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Fractional hot deck imputation for robust inference under 
item nonresponse in survey sampling 

Jae Kwang Kim and Shu Yang1 

Abstract 

Parametric fractional imputation (PFI), proposed by Kim (2011), is a tool for general purpose parameter 
estimation under missing data. We propose a fractional hot deck imputation (FHDI) which is more robust than 
PFI or multiple imputation. In the proposed method, the imputed values are chosen from the set of respondents 
and assigned proper fractional weights. The weights are then adjusted to meet certain calibration conditions, 
which makes the resulting FHDI estimator efficient. Two simulation studies are presented to compare the 
proposed method with existing methods. 

 
Key Words: EM algorithm; Kullback-Leibler information; Missing at random (MAR); Multiple imputation. 

 
 
 
1  Introduction 
 

Imputation is a popular method of compensating for item non-response in sample surveys. Let y  be 
the study variable subject to non-response and x  be the vector of auxiliary variables fully observed. A 
model on the conditional distribution ( )|f y x  is often used to generate imputed values for missing .iy  

Such model-based imputation method is well developed in the literature. Multiple imputation of Rubin 
(1987) is a Bayesian approach of model-based imputation. Monte Carlo EM of Wei and Tanner (1990) 
can be treated as a frequentist's approach of model-based imputation. Kim (2011) proposed parametric 
fractional imputation to handle multivariate missing data. 

However, the model-based imputation method that generates imputed values from ( )|f y x  is not a 

hot deck imputation in the sense that artificial values are constructed after the imputation. A desirable 
property of hot deck imputation is that all imputed values are observed values. For example, imputed 
values for categorical variables will also be categorical with the same number of categories as observed 
for the respondents. For this reason, hot deck imputation is the most popular imputation method, 
especially in household surveys. Nearest neighbor imputation method is also a hot deck imputation. Chen 
and Shao (2001), Beaumont and Bocci (2009), Kim, Fuller and Bell (2011) investigated nearest neighbor 
imputation in the context of survey sampling. Durrant (2009), Haziza (2009) and Andridge and Little 
(2010) provided comprehensive overviews of the hot-deck imputation methods in survey sampling. 

Fractional hot deck imputation was proposed by Kalton and Kish (1984) to achieve efficiency in hot 
deck imputation. Kim and Fuller (2004) and Fuller and Kim (2005) provided a rigorous treatment of 
fractional hot deck imputation and discussed variance estimation. However, their approach is only 
applicable when x  is categorical. For continuous covariate case, predictive mean matching can be treated 
as a nearest neighbor imputation method using the predicted value obtained from ( )|f y x  but its 

statistical properties are not fully addressed in the literature. 

mailto:jkim@iastate.edu
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In this paper, we propose a new fractional hot deck imputation (FHDI) method based on a parametric 
model of ( )|f y x  that allows continuous covariates. The proposed method has several advantages over 

the existing methods. First, it is a hot deck imputation preserving the correlation structure between the 
items. Second, it is robust in that the resulting estimator is less sensitive against the failure of the assumed 
model ( )| .f y x  Third, it provides consistent variance estimators for various parameters without requiring 

the congeniality condition of Meng (1994). Multiple imputation, however, requires the congeniality 
condition for the validity of variance estimation. When the congeniality condition does not hold, multiple 
imputation often leads to conservative inference, which in turn reduces test powers. See Section 5.2 for 
more details. 

The paper is organized as follows. Section 2 describes the basic setup. The proposed method is 
presented in Section 3. The robustness of FHDI is discussed in Section 4. Results from two simulation 
studies are presented in Section 5 before some concluding remarks are made in Section 6. 

 
2  Basic setup  
 

Consider a finite population of N  elements identified by a set of indices { }= 1,2, ,U N  with N  
known. Associated with each unit i  in the population are study variables, ix  and iy , with ix  always 
observed and iy  subject to non-response. Let A  denote the set of indices for the elements in a sample 
selected by a probability sampling mechanism. We are interested in estimating ,η  defined as a (unique) 

solution to the population estimating equation ( )=1
; , = 0.N

i ii
U yη∑ x  For example, a population mean can 

be obtained by letting ( ); , = .i i iU y yη η −x  Under complete response, a consistent estimator of η  is 

obtained by solving   
 ( ); , = 0,i i i

i A
wU yη

∈
∑ x   (2.1) 

where ( ){ } 1
=iw Pr i A

−
∈  is the inverse of the first-order inclusion probability of unit i . Binder and Patak 

(1994) and Rao, Yung and Hidiroglou (2002) considered the asymptotic properties of the estimator 
obtained from (2.1). Under the existence of missing data, we define  

1 if  is observed
=

0 otherwise.
i

i

y
δ





 

A consistent estimator of η  is then obtained by taking the conditional expectation and solving  

 ( ) ( ) ( ){ }; , 1 ; , | , = 0 = 0i i i i i i i i
i A

w U y E U Yδ η δ η δ
∈

 + − ∑ x x x   (2.2) 

for .η  Estimating equation (2.2) is sometimes referred to as expected estimating equation (Wang and Pepe 
2000). 

