation draws will be computed based on the number of burn-in draws (Gelman and Hill 2007, Chapter 
16). If the resulting 95% credible set includes 0, there will be evidence in favor of the two groups having 
equal variance components. If the 95% credible set does not include 0, there will be evidence in favor of 
the two groups having different variances, with a positive median suggesting that group 1 has the higher 
variance component. Inference for the two fixed effects can follow a similar approach.  

Focusing on draws of the two variance components from the full joint posterior distribution (and their 
differences) and ignoring draws of the random interviewer effects and the fixed effects has the effect of 
integrating these other parameters out of the joint posterior distribution. This Bayesian approach therefore 
provides a convenient methodology for simulating draws from the marginal distribution of a complicated 
parameter (the difference between the two variance components) and computing a 95% credible set for 
that parameter. While such estimates can also be obtained in the frequentist approach, as noted previously, 
the Bayesian approach does not require asymptotic assumptions and incorporates the variability in the 
estimated variance components into the computation of the 95% credible sets via the simulated draws.  

Multiple (typically three) Markov chains can be run in parallel in the iterative Gibbs sampling 
algorithm to simulate random walks through the space of the joint posterior distribution. The Gelman-
Rubin R̂  statistic, representing (approximately) the square root of the variance of the mixture of the 
chains divided by the average within-chain variance (Gelman and Rubin 1992), can be used to assess 
convergence (or mixing) of the chains for each parameter. Values less than 1.1 on this statistic can be 
considered as evident of convergence of the chains for a given parameter. Posterior draws of the 
parameters can be pooled from the three chains to generate the final effective sample size of draws used 
for inferences. 

The Bayesian approach outlined above is also not without limitations. The selection of the prior 
distributions used to compute the posterior distribution for the parameters in (2.1) is essentially arbitrary, 
and depends on the choices of a given analyst and the amount of prior information available. Furthermore, 
the choice of the prior distribution can become crucial when there is a small number of interviewers (say, 
less than 20), where different priors can lead to very different inferences regarding the variance 
components (Lambert, Sutton, Burton, Abrams and Jones 2005); the use of prior information about the 
variance components can increase efficiency relative to the use of non-informative priors in these cases. 
Model misspecification is also a distinct possibility depending on the survey variable being modeled, 
which is also a limitation of the frequentist approach. Computational demand may also be an issue with 
the Bayesian (Gibbs sampling) approach (Browne and Draper 2006), especially if one desires comparisons 
of interviewer variance components for a large number of survey variables (with potentially different 
distributions) and there are a relatively large number of interviewers; this may not be as problematic with 
recent advances in hardware speed and algorithm efficiency. Finally, analysts may not be comfortable 
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with the available software for Bayesian approaches, so there may be a learning curve associated with 
implementation of this approach.  

Several previous articles have compared these alternative frequentist and Bayesian approaches using 
simulation studies. Chaloner (1987) considered one-way ANOVA models with random effects for 
unbalanced data (similar to the case in this study, where interviewers have different workloads), and found 
lower empirical MSE values for posterior modes of the variance components when following the Bayesian 
approach and using non-informative priors than for the frequentist (maximum likelihood) approach. Van 
Tassell and Van Vleck (1996) reported that the Gibbs sampler (using either informative or non-
informative prior distributions) and REML both produce empirically unbiased estimates of variance 
components that tend to be extremely similar. Browne and Draper (2006) also found that both approaches 
can lead to unbiased estimates, with the more “automatic” nature of frequentist approaches being an 
attractive feature. In the context of predicting means for small areas using models with random area 
effects, Singh, Stukel and Pfeffermann (1998) reported that Bayesian MSE approximations for the 
predictions have good frequentist properties, but that the Bayesian method tends to produce larger 
frequentist biases and prediction MSEs than frequentist methods. Farrell (2000) found that the Bayesian 
approach resulted in slightly more accurate predictions of small area proportions, with little differences in 
coverage rates or bias between the two approaches. Ugarte, Goicoa and Militino (2009) also found that the 
two approaches performed quite similarly in an application involving the detection of high-risk areas for 
disease. These authors point out that the relative computational simplicity of the frequentist approach is 
attractive in light of these findings. In general, based on the literature in this area, we anticipate similar 
performance of the two methods in the case of comparing interviewer variance components, and we 
evaluate this expectation using a simulation study (Section 3). 

While there exist many software procedures for fitting multilevel models and estimating variance 
components using both frequentist and Bayesian methods (see West and Galecki 2011 for a review), the 
frequentist approach to the specific comparison of variance components discussed in this paper is only 
readily implemented in the GLIMMIX procedure of SAS/STAT (SAS 2010), through the COVTEST 
statement with the HOMOGENEITY option (which assumes that a GROUP variable has been specified in 
the RANDOM statement, indicating different groups of clusters with random effects arising from different 
distributions). We are not aware of any other procedures that readily implement the frequentist 
comparison approach at the time of this writing. Example code that can be used for fitting these models 
using the GLIMMIX procedure is available in the Appendix. The Bayesian approach to comparing the 
variance components can be implemented in the BUGS (Bayesian Inference using Gibbs Sampling) 
software (see References Section for more details). We also include example code that implements this 
approach by calling WinBUGS from R in the Appendix. 

 
3  Simulation Study 
 

We conducted a small simulation study to examine the empirical properties of these two alternative 
approaches. Data on two hypothetical survey variables of interest (one normally distributed, one Bernoulli 
distributed) were simulated according to the following two super-population models: 
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  (3.2) 

The notation used here is consistent with that used in (2.1). Values on the second Bernoulli variable 
were generated for hypothetical cases according to the logistic regression model specified in (3.2). To 
obtain the observed Bernoulli variable, a random draw was obtained from a UNIFORM(0,1) distribution, 
and the variable was set to 1 if the random draw was less than or equal to the predicted probability, and 0 
otherwise. For one hypothetical group of interviewers at a time, random interviewer effects were drawn, 
and values for cases within each interviewer were then generated according to the specified model. 

