3. Méthode proposée

Jae Kwang Kim et Shu Yang

Précédent | Suivant

Nous examinons d’abord une méthode d’imputation fractionnaire hot deck appelée imputation fractionnaire complète, où les valeurs imputées sont tirées de l’ensemble de répondants désigné par A R = { i A ; δ i = 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGsbaabeaakiabg2da9maacmaabaGaamyAaiabgIGiolaa dgeacaGG7aGaaqiTdmaaBaaaleaacaWGPbaabeaakiabg2da9iaaig daaiaawUhacaGL9baaaaa@4307@ . C’est-à-dire que la j -ième MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOAaiaab2 cacaqGPbGaaei6aiaab2gacaqGLbaaaa@3BB3@  valeur imputée de la donnée manquante y i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@38B7@  désignée par y i * ( j ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGPbaabaGaaiOkaiaacIcacaWGQbGaaiykaaaakiaacYca aaa@3BAE@  est égale à la j -ième MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOAaiaab2 cacaqGPbGaaei6aiaab2gacaqGLbaaaa@3BB3@  valeur de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E3@  dans l’ensemble A R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGsbaabeaakiaac6caaaa@386A@  Nous proposons une méthode d’imputation fractionnaire hot deck qui utilise l’hypothèse du modèle paramétrique f( y|x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamyEaGGaaiab=Xha8jaahIhacaGG7aGaaqiUdaGaayjkaiaa wMcaaaaa@3DDE@ . Si tous les éléments de A R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGsbaabeaaaaa@37AE@  sont choisis comme valeurs imputées de la donnée manquante y i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@38B7@  nous pouvons traiter { y j ;j A R } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG5bWaaSbaaSqaaiaadQgaaeqaaOGaai4oaiaadQgacqGHiiIZcaWG bbWaaSbaaSqaaiaadkfaaeqaaaGccaGL7bGaayzFaaaaaa@3F3E@  comme une réalisation de f( y j | δ j =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamyEamaaBaaaleaacaWGQbaabeaaiiaakiab=Xha8jaaes7a daWgaaWcbaGaamOAaaqabaGccqGH9aqpcaaIXaaacaGLOaGaayzkaa aaaa@4026@  et, si h( y j | x i )=f( y j | δ j =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaamyEamaaBaaaleaacaWGQbaabeaakiaacYhacaWH4bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamOzamaabm aabaGaamyEamaaBaaaleaacaWGQbaabeaakiaacYhacaaH0oWaaSba aSqaaiaadQgaaeqaaOGaeyypa0JaaGymaaGaayjkaiaawMcaaaaa@4863@  est choisi en (2.6), le poids fractionnaire assigné au donneur y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGQbaabeaaaaa@37FE@  pour la donnée manquante y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaaaaa@37FD@  devient

w ij * f( y j | x i , δ i =0; θ ^ )/ f( y j | δ j =1 ) (3.1) f( y j | x i; θ ^ )/ f( y j | δ j =1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGbaa aabaGaam4DamaaDaaaleaacaWGPbGaamOAaaqaaiaaiQcaaaaakeaa cqGHDisTaeaadaWcgaqaaiaadAgadaqadaqaaiaadMhadaWgaaWcba GaamOAaaqabaGccaaI8bGaaCiEamaaBaaaleaacaWGPbaabeaakiaa iYcacqaH0oazdaWgaaWcbaGaamyAaaqabaGccaaI9aGaaGimaiaaiU dacuaH4oqCgaqcaaGaayjkaiaawMcaaaqaaiaadAgadaqadaqaaiaa dMhadaWgaaWcbaGaamOAaaqabaGccaaI8bGaeqiTdq2aaSbaaSqaai aadQgaaeqaaOGaaGypaiaaigdaaiaawIcacaGLPaaaaaaabaaabaaa baGaaiikaiaaiodacaGGUaGaaGymaiaacMcaaeaaaeaacqGHDisTae aadaWcgaqaaiaadAgadaqadaqaaiaadMhadaWgaaWcbaGaamOAaaqa baGccaaI8bGaaCiEamaaBaaaleaacaWGPbGaaG4oaaqabaGccuaH4o qCgaqcaaGaayjkaiaawMcaaaqaaiaadAgadaqadaqaaiaadMhadaWg aaWcbaGaamOAaaqabaGccaaI8bGaeqiTdq2aaSbaaSqaaiaadQgaae qaaOGaaGypaiaaigdaaiaawIcacaGLPaaaaaGaaGilaaqaaaqaaaqa aaaaaaa@6EA6@