To compute the conditional expectation in (2.2), we assume that the finite population at hand is a 
realization from an infinite population, called superpopulation. In the superpopulation model, we often 
postulate a parametric conditional distribution of y  given ( ),   ; ,f y θx x  which is known up to the 

parameter θ  with parameter space .Ω  Under the specified model, we can compute a consistent estimator 
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θ̂  of θ  and then use a Monte Carlo method to evaluate the conditional expectation in (2.2) given the 
estimate ˆ.θ  If the response mechanism is missing at random (MAR) or ignorable in the sense of Rubin 
(1976), we can approximate the expected estimating equation in (2.2) by  

 ( ) ( ) ( )*( )

=1

1; , 1 ; , = 0,
m

j
i i i i i i i

i A j
w U y U y

m
δ η δ η

∈

 
+ − 

 
∑ ∑x x   (2.3) 

where  

( ). . .
*(1) *( ) ˆ, , | ; .

i i d
m

i i i iy y f y θx   

Often, we use the maximum likelihood estimator ˆ,θ  which solves  

 ( ) ( )= ; , = 0,i i i i
i A

S w S yθ δ θ
∈
∑ x   (2.4) 

where ( ) ( ); , = log | ; .S y f yθ θ θ∂ ∂x x  Note that we use the sampling weights iw  in the score equation 

(2.4). Thus, we are implicitly assuming that the imputation model, the model for generating the imputed 
values, is the model about the finite population values ( )| ,i if y x  not the model about the sample values. 

Thus, we allow that the sampling mechanism can be informative in the sense of Pfeffermann (2011). 
Multiple imputation, on the other hand, uses the sample model, ( ) ( )| | ,s i i i if y f y i A≡ ∈x x , to generate 

the imputed values and often assumes that the sampling mechanism is non-informative. Thus, in multiple 
imputation, MAR is assumed for the sample at hand, while, in fractional imputation, MAR is assumed for 
the population. Under informative sampling design, generating imputed values from the sample model 

( )|s if y x  does not necessarily lead to valid inference even when sample MAR condition holds. See 

Section 8.4 of Kim and Shao (2013) for further discussion of MAR under informative sampling. 
To compute the conditional expectation in (2.2) efficiently, the parametric fractional imputation (PFI) 

of Kim (2011) can be used. In PFI, the imputed values are generated from a suitable proposal distribution 
( )| ih y x  and then the imputed estimating equation (2.3) is changed to  

 ( ) ( ) ( )* *( )

=1
; , 1 ; , = 0,

m
j

i i i i i ij i i
i A j

w U y w U yδ η δ η
∈

 
+ − 

 
∑ ∑x x   (2.5) 

where  

 
( ) ( )
( ) ( ){ }
*( ) *( )

*

*( ) *( )
1

ˆ| ; |
= .

ˆ| ; |

j j
i i i i

ij m k k
i i i ik

f y h y
w

f y h y

θ

θ
=∑

x x

x x
  (2.6) 

The choice of the proposal distribution ( )h ⋅  is somewhat arbitrary. We will discuss a particular choice 

that may lead to a robust estimation. 
The consistency of the resulting estimator η̂  from (2.3) or (2.5) can be established under the 

assumption that the conditional distribution ( )| ;f y θx  is correctly specified (by similar argument in the 

proof of Corollary II.2 of Andersen and Gill (1982) and its proof is skipped here). In this paper, we 
consider an alternative approach of fractional imputation that is more robust against the failure of the 
assumption on the imputation model. 



214 Kim and Yang: Fractional hot deck imputation for robust inference under item nonresponse in survey sampling 
 

 
Statistics Canada, Catalogue No. 12-001-X 

3  Proposed method 
 

We first consider a particular fractional hot deck imputation method, called full fractional 
imputation, where the imputed values are taken from the set of respondents denoted as 

{ }= ; = 1R iA i A δ∈ . That is, the -thj  imputed value of missing ,iy  denoted by *( ) ,j
iy  is equal to the -thj  

value of y  among the set in .RA  We propose a fractional hot deck imputation approach that makes use of 
the parametric model assumption ( )| ;f y θx . If all of the elements in RA  are selected as the imputed 

values for missing ,iy  we can treat { };j Ry j A∈  as a realization from ( )| = 1j jf y δ  and fractional weight 

assigned to donor jy  for the missing item iy  is, by choosing ( ) ( )| = | = 1j i j jh y f y δx  in (2.6), 

 
( ) ( )
( ) ( )

*

;

ˆ| , = 0; | = 1

ˆ    | | = 1 ,

ij j i i j j

j i j j

w f y f y

f y f y

δ θ δ

θ δ

∝

∝

x

x
  (3.1) 

with *
; =1

= 1
j

ijj
w

δ∑ , and θ̂  being the MLE obtained from (2.4). The second line follows from the MAR 

assumption. Furthermore, we can write   

 

( ) ( ) ( )
( ) ( )

( )
=1

| = 1 = | , = 1 | = 1

                     = | | = 1

1                     | ,

j j j j j

j j

N

k j k
kR

f y f y f d

f y f d

f y
N

δ δ δ

δ

δ≅

∫
∫

∑

x x x

x x x

x

  (3.2) 

where the second equality follows from the MAR assumption, and the last (approximate) equality follows 
by approximating the integral by the population empirical distribution, and RN  is the number of 
respondents in the population. Using the survey weights, we can approximate  

( ) ( )|
| = 1 R

R

k j kk A
j j

kk A

w f y
f y

w
δ ∈

∈

≅
∑

∑
x

 

and the fractional weights in (3.1) are computed from  

 
( )

( )
*

ˆ| ;
ˆ| ;

R

j i

ij

k j kk A

f y
w

w f y

θ

θ
∈

∝
∑

x

x
  (3.3) 

with * = 1
R

ijj A
w

∈∑ . In (3.3), the point mass *
ijw  assigned to donor jy  for missing unit i  is expressed by the 

ratio of the density ( )| .f y x  Thus, for each missing unit ,  =R Ri n A  observations are used as donors for 
the hot deck imputation using *

ijw  as the fractional weights. Such fractional imputation can be called full 

fractional imputation (FFI) because there is no randomness due to the imputation mechanism. The FFI 
estimator of ,η  defined by ( )=1

