2 Données fonctionnelles en population finie

Hervé Cardot, Alain Dessertaine, Camelia Goga, Étienne Josserand et Pauline Lardin

Précédent | Suivant

Considérons une population finie U={ 1,...,N } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaamyvaiabg2da9maacmaabaGaaGymaiaaiYcacaaIUaGaaGOlaiaa i6cacaaISaGaamOtaaGaay5Eaiaaw2haaaaa@454E@  de taille N et supposons que, pour chaque élément k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E6@  de la population U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D0@ , nous pouvons observer la courbe déterministe Y k = ( Y k ( t ) ) t[ 0,T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGRbaabeaakiabg2da9maabmaabaGaamywamaaBaaaleaa caWGRbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkai aawMcaamaaBaaaleaacaWG0bGaeyicI48aamWaaeaacaaIWaGaaGil aiaadsfaaiaawUfacaGLDbaaaeqaaaaa@45F3@ . L'objectif est d'estimer la courbe moyenne de la population qui est définie pour tout instant t[ 0,T ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiopaadmaabaGaaGimaiaaiYcacaWGubaacaGLBbGaayzxaaGaaGil aaaa@3D64@  par

μ( t )= 1 N kU Y k ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBdaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaaigdaaeaacaWGobaaamaaqafabeWcbaGaai4AaiabgIGiol aacwfaaeqaniabggHiLdGccaWGzbWdamaaBaaaleaacaWGRbaabeaa k8qadaqadaqaaiaadshaaiaawIcacaGLPaaacaGGUaaaaa@47C3@

Soit s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caa aa@3AF8@  un échantillon de taille fixée n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E9@ , choisi aléatoirement dans U, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvai aacYcaaaa@3B8A@  selon un plan de sondage p( . ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamiCamaabmaabaGaaGOlaaGaayjkaiaawMcaaiaai6caaaa@4009@  Soient π k =Pr( ks ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqiWda3aaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaciiuaiaackha daqadaqaaiaadUgacqGHiiIZcaWGZbaacaGLOaGaayzkaaaaaa@46C5@  et π kl =Pr( k&ls ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqiWda3aaSbaaSqaaiaadUgacaWGSbaabeaakiabg2da9iGaccfa caGGYbWaaeWaaeaacaWGRbGaaiOjaiaadYgacqGHiiIZcaWGZbaaca GLOaGaayzkaaaaaa@4951@  les probabilités d'inclusion d'ordre un et deux respectivement. On suppose que π k >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqiWda3aaSbaaSqaaiaadUgaaeqaaOGaeyOpa4JaaGimaaaa@40C0@  pour tout élément k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E6@  de la population U. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvai aai6caaaa@3B92@

La courbe moyenne μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiVd0 gaaa@3BB6@  est estimée à l'aide de l'estimateur de Horvitz-Thompson (Cardot et coll. 2010) comme suit

μ ^ ( t )= 1 N ks Y k ( t ) π k = 1 N kU Y k ( t ) π k 1 ks ,  t[ 0,T ],       ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GafqiVd0MbaKaadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqp daWcaaqaaiaaigdaaeaacaWGobaaamaaqafabeWcbaGaam4AaiabgI GiolaadohaaeqaniabggHiLdGcdaWcaaqaaiaadMfadaWgaaWcbaGa am4AaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaeaacqaHap aCdaWgaaWcbaGaam4AaaqabaaaaOGaeyypa0ZaaSaaaeaacaaIXaaa baGaamOtaaaadaaeqbqabSqaaiaadUgacqGHiiIZcaWGvbaabeqdcq GHris5aOWaaSaaaeaacaWGzbWaaSbaaSqaaiaadUgaaeqaaOWaaeWa aeaacaWG0baacaGLOaGaayzkaaaabaGaeqiWda3aaSbaaSqaaiaadU gaaeqaaaaakiaaigdadaWgaaWcbaGaam4AaiabgIGiolaadohaaeqa aOGaaGilaiaabccacaqGGaGaamiDaiabgIGiopaadmaabaGaaGimai aaiYcacaWGubaacaGLBbGaayzxaaGaaGilaiaaxMaacaWLjaWaaeWa aeaaqaaaaaaaaaWdbiaaikdacaGGUaGaaGymaaWdaiaawIcacaGLPa aaaaa@729F@

 où 1 ks MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymam aaBaaaleaacaWGRbGaeyicI4Saam4Caaqabaaaaa@3E53@  est l'indicatrice d'appartenance de l'unité k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaa aa@3AF0@  à l'échantillon s. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Cai aac6caaaa@3BAA@  Pour chaque instant t[ 0,T ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamiDaiabgIGiopaadmaabaGaaGimaiaaiYcacaWGubaacaGLBbGa ayzxaaGaaGilaaaa@4389@  l'estimateur μ ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GafqiVd0MbaKaadaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@4063@  est sans biais pour μ( t ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqiVd02aaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGilaaaa@4109@  c'est à dire E( μ ^ ( t ) )=μ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamyramaabmaabaGafqiVd0MbaKaadaqadaqaaiaadshaaiaawIca caGLPaaaaiaawIcacaGLPaaacqGH9aqpcqaH8oqBdaqadaqaaiaads haaiaawIcacaGLPaaaaaa@47F4@  où l'espérance est considérée par rapport au plan de sondage.