j; δ j =1 w ij * =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGQbGaai4oaiaaes7adaWgaaadbaGaamOAaaqabaWccqGH9aqp caaIXaaabeqdcqGHris5aOGaam4DamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcaaaGccqGH9aqpcaaIXaaaaa@4325@  et θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGabqiUdyaaja aaaa@3736@  est l’estimateur du maximum de vraisemblance (EMV) obtenu de l’équation (2.4). La deuxième ligne découle de l’hypothèse des données manquant au hasard. Nous pouvons aussi écrire

f( y j | δ j =1 ) = f( y j |x, δ j =1 )f( x| δ j =1 )dx (3.2) = f( y j |x )f( x| δ j =1 )dx 1 N R k=1 N δ k f( y j | x k ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGbaa aabaGaamOzamaabmaabaGaamyEamaaBaaaleaacaWGQbaabeaakiaa iYhacqaH0oazdaWgaaWcbaGaamOAaaqabaGccaaI9aGaaGymaaGaay jkaiaawMcaaaqaaiabg2da9aqaamaapeaabeWcbeqab0Gaey4kIipa kiaadAgadaqadaqaaiaadMhadaWgaaWcbaGaamOAaaqabaGccaGG8b GaaCiEaiaaiYcacqaH0oazdaWgaaWcbaGaamOAaaqabaGccaaI9aGa aGymaaGaayjkaiaawMcaaiaadAgadaqadaqaaiaahIhacaGG8bGaeq iTdq2aaSbaaSqaaiaadQgaaeqaaOGaaGypaiaaigdaaiaawIcacaGL PaaacaWGKbGaaCiEaaqaaaqaaaqaaiaacIcacaaIZaGaaiOlaiaaik dacaGGPaaabaaabaGaeyypa0dabaWaa8qaaeqaleqabeqdcqGHRiI8 aOGaamOzamaabmaabaGaamyEamaaBaaaleaacaWGQbaabeaakiaacY hacaWH4baacaGLOaGaayzkaaGaamOzamaabmaabaGaaCiEaiaacYha cqaH0oazdaWgaaWcbaGaamOAaaqabaGccaaI9aGaaGymaaGaayjkai aawMcaaiaadsgacaWH4baabaaabaaabaaabaaabaGaeyyrIaeabaWa aSaaaeaacaaIXaaabaGaamOtamaaBaaaleaacaWGsbaabeaaaaGcda aeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoa kiabes7aKnaaBaaaleaacaWGRbaabeaakiaadAgadaqadaqaaiaadM hadaWgaaWcbaGaamOAaaqabaGccaGG8bGaaCiEamaaBaaaleaacaWG RbaabeaaaOGaayjkaiaawMcaaiaaiYcaaeaaaeaaaeaaaaaaaa@85D4@

où la deuxième égalité découle de l’hypothèse des valeurs manquant au hasard, et la dernière égalité (approximative) est obtenue en approximant l’intégrale par distribution empirique de la population. N R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGsbaabeaaaaa@37BB@  est le nombre de répondants dans la population. En utilisant les poids d’enquête, nous pouvons approximer

f( y j | δ j =1 ) k A R w k f( y j | x k ) k A R w k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamyEamaaBaaaleaacaWGQbaabeaaiiaakiab=Xha8jaaes7a daWgaaWcbaGaamOAaaqabaGccqGH9aqpcaaIXaaacaGLOaGaayzkaa GaeyyrIa0aaSaaaeaadaaeqaqaaiaadEhadaWgaaWcbaGaam4Aaaqa baGccaWGMbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGae8 hFaWNaaCiEamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaWc baGaam4AaiabgIGiolaadgeadaWgaaadbaGaamOuaaqabaaaleqani abggHiLdaakeaadaaeqaqaaiaadEhadaWgaaWcbaGaam4Aaaqabaaa baGaam4AaiabgIGiolaadgeadaWgaaadbaGaamOuaaqabaaaleqani abggHiLdaaaaaa@5A34@

et les poids fractionnaires en (3.1) sont calculés comme suit :