; , = 0N
i ii

U yη∑ x , is then computed by solving  

 ( ) ( ) ( )*; , 1 ; , = 0,
R

i i i i i ij i j
i A j A

w U y w U yδ η δ η
∈ ∈

  + − 
  

∑ ∑x x   (3.4) 
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where *
ijw  is defined in (3.3). Note that the imputed estimating equation (3.4) is a good approximation to 

the expected estimating equation in (2.2). 
In survey sampling, an imputed data set with a large imputation size may not be desirable. Thus, 

instead of taking all the observations in RA  as donors for each missing item, a subset of RA  can be 
selected to reduce the size of the donor set of missing .iy  Thus, the selection of the donors is viewed as a 
sampling problem and we use an efficient sampling design and weighting techniques to obtain efficient 
imputation estimators. For the donor selection mechanism, efficient sampling designs, such as a stratified 
sampling design or systematic Proportional-to-Size (PPS) sampling, can be used to select donors of size 

.m  A systematic PPS sampling for fractional hot deck imputation can be described as follows:  
 

1. Within each i  with = 0,iδ  sort the donors in the full respondent set { }; = 1j jy δ  in ascending 

order as (1) ( )ry y≤ ≤  and use *
( )i jw  to denote the fractional weight associated with ( ) .jy  That 

is, * *
( ) =i j ikw w  for ( ) = .j ky y   

 
2. Partition [ ]0,1  by ){ }1* *

( ) ( )=0 =0
, ,  = 1, , 1 ,j j

j i j i jk k
I w w j r+≡ −∑ ∑   where *

(0) = 0.iw  

  
3. Generate ( )uniform 0,1u m  and let = ,ku u k m+  = 0, , 1.k m −  For = 0, , 1,k m −  if 

k ju I∈  for some 0 1,j r≤ ≤ −  include j  in the sample .iD   

 
After we select iD  from the complete set of respondents, the selected donors in iD  are assigned with 

the initial fractional weights *
0 = 1ijw m . The fractional weights are further adjusted to satisfy  

 ( ) ( ) ( ) ( )* *
,1 , = 1 , ,

i R

i i ij c i j i i ij i j
i A j D i A j A

w w y w w yδ δ
∈ ∈ ∈ ∈

      − −   
     

∑ ∑ ∑ ∑q x q x   (3.5) 

for some ( ),i jyq x , and *
, = 1

i
ij cj D

w
∈∑  for all i  with = 0,iδ  where *

ijw  is the fractional weights for FFI 

method, as defined in (3.3). Regarding the choice of the control function ( ), yq x  in (3.5), we can use 

( ) ( )2, = ,y y y ′q x , which keeps the empirical distributions of y  for iD  and RA  as close as possible in the 

sense that the first and second moment of y  are the same. Other choices can also be considered. See 
Fuller and Kim (2005). 

The problem of adjusting the initial weights to satisfy certain constraints is often called calibration and 
the resulting fractional weights can be called calibrated fractional weights. Using the idea of regression 
weighting, the final calibration fractional weights that satisfy (3.5) and *

, = 1ij cj
w∑  can be computed by  

 ( )* * * * *
, 0 0= ,ij c ij ij ij iw w w ⋅+ ∆ −q q   (3.6) 

where ( )* * * *
0= , ,  = ,

R
ij i j i ij ijj A

y w⋅ ∈∑q q x q q   

( ){ } ( ) ( ){ } 12* * * * *
0 0= 1 1

R R

T

q i i ij ij i i ij ij ii A j A i A j A
C w w w wδ δ

−⊗

⋅∈ ∈ ∈ ∈
∆ − − − −∑ ∑ ∑ ∑q q q  
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and ( ) ( ){ }*= 1 ,
R

q i i ij i ji A j A
C w w yδ

∈ ∈
−∑ ∑ q x . Here, 2B⊗  denotes .TBB  Some of the fractional weights 

computed by (3.6) can take negative values. If that happens, algorithms alternative to regression weighting 
should be used. For example, consider entropy weighting, where the fractional weights of the form  

 
( )

( )
* *

*
, * *

exp
=

exp
R

ij ij
ij c

ik ikk A

w
w

w
∈

∆

∆∑
q

q
  (3.7) 

are approximately equal to the regression fractional weights in (3.6) and are always positive. Once the 
calibration fractional weights are obtained, the FHDI estimator of η  is then computed by solving  

 ( ) ( ) ( )*
,; , 1 ; , = 0.

i

i i i i i ij c i j
i A j D

w U y w U yδ η δ η
∈ ∈

  + − 
  

∑ ∑x x   (3.8) 

For variance estimation, a replication method can be used. See Appendix A.1 for a brief discussion of 
the replication variance estimator for the proposed method. 

Furthermore, the proposed method can handle non-ignorable non-response under the correct 
specification of the response model. See Appendix A.3 for the extension to non-ignorable non-response 
case. 

 
4  Robustness 
 

We now discuss the robustness of the proposed method against a small departure from the assumed 
parametric model. The robustness feature in our proposed estimator is defined to be robust against 
imputation model misspecification, a small exponential tilting of the true model. For simplicity of the 
presentation, assume that the sampling design is simple random sampling and the realized sample is a 
random sample from the superpopulation model. 

We assume that the true model ( )|g y x  does not belong to ( ){ }| ; ; .f y x θ θ ∈Ω  However, we can still 

specify a working model ( )| ;f y x θ  and compute the MLE of .θ  It is well known (White 1982) that the 
MLE converges to *,θ  the minimizer of the Kullback-Leibler information  

( ) ( )
( )

|
= log

| ;g

g Y x
K E

f Y x
θ

θ

   
  

    
 

for .θ ∈Ω  Sung and Geyer (2007) discussed the asymptotic properties of the Monte Carlo MLE of θ  
under missing data. 