We generated 200 samples of hypothetical cases and simulated data for each variable, with 50 
hypothetical interviewers in one group collecting data from 50 hypothetical cases each ( 2,500=n  for 
each group of interviewers). We then generated an additional 200 samples in a small-sample scenario, 
with 20 interviewers in each group collecting data from ten hypothetical cases each ( 200=n  for each 
group of interviewers). The choices of the variance components in (3.1) correspond to intra-interviewer 
correlations of 0.015 and 0.030 for the two hypothetical groups of interviewers, while the choices of the 
variance components in (3.2) correspond to intra-interviewer correlations of 0.009 and 0.038. All of these 
values would be considered plausible in a face-to-face or telephone survey setting (West and Olson 2010). 
The known differences in variance components between the groups are therefore 1 for the normal 
variable, and 0.1 for the Bernoulli variable.  

Given these known values for the interviewer variance components in the hypothetical population, we 
applied each method described in Section 2 [using diffuse, non-informative, uniform priors for the 
variance components, per recommendations of Gelman (2006, Section 7)] to each hypothetical sample. 
We computed the following empirical measures for comparison purposes: 1) the empirical and relative 
bias of the estimator; 2) the empirical MSE of the estimator; 3) the “frequentist” coverage of the 95% 
Wald-type intervals (when using the frequentist approach) and the 95% credible sets (when using the 
Bayesian approach); and 4) the average widths of the 95% Wald-type intervals and the credible sets. The 
number of Wald-type intervals that could not be computed due to estimated variance components of 0 
(with no accompanying standard errors) was also recorded in each case. All simulations were performed 
using SAS, R, and BUGS, and simulation code is available upon request. 

Table 3.1 presents the results of the simulation study. The results suggest that for moderate-to-large 
samples of interviewers and respondents, both approaches yield estimators of the difference in variance 
components that have fairly small bias, as anticipated. The frequentist approach was found to yield 
estimators with smaller empirical MSE values; this is not entirely surprising, given the additional 
variability in the Bayesian estimates introduced by accounting for uncertainty in the prior distributions of 
the parameters with non-informative priors. The use of more informative priors may improve the 
efficiency of the Bayesian estimates. In the large sample setting, the 95% confidence intervals and 
credible sets computed for the difference in variance components appear to have acceptable coverage 
properties, with the Bayesian approach having slight under-coverage.  
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Table 3.1 
Results of simulation study comparing the empirical properties of the frequentist and Bayesian approaches to 
making inference about the differences in interviewer variance components. 
 

Sample Sizes  Frequentist Approach Bayesian Approach 

 Normal Y   

    50 interviewers / group 

    50 cases / interviewer 

    ( 2,500=n / group) 

Empirical Bias -0.0498 -0.0189 

Relative Bias -4.98% -1.89% 

Empirical MSE 0.6546 0.8134 

95% CI/CS Coverage 0.960 0.920 

Mean 95% CI/CS Width 3.1689 3.6283 

% of Wald CIs Invalid 0.0% -- 

Bernoulli Y   

Empirical Bias -0.0020 -0.0046 

Relative Bias -2.0% -4.6% 

Empirical MSE 0.0029 0.0033 

95% CI/CS Coverage 0.938 0.940 

Mean 95% CI/CS Width 0.2142 0.2372 

% of Wald CIs Invalid 11.5% -- 

    20 interviewers / group 

    10 cases / interviewer 

    ( 200=n / group) 

Normal Y   

Empirical Bias -0.2341 -0.3508 

Relative Bias -23.41% -35.08% 

Empirical MSE 6.9873 6.2869 

95% CI/CS Coverage 1.000 0.995 

Mean 95% CI/CS Width 16.6313 18.3574 

% of Wald CIs Invalid 54.0% -- 

Bernoulli Y   

Empirical Bias -0.0348 -0.0196 

Relative Bias -34.8% -19.6% 

Empirical MSE 0.0345 0.0861 

95% CI/CS Coverage 1.000 0.980 

Mean 95% CI/CS Width 1.2604 1.7970 

% of Wald CIs Invalid 65.5% -- 

   
Notably, 11.5% of the 95% Wald-type confidence intervals could not be computed when analyzing the 

binary outcome for the larger samples, due to one of the estimated variance components being equal to 
zero (with no standard error). This “failure” rate for the Wald intervals became much worse for both 
variables in the smaller samples, where both methods also produced inefficient estimates with a negative 
bias. The frequentist approach can therefore provide an estimate of the difference and associated 
confidence intervals that work well in larger samples with normally distributed variables, but in small 
samples or even moderate-to-large samples with non-normal variables, the simple Wald-type intervals that 
can be computed using standard software may fail a fairly substantial fraction of the time. This is due to 
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the fact that the Hessian matrix is not invertible when an estimated variance component is set to zero (i.e., 
the likelihood can't be approximated by a quadratic). Collectively, these simulation results therefore 
suggest that: 1) both approaches will perform similarly well when applied to real survey data with 
moderate-to-large samples of interviewers and respondents; 2) the Bayesian approach may be the better 
option if intervals (or credible sets) for the difference are desired; and 3) caution is advised when applying 
either method to relatively small samples of interviewers and respondents. 

 
4  Application: The U.S. National Survey of Family Growth (NSFG) 
 

We now apply the frequentist and Bayesian approaches to real survey data collected in the seventh 
cycle of the NSFG (June 2006 – June 2010). The original design of this cycle of the NSFG (Groves et al. 
2009) called for 16 quarters of data collection from a continuous sample that was nationally representative 
when it was completed in June 2010. The data analyzed in this paper were collected from a national 
sample of 11,609 females between the ages of 15 and 44, by 87 female interviewers (with varying sample 
sizes for each interviewer). For more details on the design and operation of the seventh cycle of the 
NSFG, see Lepkowski et al. (2010) or Groves et al. (2009). 