w ij * f( y j | x i ; θ ^ ) k A R w k f( y j | x k ; θ ^ )       (3.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaGccqGHDisTdaWcaaqaaiaa dAgadaqadaqaaiaadMhadaWgaaWcbaGaamOAaaqabaGccaGG8bGaaC iEamaaBaaaleaacaWGPbaabeaakiaacUdaceaH4oGbaKaaaiaawIca caGLPaaaaeaadaaeqaqaaiaadEhadaWgaaWcbaGaam4AaaqabaGcca WGMbWaaeWaaeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaiiFaiaa hIhadaWgaaWcbaGaam4AaaqabaGccaGG7aGabqiUdyaajaaacaGLOa GaayzkaaaaleaacaWGRbGaeyicI4SaamyqamaaBaaameaacaWGsbaa beaaaSqab0GaeyyeIuoaaaGccaWLjaGaaCzcaiaacIcacaaIZaGaai OlaiaaiodacaGGPaaaaa@5BED@

j A R w ij * =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGQbGaeyicI4SaamyqamaaBaaameaacaWGsbaabeaaaSqab0Ga eyyeIuoakiaadEhadaqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaO Gaeyypa0JaaGymaaaa@419A@ . En (3.3), la masse ponctuelle w ij * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaaaaa@3999@  assignée au donneur y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGQbaabeaaaaa@37FE@  pour l’unité manquante i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36D3@  est exprimée par le ratio de la densité f ( y | x ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamyEaiaacYhacaWH4baacaGLOaGaayzkaaGaaiOlaaaa@3C0A@  Ainsi, pour chaque unité manquante i,  n R =| A R | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyAaiaacY cacaqGGaGaamOBamaaBaaaleaacaWGsbaabeaakiabg2da9maaemaa baGaamyqamaaBaaaleaacaWGsbaabeaaaOGaay5bSlaawIa7aaaa@4021@ , nous utilisons les observations comme donneurs pour l’imputation hot deck et w ij * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaaaaa@3999@  comme poids fractionnaires. Cette méthode d’imputation fractionnaire peut être qualifiée d’imputation fractionnaire complète (IFC) en l’absence de caractère aléatoire attribuable au mécanisme d’imputation. L’estimateur IFC de η , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaq4TdiaacY caaaa@37D5@  défini par i=1 N U( η; x i , y i )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaabmaeqale aacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaadwfa daqadaqaaiaaeE7acaGG7aGaaCiEamaaBaaaleaacaWGPbaabeaaki aaiYcacaWG5bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGa eyypa0JaaGimaaaa@4693@  est alors calculé en résolvant

iA w i { δ i U( η; x i , y i )+( 1 δ i ) j A R w ij * U( η; x i , y j ) }=0,       (3.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGPbGaeyicI4Saamyqaaqab0GaeyyeIuoakiaadEhadaWgaaWc baGaamyAaaqabaGcdaGadaqaaiaaes7adaWgaaWcbaGaamyAaaqaba GccaWGvbWaaeWaaeaacaaH3oGaai4oaiaahIhadaWgaaWcbaGaamyA aaqabaGccaaISaGaamyEamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiaaes7adaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaadaaeqbqabSqaaiaadQgacq GHiiIZcaWGbbWaaSbaaWqaaiaadkfaaeqaaaWcbeqdcqGHris5aOGa am4DamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaaaGccaWGvbWaae WaaeaacaaH3oGaai4oaiaahIhadaWgaaWcbaGaamyAaaqabaGccaaI SaGaamyEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaGaay 5Eaiaaw2haaiabg2da9iaaicdacaGGSaGaaCzcaiaaxMaacaWLjaGa aiikaiaaiodacaGGUaGaaGinaiaacMcaaaa@6D3F@

w ij * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaaaaa@3999@  est défini en (3.3). Il est à noter que l’équation d’estimation imputée (3.4) est une bonne approximation de l’équation d’estimation prévue en (2.2).