To formally discuss robustness, suppose that the true distribution ( )|g y x  belongs to the 

neighborhood  

 ( ) 21= ; , <
2

g D g fε ε 
 
 

   (4.1) 

for some radius > 0,ε  where  

 ( ), =  ,gD g f log g dy
f

 
 
 

∫   (4.2) 
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is the Kullback-Leibler distance measure. The neighborhood (4.1) can be characterized in the following 
way. Let ( ), ,z x y θ  be a function of ,  x y  and ,θ  standardized to satisfy ( )| = 0Y xE z  and ( )| = 1,Y xVar z  

and define  

 ( ) ( ) ( ) ( ){ }| = | ; exp , , , ,g y x f y x z x y xθ ε θ κ θ−   (4.3) 

where  

( ){ }( )|= log exp , , .Y xE z x Yκ ε θ    

For small > 0ε  it can be shown that  

 ( ) 21, .
2

D g fκ ε≅ ≅   (4.4) 

Equation (4.3) represents an extensive set of distributions close to ( )| ;f y x θ  created by varying 

( ), ,z x y θ  over different standardized functions, where z  and ε  contain some geometric interpretation 
which represent the direction and magnitude of the misspecification respectively. For -p dimension 
parameter ,θ  we can specify the directions of the misspecification as  

( ) ( )1/2
1 2, , , = , , ,

T

pz z z I s x yθ θ−
  

where ( ) ( ), , = log | ;s x y f y xθ θ θ∂ ∂  and Iθ  is the information matrix for .θ  Represent ( ), ,z x y θ  as  

( ) ( )1/2, , = , , ,Tz x y I s x yθθ λ θ−  

where 2
=1

= 1,p
ii
λ∑  then ( ), ,z x y θ  satisfies the standardization criterion of ( )| = 0Y xE z  and ( )| = 1.Y xVar z  

See Copas and Eguchi (2001) for further discussion of this expression. 
Let *

,ij gw  be the fractional weight of the form (3.3) using the true density g  and *
,ij fw  be the 

corresponding fractional weight using the "working density" .f  By the special construction of the 
weights, we can establish  

 ( )* * 1/2 *
, , , .T

ij g ij f ij fw w I wθελ
θ

− ∂
≅ +

∂
  (4.5) 

Proof of (4.5) is given in Appendix A.2. Thus  

 

( ) ( )

( ) ( )

* *
, ,

1/2 *
,

; , ; ,

  ; , .

i ij g i j i ij f i j
i j i j

T
i ij f i j

i j

w w U x y w w U x y

I w w U x yθ

η η

ελ η
θ

−

≅

∂
+

∂

∑ ∑ ∑ ∑

∑ ∑
  (4.6) 

For small ,ε  we have  

( ) ( )* *
, ,; , ; , ,i ij g i j i ij f i j

i j i j
w w U x y w w U x yη η≅∑ ∑ ∑ ∑  

and so the resulting estimator of η  from ( )*
, ; , = 0i ij f i ji j

w w U x yη∑ ∑  will be close to the true value 0.η  
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5  Simulation study 
 

We performed two simulation studies. In Section 5.1, we compared the performance of the proposed 
method with some other imputation methods in a correctly specified model and a misspecified model, 
respectively, with ignorable missing data. In Section 5.2, we compared the statistical power of a test based 
on FHDI versus MI. 

 
5.1  Simulation one 
 

The first simulation study tested the performance of the proposed method under the setup of ignorable 
missing data. We used two sets of models to generate the observations. In model A, = 0.5 ,i i iy x e+  where 

( ) ( )exp 1 ,  0,1 ,i ix e N   with ix  and ie  being independent. In model B, = 0.5 ,i i iy x e+  where 

( ) { }2exp 1 ,  (2) 2 2,i ix e χ −   with ix  and ie  being independent. Random samples of size = 200n  

were separately generated from the two models. In addition to ( ), ,i ix y  we also generated iδ  from 

( )Bernoulli ,iπ  where ( ){ } 1
= 1 exp 0.2 .i ixπ

−
+ − −  Variable ix  was always observed but variable iy  was 

observed if and only if = 1.iδ  The overall response rates were about 65%  in both cases. We used 
= 2,000B  Monte Carlo samples in the simulation. 

From each of the Monte Carlo samples, one generated from model A and the other generated from 
model B, we computed the following eight estimators:  

 

1. Full sample estimator (Full) that is computed using the full sample.  

2. Predictive Mean Matching (PMM) is a semi-parametric imputation method, which fills in a 
value randomly from observations that are closest to the predicted value obtained from 
( )| .f y x  The PMM was implemented using "mice.impute.pmm" function in R.  

3. Multiple imputation (MI) estimator with imputation size = 10,m  where the imputed values are 
generated from the normal-theory regression model, as considered in Schenker and Welsh 
(1988).  

4. Parametric fractional imputation (PFI) estimator without calibration with imputation size 
= 10.m  

5. Parametric fractional imputation (PFI_cal) estimator with calibration with imputation size 
= 10.m  The fractional weights are computed using the calibration method in (3.6) with 
( )2= , .y yq  

6. Full fractional imputation (FFI) estimator using the full set of respondents as imputation 
values, i.e. the imputation size = ,Rm n  where Rn  is the size of .RA  

7. Fractional hot deck imputation (FHDI) estimator without calibration using a small subset of 
respondents of size = 10m  as imputation values.  
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8. Fractional hot deck imputation (FHDI_cal) estimator with calibration using a small subset of 
respondents of size = 10m  as imputation values. The fractional weights are computed using 
the calibration method in (3.6) with ( )2= , .y yq   

 
Multiple imputation is an approach of generating imputed values with simplified variance estimation. 