Each of the 87 interviewers has information available on her age (47.1% are age 55 or greater), years 
of experience (43.7% have five or more years of experience), number of children (33.3% have two or 
more children), marital status (19.5% have never been married), other employment (46.0% have other 
jobs), college education (57.5% completed a four-year college degree), previous experience working on 
NSFG (82.8% have worked on previous cycles), and ethnicity (81.6% are white). These observable 
interviewer-level characteristics will be used to divide the interviewers into two groups (in the absence of 
an ideal randomized experiment, like that described in Section 2).  

Each of the 11,609 female respondents has their parity (or count of live births) and an indicator of 
current sexual activity (indicated by at least one current male partner or at least one male partner in the 
past 12 months) measured and available for analysis. While these measures seem fairly simple, the 
concepts being measured may be communicated differently by different interviewers (resulting in 
interviewer variance). The primary analytic question is whether these different groups of female 
interviewers have significantly different variance components for these particular survey variables. 

We first consider an HGLM for the parity variable. Let Y  be a Poisson random variable with 
parameter .λ  We allow for overdispersion (or extra-Poisson dispersion) in ,Y  which is quite common in 
count variables (for example, the mean parity for the sample of 11,609 females is 1.19, and the variance of 
the measured parity values is 1.99). Following Hilbe (2007) and Durham, Pardoe and Vega (2004), we let 

,λ µ= r  where r  is a ( )1 1,GAMMA α α− −  random variable. It then follows that Y  has a negative 

binomial distribution with mean µ  and scale parameter :α   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2var var ( ) var( ) var( ) 1

λ µ µ µ

λ λ µ µ µ µ µ αµ

= = = =

= + = + = + = +

E Y E E r E r

Y E E r r E r r
 

We specify an HGLM for the observed value of parity on female respondent j  interviewed by 
interviewer ,  ,iji y  as follows:    
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( )
( )

( ) ( ) ( ) ( )
( ) ( )

1 1

0 1 (1) (2)

2 2
(1) 1 (2) 2

~ ,  

~ ,

log 1 1 2

~ 0, ,            ~ 0, .

ij i i i i

i

i i ii i i

i i

y Poisson r

r Gamma

I Group u I Group u I Group

u N u N

λ λ µ

α α

µ β β

τ τ

− −

=

= + = + = + =
  (4.1) 

In this multilevel negative binomial regression model, ( )0exp β  represents the expected parity for Group 

2, ( )1exp β  represents the expected multiplicative change in parity for Group 1 relative to Group 2, (1)iu  is 

a random effect associated with interviewer i  in Group 1, and (2)iu  is a random effect associated with 

interviewer i  in Group 2.  
Next, we consider an HGLM for the binary indicator of current sexual activity. Let 1=ijz  if a female 

respondent j  indicates current sexual activity to interviewer ,i  and 0 otherwise. We specify the following 
model for this binary indicator: 

 

( )
( ) ( ) ( ) ( )
( ) ( )

0 1 (1) (2)

2 2
(1) 1 (2) 2

~

ln 1 1 1 2

~ 0, ,        ~ 0, .

ij i

i i i ii i i

i i

z Bernoulli p

p p I Group u I Group u I Group

u N u N

β β

τ τ

 −  = + = + = + =    (4.2) 

In this model, ( )0exp β  represents the expected odds of current sexual activity for Group 2, ( )1exp β  

represents the expected multiplicative change in the odds of current sexual activity for Group 1 relative to 
Group 2, (1)iu  is a random effect associated with interviewer i  in Group 1, and (2)iu  is a random effect 

associated with interviewer i  in Group 2.  

We fit models (4.1) and (4.2) using the two approaches described in Section 2. For the frequentist 
approach, based on recommendations from the literature discussed in Section 2, we estimated the 
parameters in these models using residual pseudo-likelihood (RPL) estimation, as implemented in the 
GLIMMIX procedure in the SAS/STAT software. All frequentist analyses presented in this section were 
repeated using adaptive quadrature to approximate the likelihood functions, and the primary results did not 
change; in addition, the use of adaptive quadrature led to longer estimation times.  

For the Bayesian approach, the following non-informative prior distributions for these parameters were 
used. These prior distributions were selected based on a combination of estimates from initial naïve model 
fitting, and recommendations from Gelman and Hill (2007) and Gelman (2006, Section 7) for proper but 
non-informative prior distributions for variance parameters in hierarchical models with a reasonably large 
number (i.e., more than five) of groups (or interviewers, in the present context): 

( ) ( )
( ) ( )

( )

0 1

2 2
1 2

~ 0,100                ~ 0,100

~ 0,10       ~ 0,10

ln( ) ~ 0,100 .

N N

Uniform Uniform

N

β β

τ τ

α

 

The non-informative priors for the fixed effects and the (natural log transformed) scale parameter for 
the negative binomial count variable (parity) indicate an expectation that these parameters will be 
somewhere in the range (-10, 10), while the non-informative priors for the variance components are 
uniform distributions on the range (0, 10). Given initial naive estimates of the fixed effects ranging 
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between -1 and 1 and initial estimates of the (untransformed) scale parameter and variance components 
ranging between 0 and 5, these priors are all fairly diffuse, expressing little prior knowledge about these 
parameters and letting the available NSFG data provide the most information. Prior studies comparing 
interviewer variance components for similar count variables could also be used in general applications of 
this technique to specify more informative prior distributions. It is also important to note that the BUGS 
software uses inverse-variances for the normal distribution, meaning that 0.01 and inverses of the variance 
components will be specified in the normal distribution functions (example WinBUGS code used for the 
analyses is available in the Appendix). 

Table 4.1 presents descriptive statistics for the interviewers in each of the groups defined by the eight 
interviewer-level characteristics. These descriptive statistics include the number of interviewers in each 
group (out of 87 total), and the mean, standard deviation (SD) and range for the number of cases (sample 
sizes) assigned to each interviewer. 