En échantillonnage, un ensemble de données imputées où la quantité d’imputation est importante n’est pas toujours souhaitable. Au lieu d’utiliser toutes les observations en A R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGsbaabeaaaaa@37AE@  comme donneurs pour chaque donnée manquante, nous pouvons sélectionner un sous-ensemble de A R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGsbaabeaaaaa@37AE@  afin de réduire la taille de l’ensemble donneur de la donnée manquante y i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaac6caaaa@38B9@  Ainsi, la sélection des donneurs est considérée comme un problème d’échantillonnage et nous utilisons un plan d’échantillonnage et des techniques de pondération efficaces pour obtenir des estimateurs par imputation efficaces. Des plans d’échantillonnage efficaces, comme un échantillonnage stratifié ou un échantillonnage systématique avec probabilité proportionnelle à la taille (PPT), peuvent être utilisés pour sélectionner des donneurs de taille m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyBaiaac6 caaaa@3789@  Un échantillonnage PPT systématique pour l’imputation fractionnaire hot deck peut être décrit comme suit :

  1. Dans chaque i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36D3@  où δ i =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaqiTdmaaBa aaleaacaWGPbaabeaakiabg2da9iaaicdacaGGSaaaaa@3AB6@  trier les donneurs de l’ensemble complet de répondants { y j ; δ j =1 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG5bWaaSbaaSqaaiaadQgaaeqaaOGaai4oaiaaes7adaWgaaWcbaGa amOAaaqabaGccqGH9aqpcaaIXaaacaGL7bGaayzFaaaaaa@3F1B@  par ordre croissant où y (1) y (r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaGGOaGaaGymaiaacMcaaeqaaOGaeyizImQaeS47IWKaeyiz ImQaamyEamaaBaaaleaacaGGOaGaamOCaiaacMcaaeqaaaaa@41FF@  et utiliser w i(j) * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaaiikaiaadQgacaGGPaaabaGaaiOkaaaaaaa@3AF2@  pour désigner le poids fractionnaire associé à y (j) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaGGOaGaamOAaiaacMcaaeqaaOGaaiOlaaaa@3A13@ , c’est-à-dire w i(j) * = w ik * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaaiikaiaadQgacaGGPaaabaGaaiOkaaaakiabg2da 9iaadEhadaqhaaWcbaGaamyAaiaadUgaaeaacaGGQaaaaaaa@3FB7@  pour y (j) = y k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaGGOaGaamOAaiaacMcaaeqaaOGaeyypa0JaamyEamaaBaaa leaacaWGRbaabeaakiaac6caaaa@3D3D@
  2. Partitionner [ 0,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIWaGaaGilaiaaigdaaiaawUfacaGLDbaaaaa@3A02@  par { I j [ k=0 j w i(j) * , k=0 j+1 w i(j) * ), j=1,,r1 }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGjbWaaSbaaSqaaiaadQgaaeqaaOGaeyyyIO7aaKGeaeaadaaeWaqa bSqaaiaadUgacqGH9aqpcaaIWaaabaGaamOAaaqdcqGHris5aOGaam 4DamaaDaaaleaacaWGPbGaaiikaiaadQgacaGGPaaabaGaaiOkaaaa kiaaiYcadaaeWaqabSqaaiaadUgacqGH9aqpcaaIWaaabaGaamOAai abgUcaRiaaigdaa0GaeyyeIuoakiaadEhadaqhaaWcbaGaamyAaiaa cIcacaWGQbGaaiykaaqaaiaacQcaaaaakiaawUfacaGLPaaacaaISa GaaeiiaiaadQgacqGH9aqpcaaIXaGaaGilaiablAciljaaiYcacaWG YbGaeyOeI0IaaGymaaGaay5Eaiaaw2haaiaacYcaaaa@5F64@  où w i(0) * =0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaaiikaiaaicdacaGGPaaabaGaaiOkaaaakiabg2da 9iaaicdacaGGUaaaaa@3D39@
  3. Générer u uniforme ( 0, 1 / m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyDaebbfv 3ySLgzGueE0jxyaGqbaiab=XJi6iaabwhacaqGUbGaaeyAaiaabAga caqGVbGaaeOCaiaab2gacaqGLbWaaeWaaeaacaaIWaGaaGilamaaly aabaGaaGymaaqaaiaad2gaaaaacaGLOaGaayzkaaaaaa@48D1@  et poser u k =u+k/m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGRbaabeaakiabg2da9iaadwhacqGHRaWkdaWcgaqaaiaa dUgaaeaacaWGTbaaaiaacYcaaaa@3D8F@   k=0,,m1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iaaicdacaGGSaGaeSOjGSKaaGilaiaad2gacqGHsislcaaIXaGa aiOlaaaa@3E69@  Pour k=0,,m1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iaaicdacaGGSaGaeSOjGSKaaGilaiaad2gacqGHsislcaaIXaGa aiilaaaa@3E67@  si u k I j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGRbaabeaakiabgIGiolaadMeadaWgaaWcbaGaamOAaaqa baaaaa@3B72@  pour certains 0 j r 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadQgacqGHKjYOcaWGYbGaeyOeI0IaaGymaiaacYcaaaa@3E47@  inclure j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOAaaaa@36D4@  dans l’échantillon D i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaakiaac6caaaa@3884@