In this procedure, Bayesian methods of generating imputed values are considered, where > 1m  imputed 
values are generated from the posterior predictive distribution. Using the imputed values *(1) *( ), , ,my y  
the multiple imputation estimator of ,η  denoted by ˆMIη  is  

( )

=1

1ˆ ˆ=
m

k
MI

km
η η∑  

where ( )ˆ kη  is the complete response estimator applied to the -thk  imputed data set. Rubin's formula can 
be used for variance estimation in MI,  

 ( ) 1ˆ ˆ = 1 ,MI MI m mV W B
m

η  + + 
 

  (5.1) 

where 1 ( )
=1

ˆ= ,m k
m k

W m V− ∑  ( ) ( )21 ( )
=1

ˆ ˆ= 1 ,m k
m MIk

B m η η−− −∑  and ( )ˆ kV  is the variance estimator of ( )ˆ kη  

under complete response applied to the -thk  imputed data set. 
In both models, we used the normal density with mean 0 1xβ β+  and variance 2σ  as the working 

model for imputation. Thus, the working model is the true model in model A but not true in model B. 
We considered three parameters: ( )1 = ,E Yθ  the population mean of ( )2,  = < 1 ,y Pr Yθ  the 

proportion of Y  less than one, and 3 ,θ  the 0.5  quantile of .Y  In estimating 2θ  under full sample, we used 

( )1
2, =1

ˆ = < 1 .n
n ii

n I yθ − ∑  In estimating 3θ  under full sample, we used ( ) ( ){ }1
3,
ˆ ˆ ˆ= = inf : > ,n F p y F y pθ −  

where ( ) ( )1
=1

ˆ = <n
ii

F y n I y y− ∑  and = 0.5.p  

Table 5.1 and Table 5.2 show Monte Carlo means, standardized variance (Std Var) and standardized 
mean squared errors (Std MSE) of the eight estimators under model A and under model B, respectively. 
The standardized variance (mean squared error) is calculated as the ratio of variance (mean squared error) 
and the variance (mean squared error) of the full sample estimator multiplied by 100, which measures the 
increased variance (mean squared error) due to imputation relative to the full sample estimator. As for the 
Monte Carlo means (4th column), the imputation estimators are all unbiased for estimating 1 2,  ,θ θ  and 3θ  
under model A. Under model B, PMM, MI, PFI, PFI_cal for estimating 3θ  have much larger biases in 
absolute values than FFI, FHDI, and FHDI_cal under model misspecification in this simulation. 
Regarding the standardized variance and standardized mean squared error (5th and 6th column), PFI is 
more efficient than FHDI. The reason is that in PFI, the imputed values are generated according to the 
conditional distribution ( )|f y x  directly; whereas in FHDI, the imputed values can be taken from 

respondents with dominantly large fractional weights. The effective imputation data size is determined by 
the imputed observations with large fractional weights, which also contribute to the loss of efficiency. 
FHDI loses efficiency in order to gain robustness. Lastly, FHDI with = 10m  has slightly larger 
standardized variance for 2θ  than FFI, because of the additional variability due to the sampling procedure. 
Comparing PFI with PFI_cal and FHDI with FHDI_cal, the calibration step improves the efficiency a little 
bit. The PMM shows the largest variance in all scenarios. 
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Table 5.1 
Monte Carlo mean, standardized variance and standardized mean squared error of point estimators in Model 
A of Simulation one. 
 

Model Parameter Method  Mean Std Var Std MSE 

A 

yµ  Full  0.50 100 100 
PMM  0.50 175 175 
MI ( = 10m )  0.50 135 135 
PFI ( = 10m )  0.50 130 130 
PFI cal ( = 10m )  0.50 130 130 
FFI ( = Rm n )  0.50 130 130 
FHDI ( = 10m )  0.50 156 156 
FHDI cal ( = 10m )  0.50 130 130 

( )< 1Pr Y  Full  0.68 100 100 
PMM  0.68 168 167 
MI ( = 10m )  0.68 112 112 
PFI ( = 10m )  0.68 110 110 
PFI cal ( = 10m )  0.68 109 109 
FFI ( = Rm n )  0.68 130 130 
FHDI ( = 10m )  0.68 137 136 
FHDI cal ( = 10m )  0.68 132 132 

Quantile Full  0.47 100 100 
 PMM  0.47 184 184 
 MI ( = 10m )  0.47 111 111 
 PFI ( = 10m )  0.47 111 111 
 PFI cal ( = 10m )  0.47 111 111 
 FFI ( = Rm n )  0.47 135 135 
 FHDI ( = 10m )  0.47 142 142 
 FHDI cal ( = 10m )  0.47 141 141 

 
 
 
 
Table 5.2 
Monte Carlo mean, standardized variance and standardized mean squared error of point estimators in Model 
B of Simulation one. 
 