 
Table 4.1 
Descriptive statistics for the NSFG interviewers in each group defined by the eight interviewer-level 
characteristics 
 

 Number of 

Interviewers 

Total Sample 

Size 

Mean Sample 

Size 

SD of Sample 

Sizes 

Range of Sample 

Sizes 

Age (Years)      

< 54 46 5,888 128.00 113.29 (18, 554) 
55+ 41 5,721 139.54 132.67 (12, 532) 

Experience      

< 5 Years 49 6,062 123.71 126.65 (12, 554) 
5+ Years 38 5,547 145.97 116.71 (18, 507) 

No. of Children      

< 2 58 7,756 133.72 113.28 (18, 532) 
2+ 29 3,853 132.86 140.53 (12, 554) 

Ever Married      

Yes 70 9,923 141.76 129.00 (17, 554) 
No 17 1,686 99.18 83.49 (12, 377) 

Other Job      

No 47 5,406 115.02 95.49 (12, 532) 
Yes 40 6,203 155.08 145.92 (17, 554) 

College Degree      

No 37 4,528 122.38 87.97 (18, 409) 
Yes 50 7,081 141.62 142.71 (12, 554) 

NSFG Before      

No 15 1,155 77.00 39.17 (20, 166) 
Yes 72 10,454 145.19 130.29 (12, 554) 

Ethnicity      

Other 16 1,781 111.31 75.53 (20, 297) 
White 71 9,828 138.42 130.35 (12, 554) 
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The descriptive statistics in Table 4.1 indicate substantial variance in the sizes of the samples assigned 
to the interviewers. A modeling approach treating interviewer effects as fixed would probably not make 
sense for these data, given the small sample sizes for some of the interviewers (which could lead to 
unstable estimates for particular interviewers). Instead, a modeling approach that borrows information 
across interviewers (treating interviewer effects as random) would lead to more stable estimates of means 
for each interviewer. We also note that for three of the observable interviewer features (Ever Married, 
NSFG Before, and Ethnicity), one of the two groups has less than 20 interviewers, which is not ideal for 
reliable estimation of variance components (Hox 1998). In light of the simulation results for smaller 
sample sizes (Section 3), we consider the impacts of these small sample sizes in our analyses.  

Simple examinations of the distributions of the means of observed parity measures for the interviewers 
in each group are presented in Figure 4.1 below, to obtain an initial sense of the magnitude of interviewer 
variance in each of the groups. Figure 4.1 presents side-by-side box plots of the interviewer means on the 
parity variable for each group, with the means weighted by assigned sample sizes, along with the overall 
distribution of the 11,609 parity measures in the complete data set. 

 

 
Figure 4.1 Distributions of observed means on parity for interviewers in each group, with interviewer means weighted by 
assigned sample size, along with the overall distribution of the reported parity measures. 

 

The distributions of the means of measured parity values for the interviewers in Figure 4.1 provide an 
initial sense of groups that tend to differ in terms of the interviewer variance components. The group of 
interviewers that has never been married appears to have reduced variance, as does the group that has no 
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prior experience working on the NSFG. The box plots also suggest that the groups do not vary 
substantially in terms of parity means, which is reassuring (i.e., different groups of interviewers do not 
produce different marginal means for the estimate of interest). Finally, the distribution of observed parity 
values for all 11,609 respondents has the expected appearance for a variable measuring a count of 
relatively rare events (live births), with mean 1.19 and variance 1.99. 

We next consider the distributions of the proportions of females indicating current sexual activity 
among the interviewers in each group (Figure 4.2).  

 

 
Figure 4.2 Distributions of observed proportions of female respondents indicating current sexual activity for interviewers 
in each group, with interviewer means weighted by assigned sample size, along with the overall distribution of the sexual 
activity indicator. 

 
We see less evidence of differences in interviewer variance between the groups in general for this 

proportion, relative to average parity. Approximately 80% of the female respondents indicated that they 
were currently in a sexually active relationship.  

Table 4.2 presents estimates of the parameters in each of the negative binomial models for the 
measured parity variable based on the two alternative analytic approaches. This table also presents results 
of the likelihood ratio tests comparing the two interviewer variance components (for each pair of groups) 
when following the frequentist approach, and 95% credible sets for the difference in the two variance 
components when following the Bayesian approach. 
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Table 4.2 
Parameter estimates in the negative binomial regression models for parity and comparisons of the interviewer 
variance components following the alternative frequentist and Bayesian analytic approaches. 
 

 Frequentist Approach (SAS PROC GLIMMIX) Bayesian Approach (WinBUGS) 

Interviewer 

Group Variable 

0β̂ (SE)/ 

1̂β (SE) 

α̂  

(SE) 

2
1̂τ (SE)/ 
2
2τ̂ (SE) 

Likelihood 

Ratio Test: 
2 2
1 2τ τ=  

0β̂ (SD)/ 

1̂β (SD) 

α̂   

(SD) 

2
1̂τ (SD)/ 
2
2τ̂ (SD) 

95% 

CS: 
2 2
1 2τ τ−  

Age 

(1 = <54 years, 

2 = 55+ years) 

0.185(0.031)/ 

-0.007(0.043) 

0.538 

(0.018) 

0.026(0.009)/ 

0.024(0.008) 

2
1χ =0.03, 

p= 0.873 

0.183(0.033)/ 

-0.003(0.046) 

0.685 

(0.024) 

0.025(0.010)/ 

0.024(0.009) 

(-0.026, 

0.028) 

Experience 

(1 = <5 years, 

2 = 5+ years) 

0.201(0.033)/ 

-0.036(0.044) 

0.537 

(0.018) 

0.024(0.008)/ 

0.027(0.010) 

2
1χ =0.04, 

p= 0.835 

0.197(0.034)/ 

-0.031(0.045) 

0.694 

(0.027) 

0.024(0.009)/ 

0.027(0.011) 

(-0.032, 

0.024) 

Number of Kids 

(1 = <2,  

2 = 2+) 

0.254(0.036)/ 

-0.109(0.044) 