Après avoir sélectionné D i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaaaaa@37C8@  dans l’ensemble complet de répondants, nous assignons les poids fractionnaires initiaux w ij0 * =1/m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaamOAaiaaicdaaeaacaGGQaaaaOGaeyypa0ZaaSGb aeaacaaIXaaabaGaamyBaaaaaaa@3D26@  aux donneurs choisis en D i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaaaaa@37C8@ . D’autres ajustements sont apportés aux poids fractionnaires afin de satisfaire

iA w i { ( 1 δ i ) j D i w ij,c * q( x i , y j ) }= iA w i { ( 1 δ i ) j A R w ij * q( x i , y j ) },       (3.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGPbGaeyicI4Saamyqaaqab0GaeyyeIuoakiaadEhadaWgaaWc baGaamyAaaqabaGcdaGadaqaamaabmaabaGaaGymaiabgkHiTiaaes 7adaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaaeqbqabSqa aiaadQgacqGHiiIZcaWGebWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcq GHris5aOGaam4DamaaDaaaleaacaWGPbGaamOAaiaaiYcacaWGJbaa baGaaiOkaaaakiaahghadaqadaqaaiaahIhadaWgaaWcbaGaamyAaa qabaGccaaISaGaamyEamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaa wMcaaaGaay5Eaiaaw2haaiabg2da9maaqafabeWcbaGaamyAaiabgI GiolaadgeaaeqaniabggHiLdGccaWG3bWaaSbaaSqaaiaadMgaaeqa aOWaaiWaaeaadaqadaqaaiaaigdacqGHsislcaaH0oWaaSbaaSqaai aadMgaaeqaaaGccaGLOaGaayzkaaWaaabuaeqaleaacaWGQbGaeyic I4SaamyqamaaBaaameaacaWGsbaabeaaaSqab0GaeyyeIuoakiaadE hadaqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaOGaaCyCamaabmaa baGaaCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaWG5bWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaGaaGil aiaaxMaacaWLjaGaaCzcaiaacIcacaaIZaGaaiOlaiaaiwdacaGGPa aaaa@80C1@

pour certains q ( x i , y j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaCyCamaabm aabaGaaCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaWG5bWaaSba aSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@3D66@ , et j D i w ij,c * =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGQbGaeyicI4SaamiramaaBaaameaacaWGPbaabeaaaSqab0Ga eyyeIuoakiaadEhadaqhaaWcbaGaamyAaiaadQgacaaISaGaam4yaa qaaiaacQcaaaGccqGH9aqpcaaIXaaaaa@4352@  pour tous les i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36D3@  où δ i =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaqiTdmaaBa aaleaacaWGPbaabeaakiabg2da9iaaicdacaGGSaaaaa@3AB6@   w ij * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaaaaa@3999@  étant les poids fractionnaires pour la méthode d’IFC définie en (3.3). En ce qui concerne le choix de la fonction de contrôle q ( x , y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaCyCamaabm aabaGaaCiEaiaaiYcacaWG5baacaGLOaGaayzkaaaaaa@3B1D@  en (3.5), nous pouvons utiliser q( x,y )= ( y, y 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaCyCamaabm aabaGaaCiEaiaaiYcacaWG5baacaGLOaGaayzkaaGaeyypa0ZaaeWa aeaacaWG5bGaaGilaiaadMhadaahaaWcbeqaaiaaikdaaaaakiaawI cacaGLPaaadaahaaWcbeqaaOGamai2gkdiIcaaaaa@4468@ , ce qui rapproche le plus possible les distributions empiriques de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E3@  pour D i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaaaaa@37C8@  et A R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGsbaabeaaaaa@37AE@  en ce sens que les premier et second moments de y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E3@  sont les mêmes. D’autres choix peuvent être envisagés. Voir Fuller et Kim (2005).