Model Parameter Method  Mean Std Var Std MSE 

B 

yµ  Full  0.50 100 100 
PMM  0.50 172 172 
MI ( = 10m )  0.50 131 131 
PFI ( = 10m )  0.50 131 131 
PFI cal ( = 10m )  0.50 128 128 
FFI ( = Rm n )  0.50 127 127 
FHDI ( = 10m )  0.50 147 147 
FHDI cal ( = 10m )  0.50 127 127 

( )< 1Pr Y  Full  0.75 100 100 
PMM  0.75 166 166 
MI ( = 10m )  0.73 140 170 
PFI ( = 10m )  0.73 138 168 
PFI cal ( = 10m )  0.73 137 169 
FFI ( = Rm n )  0.75 137 137 
FHDI ( = 10m )  0.75 145 145 
FHDI cal ( = 10m )  0.75 140 141 

Quantile Full  0.26 100 100 
 PMM  0.24 191 198 
 MI ( = 10m )  0.31 122 159 
 PFI ( = 10m )  0.31 123 160 
 PFI cal ( = 10m )  0.31 122 159 
 FFI ( = Rm n )  0.26 135 135 
 FHDI ( = 10m )  0.26 144 144 
 FHDI cal ( = 10m )  0.26 139 139 
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For variance estimation, we considered replication variance estimation for FFI and FHDI, particularly 
the delete-1 Jackknife variance estimation, which is described in Appendix A.1. We also considered 
variance estimation in MI, which uses Rubin's formula (5.1). 

Table 5.3 shows the Monte Carlo relative biases of the variance estimators, which is calculated as 

{ } { } { }ˆ ˆˆ ,MC MC MCE V V Vθ θ −   where { }ˆMCE V  is the Monte Carlo mean of variance estimates ˆ,V  and 

{ }ˆMCV θ  is the Monte Carlo variance of the point estimates ˆ.θ  The relative bias of the variance estimator 

in FFI and FHDI is reasonably small for all parameters considered in both models, suggesting that the 
replication variance estimator is valid. The relative bias and t − statistics of variance estimator in MI are 
small for 1θ  but quite large for 2θ  even when the working model is true (model A). Rubin's formula is 

based on the following decomposition,  

 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ= ,MI n MI nV V Vθ θ θ θ+ −   (5.2) 

 

where n̂θ  is the full sample estimator of .η  Basically, the mW  term in (5.1) estimates ( )n̂V θ  and the 

( )11 mm B−+  term in (5.1) estimates ( )ˆ ˆ .MI nV θ θ−  The decomposition (5.2) holds when n̂θ  is the MLE of 

,θ  which is the congeniality condition of n̂θ  (Meng 1994). For general case, we have  

 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ= 2 ,MI n MI n MI n nV V V Covθ θ θ θ θ θ θ+ − + −   (5.3) 

 

and Rubin's variance estimator can be biased if ( )ˆ ˆ ˆ, 0.MI n nCov θ θ θ− ≠  The congeniality condition holds 

true for estimating the population mean; however, it does not hold for the method of moments estimator of 
( )< 1 .Pr Y  Note that the imputed estimator of ( )2 = < 1Pr Yθ  can be expressed as  

 

 ( ) ( ) ( ){ }1
2,

=1

ˆ ˆ ˆ= < 1 1 < 1 | ; , .
n

I i i i i i
i

n I y E I y xθ δ δ µ σ−  + − ∑   (5.4) 

 
Thus, the imputed estimators of 2θ  "borrows strength" by making use of extra information associated 

with ( )| .f y x  That is, the normality of ( )|f y x  is used in computing the conditional expectation in 
(5.4), which improves the efficiency of the imputed estimator for 2.θ  The same phenomenon also holds 
for 3.θ  In Table 5.1, the increase of variance due to imputation for MI with = 10m  is about 35 % for 1θ  
but only 12% and 11% for 2θ  and 3 ,θ  respectively, which shows the phenomenon of "borrowing 
strength" for estimating 2θ  and 3θ  thanks to the use of extra information in the imputation stage. Thus, 

when the congeniality conditions do not hold, the imputed estimator improves the efficiency but Rubin's 
variance estimator does not recognize this improvement. 
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Table 5.3 
Monte Carlo relative bias of the replication variance estimator in Simulation one. 
 

Model Parameter Method  R.B. (%) 

*A 

( )1̂V θ  MI ( = 10m )  -2.33 
FFI ( = Rm n )  -0.80 
FHDI_cal ( = 10m )  -0.80 

   
( )2̂V θ  MI ( = 10m )  8.20 

FFI ( = Rm n )  -5.01 
FHDI_cal ( = 10m )  -5.12 

   
( )3̂V θ  MI ( = 10m )  19.84 

FFI ( = Rm n )  4.50 
FHDI_cal ( = 10m )  3.78 

*B 

( )1̂V θ  MI ( = 10m )  2.60 
FFI ( = Rm n )  -0.56 
FHDI_cal ( = 10m )  -0.56 

   
( )2̂V θ  MI ( = 10m )  -3.33 

FFI ( = Rm n )  -1.89 
FHDI_cal ( = 10m )  -3.25 

   
( )3̂V θ  MI ( = 10m )  -8.99 

FFI ( = Rm n )  3.50 
FHDI_cal ( = 10m )  3.80 

 
 
5.2  Simulation two 
 

Simulation two tested the power of the proposed method in a hypothesis test using the null model as 
the imputation model. Samples of bivariate data ( ),i ix y  of size = 100n  were generated from  

 ( )2
0 1 2= 1i i i iy x x eβ β β+ + − +   (5.5) 

where ( ) ( )0 1 2, , = 0,0.9,0.06 ,β β β  ( )0,1 ,ix N  ( )0,0.16 ,ie N  with ix  and ie  being independent. The 
variable ix  is always observed but the probability that iy  responds is 0.5.  Monte Carlo samples were 
generated independently for = 10,000B  times. We are interested in testing 0 2:  = 0H β  from the 
respondents. We compared FHDI with MI using the same imputation size = 30.m  The imputation model 
is the null model,  

0 1= .i i iy x eβ β+ +  

That is, the imputation model uses extra information of 2 = 0.β  From the imputed data, we fit model (5.5) 
and computed the power of a test 0 2:  = 0H β  at the significant level of 0.05.  In addition, we also 
considered the complete case (CC) method that only uses the respondents for regression. 