0.537 

(0.018) 

0.023(0.007)/ 

0.022(0.009) 

2
1χ =0.01, 

p= 0.926 

0.253(0.038)/ 

-0.109(0.045) 

0.692 

(0.025) 

0.023(0.007)/ 

0.023(0.012) 

(-0.032, 

0.024) 

Ever Married 

(1 = Yes,  

2 = No) 

0.184(0.029)/ 

-0.001(0.039) 

0.537 

(0.018) 

0.030(0.008)/ 

0.000(N/A)* 

2
1χ =5.41, 

p= 0.020 

0.181(0.037)/ 

0.004(0.045) 

0.694 

(0.025) 

0.030(0.008)/ 

0.003 (0.007) 

(0.002, 

0.048) 

Other Job 

(1 = Yes,  

2 = No) 

0.186(0.031)/ 

-0.009(0.043) 

0.538 

(0.018) 

0.022(0.009)/ 

0.027(0.008) 

2
1χ =0.15, 

p= 0.699 

0.188(0.032)/ 

-0.010(0.044) 

0.688 

(0.025) 

0.020(0.010)/ 

0.028(0.010) 

(-0.036, 

0.021) 

College Degree 

(1 = Yes,  

2 = No) 

0.242(0.031)/ 

-0.108(0.042) 

0.538 

(0.018) 

0.023(0.008)/ 

0.022(0.008) 

2
1χ < 0.01, 

p= 0.963 

0.240(0.032)/ 

-0.106(0.044) 

0.693 

(0.024) 

0.024(0.009)/ 

0.021(0.010) 

(-0.025, 

0.030) 

NSFG Before 

(1 = Yes, 

2 = No) 

0.174(0.035)/ 

0.010(0.043) 

0.537 

(0.018) 

0.031(0.008)/ 

0.000(N/A)* 

2
1χ = 8.26, 

p= 0.004 

0.169(0.036)/ 

0.013(0.045) 

0.692 

(0.026) 

0.030(0.008)/ 

0.001(0.005) 

(0.006, 

0.050) 

Ethnicity 

(1 = White,  

2 = Other) 

0.217(0.046)/ 

-0.044(0.052) 

0.537 

(0.018) 

0.027(0.007)/ 

0.018(0.011) 

2
1χ =0.38, 

p= 0.536 

0.220(0.051)/ 

-0.050(0.058) 

0.690 

(0.025) 

0.026(0.008)/ 

0.020(0.017) 

(-0.045, 

0.027) 

* PROC GLIMMIX indicated that the estimated variance-covariance matrix of the random effects was not positive definite, and 
the estimate was set to zero because the RPL estimate of the variance component was negative. The same result occurred when 
using adaptive quadrature instead of RPL. 
 
Notes: Estimates following Bayesian approach are medians of draws from posterior distributions. SE = Asymptotic SE. SD = SD 
of draws from posterior distribution. CS = Credible Set. 
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Consistent with our simulation study in Section 3, the results in Table 4.2 show that it is not 
uncommon for the frequentist approach to yield negative estimates of interviewer variance components 
(which causes SAS PROC GLIMMIX to set the estimates equal to zero, and not report estimated standard 
errors for the estimates), especially for groups with smaller samples of interviewers. In two cases, this 
results in a significant likelihood ratio test statistic, which would suggest that the two variance 
components are different. In contrast, the Bayesian approach produces very small estimates of the 
variance components, and a 95% credible set for the difference in the variance components. For example, 
in the cases of marital status and prior NSFG experience, we see estimates that are consistent with Figure 
4.1, suggesting that there is significantly lower variance in the parity measures among the never-married 
group of interviewers and the inexperienced group of interviewers. The credible sets for the differences in 
these two cases agree with the frequentist tests, but the lower limits of these sets are very close to zero, 
suggesting that the differences, while significant, may not be very strong. We view this as an advantage of 
the Bayesian approach. 

The Bayesian approach yields only slightly larger standard errors (or posterior standard deviations) for 
the parameter estimates in nearly all cases, reflecting the uncertainty in the parameter estimates that is 
accounted for by the prior distributions. The use of non-informative priors in this case, which would result 
in a posterior distribution that is dominated by the likelihood function, is the likely reason for the 
similarity in these measures of uncertainty, and more informative priors may increase the efficiency of the 
Bayesian estimates. Estimates of the individual parameters and corresponding inferences about them are 
generally quite similar when following the two approaches, as suggested by the literature in Section 2, and 
the estimated fixed effects suggest that the different groups of interviewers do not have a tendency to 
collect different measures on the parity variable. Interestingly, both approaches agree that interviewers 
with fewer children and/or a four-year college degree have a tendency to collect lower measures on the 
parity variable, but these differences could certainly be due to other covariates not accounted for in these 
analyses. Finally, we see slightly different estimates of the negative binomial scale parameter when 
following the two approaches. This is to be expected, as the Bayesian approach uses the medians of 
posterior distributions while the frequentist approach uses the modes of likelihood functions. In addition, 
the posterior distributions are not exactly equal to the likelihood functions when proper priors are utilized. 
The frequentist estimates of the scale parameter were much closer to the Bayesian estimates when using 
adaptive quadrature with five quadrature points to approximate the negative binomial likelihoods (results 
not shown); frequentist inferences for the other parameters did not change when using this alternative 
estimation method. 

We repeated these analyses for the binary indicator of current sexual activity. Table 4.3 presents the 
estimated parameters in the multilevel logistic regression models following each of the two approaches. 
Consistent with Figure 4.2, these analyses reveal no evidence of differences between the various groups of 
interviewers in the variance components or the expected values of this outcome. Inferences were once 
again quite similar when following the two approaches, and the variances of the estimated variance 
components were once again slightly larger when following the Bayesian approach. 
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Table 4.3 
Parameter estimates in the logistic regression models for current sexual activity and comparisons of the 
interviewer variance components following the alternative frequentist and Bayesian analytic approaches. 
 