Le problème d’ajustement des poids initiaux afin de respecter certaines contraintes est souvent qualifié de calage et les poids fractionnaires résultants peuvent être qualifiés de poids fractionnaires calés. En utilisant la pondération par régression, nous pouvons calculer des poids fractionnaires finaux de calage qui satisfont à (3.5) et j w ij,c * =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGQbaabeqdcqGHris5aOGaam4DamaaDaaaleaacaWGPbGaamOA aiaaiYcacaWGJbaabaGaaiOkaaaakiabg2da9iaaigdaaaa@3FDF@  comme suit :

w ij,c * = w ij0 * + w ij0 * Δ( q ij * q ¯ i * ),       (3.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaamOAaiaaiYcacaWGJbaabaGaaiOkaaaakiabg2da 9iaadEhadaqhaaWcbaGaamyAaiaadQgacaaIWaaabaGaaiOkaaaaki abgUcaRiaadEhadaqhaaWcbaGaamyAaiaadQgacaaIWaaabaGaaiOk aaaakiaafs5adaqadaqaaiaahghadaqhaaWcbaGaamyAaiaadQgaae aacaGGQaaaaOGaeyOeI0IabCyCayaaraWaa0baaSqaaiaadMgacqGH flY1aeaacaGGQaaaaaGccaGLOaGaayzkaaGaaGilaiaaxMaacaWLja GaaiikaiaaiodacaGGUaGaaGOnaiaacMcaaaa@5819@

q ij * =q( x i , y j ),  q ¯ i * = j A R w ij0 * q ij * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaCyCamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaGccqGH9aqpcaWHXbWaaeWa aeaacaWH4bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadMhadaWgaa WcbaGaamOAaaqabaaakiaawIcacaGLPaaacaGGSaGaaeiiaiqahgha gaqeamaaDaaaleaacaWGPbGaeyyXICnabaGaaiOkaaaakiabg2da9m aaqababeWcbaGaamOAaiabgIGiolaadgeadaWgaaadbaGaamOuaaqa baaaleqaniabggHiLdGccaWG3bWaa0baaSqaaiaadMgacaWGQbGaaG imaaqaaiaacQcaaaGccaWHXbWaa0baaSqaaiaadMgacaWGQbaabaGa aiOkaaaakiaacYcaaaa@58CA@

Δ= { C q iA w i ( 1 δ i ) j A R w ij0 * q ij * } T { iA w i ( 1 δ i ) j A R w ij0 * ( q ij * q ¯ i * ) 2 } 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaauiLdiabg2 da9maacmaabaGaam4qamaaBaaaleaacaWGXbaabeaakiabgkHiTmaa qababaGaam4DamaaBaaaleaacaWGPbaabeaakmaabmaabaGaaGymai abgkHiTiaaes7adaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaa aSqaaiaadMgacqGHiiIZcaWGbbaabeqdcqGHris5aOWaaabeaeaaca WG3bWaa0baaSqaaiaadMgacaWGQbGaaGimaaqaaiaacQcaaaGccaWH XbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaaaaaeaacaWGQbGaey icI4SaamyqamaaBaaameaacaWGsbaabeaaaSqab0GaeyyeIuoaaOGa ay5Eaiaaw2haamaaCaaaleqabaGaamivaaaakmaacmaabaWaaabeae aacaWG3bWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaaIXaGaeyOe I0IaaqiTdmaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaWcba GaamyAaiabgIGiolaadgeaaeqaniabggHiLdGcdaaeqaqaaiaadEha daqhaaWcbaGaamyAaiaadQgacaaIWaaabaGaaiOkaaaakmaabmaaba GaaCyCamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaaaGccqGHsisl ceWHXbGbaebadaqhaaWcbaGaamyAaiabgwSixdqaaiaacQcaaaaaki aawIcacaGLPaaadaahaaWcbeqaaiabgEPielaaikdaaaaabaGaamOA aiabgIGiolaadgeadaWgaaadbaGaamOuaaqabaaaleqaniabggHiLd aakiaawUhacaGL9baadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@8328@