Table 5.4 shows the Monte Carlo mean and variance of the point estimators, relative bias of the 
variance estimator and the Monte Carlo power of testing 0 2:  = 0.H β  In each Monte Carlo sample, we 

constructed a 95%  Wald confidence interval of 2β  as ( )1/2 1/2
2 2

ˆ ˆˆ ˆ1.96 , 1.96V Vβ β− +  and reject the null 

hypothesis if 2 = 0β  does not fall in the Wald confidence interval. The Monte Carlo power is calculated as 
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the relative frequency of rejecting the null hypothesis among the Monte Carlo samples. From the second 
column, FHDI and MI estimators are biased for 2 ,β  as expected since in imputation the imputation model 
is the null model and it is slightly different from the true model that generated sample. The bias of FHDI is 
smaller than that of MI because of the robustness of FHDI discussed in Section 4. In MI, 50%  of the 
imputed MI data comes from the null model and the other 50%  from the true model, so the slope 2β  is 
attenuated to zero by half of the true slope. In FHDI, though we used the null model to calculate the 
fractional weights, the imputed data come from the true model which reduces the bias. Moreover, MI 
provides more efficient point estimators than the CC method but variance estimation is very conservative 
(about 180%  overestimation). Because of the serious positive bias of MI variance estimator, the statistical 
power of the test based on MI is actually lower than the CC method. On the other hand, FHDI also 
provides more efficient point estimators than the CC method and variance estimation is essentially 
unbiased, the statistical power of the test based on FHDI is higher than the CC method. 

 
Table 5.4 
Simulation results based on 10,000 Monte Carlo samples in Simulation two. 
 

Method ( )2
ˆE β  ( )2

ˆV β  ( )ˆR.B. V  Power 

FHDI 0.046 0.00146 0.02 0.314 
MI 0.028 0.00056 1.81 0.044 
CC 0.060 0.00234 -0.01 0.285 

 

 
6  Concluding remarks 
 

We have proposed a fractional hot deck imputation method that uses a parametric model for ( )|f y x  

when x  contains continuous components. The proposed method provides robust estimation for the 
parameters in the sense that the imputation model is not necessarily equal to the data-generating model. 
The price we pay in the FHDI is the loss of efficiency in point estimation. Under our first simulation, the 
FHDI estimator for ( )< 1P Y  has the second largest variance but the smallest mean squared error when 

the working model is not true, as compared with other estimators. 
The loss of efficiency mainly comes from the fact that the fractional weights are more variable than 

those under the PFI method because some of jx  are not useful in imputing .iy  That is, the value of 

( )ˆ| ;i jf y θx  can be very small. The fractional hot deck imputation under a small imputation size (e.g. 

= 10m ) does not increase the variance significantly, as can be seen in Table 5.1 under model A. 

The proposed fractional imputation method can actually be used to develop a single imputation method 
by applying FHDI with = 1,m  which selects an imputed value with probability proportional to the 
fractional weight for each missing unit. In this case, the FHDI can be used to develop a single imputation 
that is still robust against model misspecification. However, weighting calibration cannot co-exist with 
single imputation. Calibration constraints can still be achieved by employing the balanced imputation 
method as discussed in Chauvet, Deville and Haziza (2011) or the rejective Poisson sampling of Fuller 
(2009). Further investigation along this direction will be a topic of future research. 
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Appendix  
 

A.1  Replication variance estimation 
 

For variance estimation, replication methods can be used. Let [ ]k
iw  be the -thk  replication weights 

such that  

( )2[ ]

=1

ˆ ˆ ˆ=
L

k
rep k

k
V c Y Y−∑  

is consistent for the variance of ˆ = ,i ii A
Y w y

∈∑  where L  is the replication size, kc  is the -thk  replication 

factor that depends on the replication method and the sampling mechanism, and [ ] [ ]ˆ =k k
i ii A

Y w y
∈∑  is the 

-thk  replicate of ˆ.Y  In delete-1 jackknife variance estimation, =L n  and ( )= 1 .kc n n−  

To apply the replication method in FFI, we first apply the replication weights [ ]k
iw  in (2.4) to compute 

[ ]ˆ .kθ  Once [ ]ˆ kθ  is obtained, we use the same imputed values to compute the initial replication fractional 
weights  

 ( ) ( )*[ ] [ ] 1 [ ] [ ] [ ]ˆ ˆ| ; | ; ,
R

k k k k k
ij j j j i l j l

l A
w w w f y x w f y xθ θ−

∈

  ∝  
  
∑   (A.1) 

with *[ ] = 1.
R

k
ijj A

w
∈∑  The variance of ˆ ,FFIη  computed from (3.4), is then computed by  

( )2[ ]

=1

ˆ ˆ ˆ= ,
L

k
rep k FFI FFI

k
V c η η−∑  

where [ ]ˆ k
FFIη  comes from solving  

( ) ( ) ( )[ ] *[ ]; , 1 ; , = 0,
R

k k
i i i i i ij i j

i A j A
w U y w U yδ η δ η

∈ ∈

  + − 
  

∑ ∑x x  

and *[ ]k
ijw  is defined in (A.1). 