 Frequentist Approach (SAS PROC GLIMMIX) Bayesian Approach (WinBUGS) 

Interviewer 

Group Variable 

0β̂ (SE)/ 

1̂β (SE) 

2
1̂τ (SE)/ 
2
2τ̂ (SE) 

Likelihood 

Ratio Test: 
2 2
1 2τ τ=  

0β̂ (SD)/ 

1̂β (SD) 

2
1̂τ (SE)/ 
2
2τ̂ (SE) 

95% CS: 
2 2
1 2τ τ−  

Age 
(1 = <54 years, 
2 = 55+ years) 

1.333 (0.066) / 
0.032 (0.076) 

0.008 (0.013) / 
0.045 (0.024) 

2
1χ  = 2.05, 

p = 0.153 
1.344 (0.055) / 
0.024 (0.066) 

0.009 (0.013) / 
0.046 (0.028) 

(-0.107, 
0.016) 

Experience 
(1 = <5 years, 
2 = 5+ years) 

1.378 (0.064) / 
-0.050 (0.073) 

0.004 (0.017) / 
0.037 (0.020) 

2
1χ  = 1.52, 

p = 0.217 
1.384 (0.051) / 
-0.061 (0.064) 

0.005 (0.017) / 
0.039 (0.023) 

(-0.087, 
0.024) 

Number of Kids 
(1 = <2,  
2 = 2+) 

1.362 (0.080) / 
-0.015 (0.088) 

0.022 (0.015) / 
0.033 (0.024) 

2
1χ  = 0.16, 

p = 0.689 
1.363 (0.059) / 
-0.012 (0.070) 

0.024 (0.016) / 
0.037 (0.030) 

(-0.094, 
0.037) 

Ever Married 
(1 = Yes,  
2 = No) 

1.387 (0.130) / 
-0.045 (0.134) 

0.020 (0.012) / 
0.048 (0.041) 

2
1χ  = 0.58, 

p = 0.447 
1.398 (0.090) / 
-0.053 (0.097) 

0.021 (0.013) / 
0.051 (0.055) 

(-0.180, 
0.035) 

Other Job 
(1 = Yes,  
2 = No) 

1.374 (0.043) / 
-0.046 (0.072) 

0.026 (0.016) / 
0.024 (0.020) 

2
1χ  = 0.01, 

p = 0.927 
1.381 (0.045) / 
-0.051 (0.065) 

0.029 (0.019) / 
0.022 (0.022) 

(-0.055, 
0.063) 

College Degree 
(1 = Yes,  
2 = No) 

1.388 (0.051) / 
-0.063 (0.071) 

0.016 (0.014) / 
0.035 (0.022) 

2
1χ = 0.60, 

p = 0.439 
1.394 (0.052) / 
-0.072 (0.064) 

0.014 (0.016) / 
0.038 (0.024) 

(-0.079, 
0.033) 

NSFG Before 
(1 = Yes, 
2 = No) 

1.363 (0.103) / 
-0.012 (0.111) 

0.020 (0.012) / 
0.069 (0.055) 

2
1χ = 1.20, 

p = 0.273 
1.381 (0.113) / 
-0.024 (0.118) 

0.021 (0.013) / 
0.083 (0.084) 

(-0.301, 
0.019) 

Ethnicity 
(1 = White,  
2 = Other) 

1.354 (0.077) / 
-0.004 (0.088) 

0.024 (0.014) / 
0.032 (0.031) 

2
1χ  = 0.05, 

p = 0.816 
1.365 (0.080) / 
-0.013 (0.088) 

0.025 (0.015) / 
0.032 (0.044) 

(-0.131, 
0.044) 

Notes: Estimates following Bayesian approach are medians of draws from posterior distributions. SE = Asymptotic SE. SD = SD 
of draws from posterior distribution. CS = Credible Set. 

 
5  Concluding Remarks  
 

This paper has considered frequentist and Bayesian methods for comparing the interviewer variance 
components for non-normally distributed survey items between two independent groups of survey 
interviewers. The methods are based on a flexible class of hierarchical generalized linear models 
(HGLMs) that allow the variance components for two mutually exclusive groups of interviewers to vary, 
and alternative inferential approaches based on those models. Results from a simulation study suggest that 
the two approaches have little empirical bias, comparable empirical MSE values and good coverage for 
moderate-to-large samples of interviewers and respondents. Analyses of real data from the U.S. National 
Survey of Family Growth (NSFG) suggest that inferences based on the two approaches tend to be quite 
similar. We find the similar performance of these two approaches to be good news for survey researchers, 
in that frequentists and Bayesians alike have tools available to them for analyzing this problem that will 
lead to similar conclusions. 

There are some subtle distinctions between the two approaches that emerged in the analyses, mainly 
related to sample sizes and estimates of variance components that are extremely small or equal to zero. 
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These issues warrant further discussion, given their implications for survey practice. The Bayesian 
approach illustrated here is capable of accommodating uncertainty in the estimation of variance 
components when forming credible sets and does not rely on asymptotic theory, but we found that 
inferences about differences in variance components between a number of different subgroups of NSFG 
interviewers (each of moderate size) did not vary from those that would be made using frequentist 
approaches. Whether or not we would see the same results for even smaller groups of interviewers 
requires future investigation; the simulation study presented in Section 3 suggested that neither method 
performs well in a context where two groups of 20 interviewers collect data from 10 respondents each. An 
initial application of these two methods to data from the first quarter of data collection in this cycle of the 
NSFG (with about 20 interviewers in each of two groups interviewing about 20 respondents each on 
average) yielded findings similar to those reported here for larger samples, with some evidence of the 
Bayesian approach being more conservative (West 2011).  