et C q = iA w i { ( 1 δ i ) j A R w ij * q( x i , y j ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGXbaabeaakiabg2da9maaqababeWcbaGaamyAaiabgIGi olaadgeaaeqaniabggHiLdGccaWG3bWaaSbaaSqaaiaadMgaaeqaaO WaaiWaaeaadaqadaqaaiaaigdacqGHsislcaaH0oWaaSbaaSqaaiaa dMgaaeqaaaGccaGLOaGaayzkaaWaaabeaeqaleaacaWGQbGaeyicI4 SaamyqamaaBaaameaacaWGsbaabeaaaSqab0GaeyyeIuoakiaadEha daqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaOGaaCyCamaabmaaba GaaCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaWG5bWaaSbaaSqa aiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaaaaa@595D@ . Ici, B 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOqamaaCa aaleqabaGaey4LIqSaaGOmaaaaaaa@399E@  désigne B B T . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaamOqaiaadk eadaahaaWcbeqaaiaadsfaaaGccaGGUaaaaa@3935@  Certains des poids fractionnaires calculés en (3.6) peuvent prendre des valeurs négatives. Le cas échéant, il faut utiliser des algorithmes remplaçant la pondération par régression. Par exemple, considérons la pondération par l’entropie, où les poids fractionnaires de la forme

w ij,c * = w ij * exp( Δ q ij * ) k A R w ik * exp( Δ q ik * )       (3.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaam4DamaaDa aaleaacaWGPbGaamOAaiaaiYcacaWGJbaabaGaaiOkaaaakiabg2da 9maalaaabaGaam4DamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaaa GcciGGLbGaaiiEaiaacchadaqadaqaaiaafs5acaWHXbWaa0baaSqa aiaadMgacaWGQbaabaGaaiOkaaaaaOGaayjkaiaawMcaaaqaamaaqa babaGaam4DamaaDaaaleaacaWGPbGaam4AaaqaaiaacQcaaaGcciGG LbGaaiiEaiaacchadaqadaqaaiaafs5acaWHXbWaa0baaSqaaiaadM gacaWGRbaabaGaaiOkaaaaaOGaayjkaiaawMcaaaWcbaGaam4Aaiab gIGiolaadgeadaWgaaadbaGaamOuaaqabaaaleqaniabggHiLdaaaO GaaCzcaiaaxMaacaGGOaGaaG4maiaac6cacaaI3aGaaiykaaaa@6153@

sont à peu près égaux aux poids fractionnaires par régression en (3.6) et sont toujours positifs. Après avoir obtenu les poids fractionnaires de calage, nous pouvons calculer l’estimateur IFHD de η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaGaaq4Tdaaa@3725@  en résolvant

iA w i { δ i U( η; x i , y i )+( 1 δ i ) j D i w ij,c * U( η; x i , y j ) }=0.       (3.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGabiqaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGPbGaeyicI4Saamyqaaqab0GaeyyeIuoakiaadEhadaWgaaWc baGaamyAaaqabaGcdaGadaqaaiaaes7adaWgaaWcbaGaamyAaaqaba GccaWGvbWaaeWaaeaacaaH3oGaai4oaiaahIhadaWgaaWcbaGaamyA aaqabaGccaaISaGaamyEamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiaaes7adaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaadaaeqbqabSqaaiaadQgacq GHiiIZcaWGebWaaSbaaWqaaiaadMgaaeqaaaWcbeqdcqGHris5aOGa am4DamaaDaaaleaacaWGPbGaamOAaiaaiYcacaWGJbaabaGaaiOkaa aakiaadwfadaqadaqaaiaaeE7acaGG7aGaaCiEamaaBaaaleaacaWG PbaabeaakiaaiYcacaWG5bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOa GaayzkaaaacaGL7bGaayzFaaGaeyypa0JaaGimaiaac6cacaWLjaGa aCzcaiaacIcacaaIZaGaaiOlaiaaiIdacaGGPaaaaa@6E5B@

Une méthode par rééchantillonnage peut être utilisée pour estimer la variance. L’annexe A.1 contient une brève discussion de l’estimateur de variance par rééchantillonnage pour la méthode proposée.

La méthode proposée peut aussi traiter la non-réponse non ignorable sous spécification correcte du modèle de réponse. Voir l’annexe A.3 pour l’extension à un cas de non-réponse non ignorable.

Précédent | Suivant

Date de modification :