We now discuss replication variance estimation of the FHDI estimator ˆFHDIη  computed from (3.8). 
Define = 1ijd  if ij D∈  and = 0ijd  otherwise. Note that ˆFHDIη  is computed via two steps: in the first step, 

a systematic PPS sampling is used with the selection probability proportional to the fractional weights 
from the FFI method. In the second step, the calibration weighting method using the constraint (3.5) with 
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*
, = 1

R
ij ij cj A

d w
∈∑  is used. Thus, the replicate fractional weights are also computed in two steps. Firstly, the 

initial replication fractional weight for *
0 = 1ijw m  is then given by  

 
( )

( )
*[ ] *

*[ ]
0 *[ ] *

= ,
R

k
ij ij ijk

ij k
il il ill A

d w w
w

d w w
∈∑

  (A.2) 

where *
ijw  is the fractional weight for FFI defined in (2.6) and *[ ]k

ijw  is the -thk  replication fractional 

weight for FFI defined in (A.1). Secondly, the replication fractional weights are adjusted to satisfy the 
calibration constraints. The calibration equation for replication fractional weights corresponding to (3.5) is 
then  

 ( ) ( ) ( ) ( )[ ] *[ ] [ ] *[ ]
,1 , = 1 ,

R

k k k k
i i ij c i j i i ij i j

i A j D i A j Ai

w w y w w yδ δ
∈ ∈ ∈ ∈

      − −   
     

∑ ∑ ∑ ∑q x q x   (A.3) 

and *[ ]
, = 1.k

ij cj Di
w

∈∑  Either regression weighting or entropy weighting can be used to obtain the replication 

fractional weights satisfying the constraints. Once the replicate fractional weights are obtained, the 
replicate estimate [ ]ˆ kη  is computed by solving  

( ) ( ) ( )[ ] *[ ]; , 1 ; , = 0.
R

k k
i i i i i ijc i j

i A j A
w U x y w U x yδ η δ η

∈ ∈

  + − 
  

∑ ∑  

The replication variance estimator of ˆ,η  computed from (3.8), is given by  

( ) ( )2[ ]

=1

ˆ ˆ ˆ ˆ= .
L

k
rep k

k
V cη η η−∑  

Because η̂  is a smooth function of ˆ,θ  the consistency of ˆ ˆ( )repV η  follows directly from the standard 

argument of the replication variance estimation (Shao and Tu 1995). 

 

A.2  Proof of Equation (4.5) 
 

Using  

( )
( )

( )
( ) ( ) ( )( )|

| |
= exp

| |
j i j i

ik j i k
j k j k

g y x f y x
x x

g y x f y x
ε κ κ∆ − +  

where ( ) ( )| = , ; , ; .ik j i j k jz x y z x yθ θ∆ −  Based on Taylor linearization and the fact of (4.4), we have  

( )
( )

( )
( ){ }|

| |
1 .

| |
j i j i

ik j
j k j k

g y x f y x

g y x f y x
ε≅ + ∆  

If we know the true density, the correct fractional weights in (3.3) can be expressed by 
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which proves (4.5). 

 

A.3  Extension to a non-ignorable missing case 
 

We consider an extension of the proposed method to a non-ignorable missing case. Under the non-
ignorable missing assumption, both the conditional model ( )|f y x  and the response probability model 

( )= 1| ,P yδ x  are needed to evaluate the expected estimating function in (4.6). Let the response 

probability model be given by ( ) ( )= 1| , = , ;i i i i iPr y yδ π φx x , for some φ  with a known ( )π ⋅  function. 

We assume that the parameters are identifiable as discussed in Wang, Shao and Kim (2013). 

In PFI, according to Kim and Kim (2012), the MLE ( )ˆ ˆ,θ φ  can be obtained by solving  

 ( ) ( ) ( )* *( )

=1
; , 1 ; , = 0,

m
j

i i i i i ij i i
i A j
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and  
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where ( ) ( ); , = log | ; ,S y f yθ θ θ∂ ∂x x  ( ) ( ); , = log , ; ,S y yφ π φ φ∂ ∂x x  and the fractional weights are 

given by  

 ( )
( ) ( ){ } ( )
( ) ( ){ } ( )

*( ) *( ) *( )
*

*( ) *( ) *( )
1

| ; 1 , , |
, = .

| ; 1 , , |

j j j
i i i i i i

ij m k k k
i i i i i ik

f y y h y
w

f y y h y

θ π φ
θ φ

θ π φ
=

−

 − ∑
x x x

x x x
  (A.6) 
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The solution to (A.4) and (A.5) can be obtained via the EM algorithm. In the EM algorithm, the E-step 
computes the fractional weights in (A.6) using the current parameter values and the M-step updates the 
parameter value ( 1)ˆ tθ +  and ( 1)ˆ tφ + by solving  

( ) ( ) ( ) ( )* ( ) ( ) *( )
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In the proposed FFI method, the fractional weights are given by  
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The fractional weights can be computed from  
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with * = 1.
R

ijj A
w

∈∑  

 
Thus, we can use the following EM algorithm to obtain the desired parameter estimates.  
 

(I-step)  For each missing unit { }= ; = 0 ,M ii A i A δ∈ ∈  take m  imputed values as (1) ( ), , m
i iy y  from ,RA  

where = .m r   

 
(E-step)  The fractional weights are given by  
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(M-step)  Update the parameter ( 1)ˆ tθ +  and ( 1)ˆ tφ +  by solving the following imputed score equations,  
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( ) ( ) ( )*( ); , 1 ; , = 0,
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Note that the I-step does not have to be repeated in the EM algorithm. Once the final parameter 
estimates are computed, the fractional weights are computed by (A.8), which serve as the selection 
probabilities for FHDI with a small imputation size .m  The same systematic PPS sampling method as 
discussed in Section 3 can be used to obtain FHDI. 
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