In general, the Bayesian approach provides a more natural form of inference for this problem, 
indicating a range of values for the difference in which approximately 95% of differences will fall. This 
may appeal to certain consumers of a given survey’s products, as opposed to the simple -p value for a 
likelihood ratio test, which does not give users a sense of the range of possible differences. In the 
frequentist setting, the likelihood ratio test may be the only method of inference available if the pseudo 
maximum likelihood point estimate for one or more of the variance components is zero, with no 
corresponding standard error (preventing computation of Wald-type intervals). This situation was 
observed in both the simulations and the NSFG analyses, especially for groups with smaller samples of 
interviewers; given the reliance of likelihood ratio tests on asymptotic theory, the Bayesian approach may 
be better a better choice for smaller samples. The performance of the Bayesian approach is not ideal, 
however, for very small samples, as illustrated in the simulation study in Section 3. 

We noted two significant differences between subgroups of interviewers in the NSFG data, and in each 
of these cases, the group with the smaller variance had an estimated variance component set to zero (with 
no standard error computed) when using the frequentist approach. The resulting inferences based on these 
estimates (where likelihood values were computed using the estimates of zero for the subgroups in 
question when performing the likelihood ratio tests) agreed with the Bayesian approach. We remind 
readers using frequentist methods that small samples of interviewers or extremely small amounts of 
variance among interviewers for particular variables may lead to negative maximum likelihood estimates 
of variance components, which can be problematic for the interpretation of interviewer variance for 
individual groups. Some software procedures capable of fitting multilevel models (e.g., the gllamm 
procedure in Stata, or the lmer() function in R) constrain variance components to be greater than zero 
during estimation to prevent this problem, which can increase estimation times. Other software procedures 
(like GLIMMIX in SAS) will simply fix these negative estimates to be zero, and fail to compute an 
estimated standard error. While these variance components technically cannot be equal to zero, we suggest 
interpreting these findings as evidence that there in negligible variance among the interviewers in a 
particular group. Bates (2009) argues against the use of standard errors for making inferences about 
variance components in the frequentist setting, especially when variance components are close to zero, 
instead suggesting that the profiled deviance function should be used to visualize the precision of the 
estimates. Both this approach and the Wald approach to computing confidence intervals will still be 
limited by smaller samples. 
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We do not see an empirical problem with using these zero estimates to perform the likelihood ratio 
tests demonstrated here for comparing groups of interviewers, given that Bayesian draws of the variance 
components in these groups would also be very small. However, in the case of estimating interviewer 
variance for single groups, examination of the sensitivity of Bayesian inferences to choices of different 
prior distributions for the variance components should be performed when variance components close to 
zero are expected, or the number of interviewers is relatively small (Browne and Draper 2006; Lambert et 
al. 2005). Furthermore, if survey researchers are interested in predicting random interviewer effects in the 
case where interviewer variance components are expected to be close to zero, both frequentist and 
Bayesian methods perform very poorly, and prediction is not recommended in this case (Singh et al. 1998, 
p. 390). See Savalei and Kolenikov (2008) for more discussion of the zero variance issue.     

This study was certainly not without limitations. We acknowledge that the design of the NSFG, where 
interviewers are typically assigned to work in a single primary sampling area, did not allow for 
interpenetrated assignment of sampled cases to interviewers. As a result, disentangling interviewer effects 
from effects of the primary sampling areas is difficult. The methodologies illustrated in this paper can 
easily incorporate additional interviewer- or area-level covariates in an effort to “explain” variance among 
interviewers or areas due to observable covariates. The question of how to estimate interviewer variance 
in the presence of a strictly non-interpenetrated sample design needs more research in general, and we did 
not address this open question in this paper. As mentioned in Section 1, interpenetrated sample designs 
have been used in recent studies to disentangle interviewer and area effects. Future studies should examine 
the ability of the two approaches reviewed in this paper to detect differences in interviewer variance 
components when using cross-classified multilevel models that also include the effects of areas in an 
interpenetrated sample design. 

On a similar note, we did not account for any of the complex sampling features of the NSFG (i.e., 
weighting or stratified cluster sampling) in the analyses. The theory that underlies the estimation of 
parameters in multilevel models in the presence of survey weights calls for weights for both the 
respondents and the higher-level clusters, which in this case would be interviewers (Rabe-Hesketh and 
Skrondal 2006; Pfefferman, Skinner, Holmes, Goldstein and Rasbash 1998). The analyses presented here 
effectively assume that we have a sample of interviewers from some larger population that was selected 
with equal probability, and that all respondents within each interviewer had equal weight. Methods 
outlined by Gabler and Lahiri (2009) might prove useful for addressing this limitation, and analysts could 
also include fixed effects of survey weights or stratification codes in the models proposed here. We leave 
these extensions for future research. 

Finally, this paper also did not consider another rich aspect of the Bayesian approach, in that posterior 
draws of the 87 random interviewer effects in the models were also generated by the BUGS Gibbs 
sampling algorithm. These draws would enable survey managers to make inferences about the effects 
specific interviewers are having on particular survey measures. Consistent and regular updating of these 
posterior distributions as data collection progresses would enable survey managers to intervene when the 
posterior distributions for particular interviewers suggest that these interviewers are having non-zero 
effects on the survey measures. 
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Appendix  
 

A.1 Example Code 
 

We provide example code for fitting the types of models discussed in the paper using SAS PROC 
GLIMMIX below. In this code, PARITY and SEXMAIN are the count and binary variables, respectively, 
measured on NSFG respondents, FINAL_INT_ID is a final interviewer ID code, and INT_NVMARRIED 
is an indicator variable for whether or not an interviewer has never been married. The ASYCOV option 
will print asymptotic estimates of the variances and covariances of the estimated variance components.  
 
/* marital status */ 
 
proc glimmix data = bayes.final_analysis asycov; 
   class final_int_id int_nvmarried; 
   model parity = int_nvmarried / dist = negbin link = log solution cl; 
   random int / subject = final_int_id group = int_nvmarried; 
   covtest homogeneity / cl (type = plr); 
   nloptions tech=nrridg; 
run; 
 
proc glimmix data = bayes.final_analysis asycov; 
   class final_int_id int_nvmarried; 
   model sexmain (event = "1") = int_nvmarried / dist = binary link = logit 
solution cl; 
   random int / subject = final_int_id group = int_nvmarried; 
   covtest homogeneity / cl (type = plr); 
   nloptions tech=nrridg; 
run; 
 

We also provide example WinBUGS code for fitting the models using the Bayesian approaches 
discussed below. We call the WinBUGS code from the R software. In this code, LOWAGE.G is an 
interviewer-level indicator (with 87 values) for being in the younger interviewer age group, and 
HIGHAGE.G is an indicator for being in the older group. The full code, including code creating the 
variables used below, is available from the authors upon request. 
 
# load necessary packages for using BUGS from R 
 
library(arm) 
library(R2WinBUGS) 
 
############# Parity Analyses 
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# BUGS file for Age Group and Parity (age_nb.bug) 
 
model { 
   for (i in 1:n){ 
      parity[i] ~ dpois(lambda[i]) 
      lambda[i] <- rho[i]*mu[i] 
      log(mu[i]) <- b0[intid[i]]  
      rho[i]~dgamma(alpha,alpha) 
   } 
 
   for (j in 1:J){ 
      b0[j] ~ dnorm(b0.hat[j], tau.b0[highage.g[j]+1]) 
      b0.hat[j] <- beta0 + beta1*lowage.g[j] 
   } 
 
   beta0 ~ dnorm(0,0.01) 
   beta1 ~ dnorm(0,0.01) 
   alpha <- exp(logalpha) 
   logalpha ~ dnorm(0,0.01)  
 
   for (k in 1:2){ 
      tau.b0[k] <- pow(sigma.b0[k], -2) 
      sigma.b0[k] ~ dunif(0,10) 
   } 
} 
 
# Simulations for Parity/Age Group model in BUGS 
 
n <- length(parity) 
J <- 87 
age.data <- list("n", "J", "parity", "intid", "highage.g", "lowage.g") 
age.inits <- function(){ 
   list (b0=rnorm(J), beta0=rnorm(1), beta1=rnorm(1), sigma.b0=runif(2), 
logalpha=rnorm(1))} 
age.parameters <- c("b0", "beta0", "beta1", "sigma.b0", "alpha") 
age.1 <- bugs(age.data, age.inits, age.parameters, "age_nb.bug", n.chains = 3, 
n.iter=5000, debug=TRUE, 
bugs.directory="C:/Users/bwest/Desktop/winbugs14/WinBUGS14") 
 
attach.bugs(age.1) 
 
# for tables of results and inference 
 
resultsmat <- cbind(numeric(6),numeric(6),numeric(6),numeric(6)) 
 
resultsmat[1,1] <- quantile(beta0,0.5) 
resultsmat[1,2] <- sd(beta0)  
resultsmat[1,3] <- quantile(beta0,0.025) 
resultsmat[1,4] <- quantile(beta0,0.975) 
 
resultsmat[2,1] <- quantile(beta1,0.5) 
resultsmat[2,2] <- sd(beta1)  
resultsmat[2,3] <- quantile(beta1,0.025) 
resultsmat[2,4] <- quantile(beta1,0.975) 
 
resultsmat[3,1] <- quantile(sigma.b0[,1]^2,0.5) 
resultsmat[3,2] <- sd(sigma.b0[,1]^2)  
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resultsmat[3,3] <- quantile(sigma.b0[,1]^2,0.025) 
resultsmat[3,4] <- quantile(sigma.b0[,1]^2,0.975) 
 
resultsmat[4,1] <- quantile(sigma.b0[,2]^2,0.5) 
resultsmat[4,2] <- sd(sigma.b0[,2]^2)  
resultsmat[4,3] <- quantile(sigma.b0[,2]^2,0.025) 
resultsmat[4,4] <- quantile(sigma.b0[,2]^2,0.975) 
 
resultsmat[5,1] <- quantile(1/alpha,0.5) 
resultsmat[5,2] <- sd(1/alpha)  
resultsmat[5,3] <- quantile(1/alpha,0.025) 
resultsmat[5,4] <- quantile(1/alpha,0.975) 
 
vardiff <- sigma.b0[,1]^2 - sigma.b0[,2]^2 
resultsmat[6,1] <- quantile(vardiff,0.5) 
resultsmat[6,2] <- sd(vardiff)  
resultsmat[6,3] <- quantile(vardiff,0.025) 
resultsmat[6,4] <- quantile(vardiff,0.975) 
 
resultsmat 
  
############# Current Sexual Activity Analyses 
 
# BUGS file for Age Group and Sexual Activity (age_bin.bug) 
 
model { 
   for (i in 1:n){ 
      sexmain[i] ~ dbern(p[i]) 
      logit(p[i]) <- b0[intid[i]]  
   } 
 
   for (j in 1:J){ 
      b0[j] ~ dnorm(b0.hat[j], tau.b0[highage.g[j]+1]) 
      b0.hat[j] <- beta0 + beta1*lowage.g[j] 
   } 
   beta0 ~ dnorm(0,0.01) 
   beta1 ~ dnorm(0,0.01) 
 
   for (k in 1:2){ 
      tau.b0[k] <- pow(sigma.b0[k], -2) 
      sigma.b0[k] ~ dunif(0,10) 
   } 
} 
 
# Simulations for Parity/Age Group model in BUGS 
 
n <- length(sexmain) 
J <- 87 
age.data <- list("n", "J", "sexmain", "intid", "highage.g", "lowage.g") 
age.inits <- function(){ 
   list (b0=rnorm(J), beta0=rnorm(1), beta1=rnorm(1), sigma.b0=runif(2))} 
age.parameters <- c("b0", "beta0", "beta1", "sigma.b0") 
age.1 <- bugs(age.data, age.inits, age.parameters, "age_bin.bug", n.chains = 
3, n.iter=5000, debug=TRUE, 
bugs.directory="C:/Users/bwest/Desktop/winbugs14/WinBUGS14") 
 
attach.bugs(age.1)  
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