Généralement les trajectoires Y k ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamywamaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDaaGaayjk aiaawMcaaaaa@40A1@  ne sont pas observées continûment pour t[ 0,T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamiDaiabgIGiopaadmaabaGaaGimaiaaiYcacaWGubaacaGLBbGa ayzxaaaaaa@42D3@  mais uniquement sur un ensemble de D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiraa aa@3AC9@  instants de mesure 0= t 1 < t 2 << t D =T. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaaGimaiabg2da9iaadshadaWgaaWcbaGaaGymaaqabaGccqGH8aap caWG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyipaWJaeSOjGSKaeyipaW JaamiDamaaBaaaleaacaWGebaabeaakiabg2da9iaadsfacaaIUaaa aa@4A6D@  Une stratégie classique en analyse des données fonctionnelles consiste à effectuer une interpolation ou un lissage des trajectoires discrétisées afin d'obtenir des objets qui sont réellement des fonctions (Ramsay et Silverman 2005). Cela permet également de traiter des courbes dont les instants de mesure ne sont pas identiques. Dans le cadre des sondages, l'interpolation linéaire, lorsqu'il n'y a pas d'erreur de mesure aux points discrétisés, a été étudiée par Cardot et Josserand (2011) tandis que des procédures de lissage sont proposées dans Cardot et coll. (2013). Si le nombre de points de discrétisation est suffisant et les trajectoires sont assez régulières (mais pas nécessairement dérivables), l'erreur d'approximation due au lissage ou à l'interpolation est négligeable face à l'erreur d'échantillonnage. On suppose dans la suite que les trajectoires sont observées en tout point de l'intervalle [ 0,T ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba WaamWaaeaacaaIWaGaaGilaiaadsfaaiaawUfacaGLDbaacaaIUaaa aa@410E@

La fonction de covariance de type Horvitz-Thompson γ( r,t )=cov( μ ^ ( r ), μ ^ ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaeq4SdC2aaeWaaeaacaWGYbGaaiilaiaadshaaiaawIcacaGLPaaa cqGH9aqpcaqGJbGaae4BaiaabAhadaqadaqaaiqbeY7aTzaajaWaae WaaeaacaWGYbaacaGLOaGaayzkaaGaaGilaiqbeY7aTzaajaWaaeWa aeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@508F@  est donnée par γ( r,t )= 1 N 2 kU lU Δ kl Y k ( r ) π k Y l ( t ) π l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKk Fr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq 4SdC2aaeWaaeaacaWGYbGaaGilaiaadshaaiaawIcacaGLPaaacqGH 9aqpdaWcaaqaaiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaa aakmaaqafabeWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHiLdGc daaeqbqabSqaaiaadYgacqGHiiIZcaWGvbaabeqdcqGHris5aOGaeu iLdq0aaSbaaSqaaiaadUgacaWGSbaabeaakmaalaaabaGaamywamaa BaaaleaacaWGRbaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaaa qaaiabec8aWnaaBaaaleaacaWGRbaabeaaaaGcdaWcaaqaaiaadMfa daWgaaWcbaGaamiBaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPa aaaeaacqaHapaCdaWgaaWcbaGaamiBaaqabaaaaaaa@5EDC@

pour tout ( r,t )[ 0,T ]×[ 0,T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGYbGaaGilaiaadshaaiaawIcacaGLPaaacqGHiiIZdaWadaqaaiaa icdacaaISaGaamivaaGaay5waiaaw2faaiabgEna0oaadmaabaGaaG imaiaaiYcacaWGubaacaGLBbGaayzxaaaaaa@4636@  et Δ kl = π kl π k π l . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadUgacaWGSbaabeaakiabg2da9iabec8aWnaaBaaaleaa caWGRbGaamiBaaqabaGccqGHsislcqaHapaCdaWgaaWcbaGaam4Aaa qabaGccqaHapaCdaWgaaWcbaGaamiBaaqabaGccaaIUaaaaa@45B9@  Si on suppose que les probabilités d'inclusion d'ordre deux satisfont π kl >0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqiWda3aaSbaaSqaaiaadUgacaWGSbaabeaakiabg6da+iaaicda caaISaaaaa@4267@  un estimateur sans biais de γ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaeq4SdC2aaeWaaeaacaWGYbGaaiilaiaadshaaiaawIcacaGLPaaa aaa@41EB@  est donné par l'estimateur sans biais de la variance de type Horvitz-Thompson,

γ ^ ( r,t )= 1 N 2 ks ls Δ kl π kl Y k ( r ) π k Y l ( t ) π l       ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gafq4SdCMbaKaadaqadaqaaiaadkhacaaISaGaamiDaaGaayjkaiaa wMcaaiabg2da9maalaaabaGaaGymaaqaaiaad6eadaahaaWcbeqaai aaikdaaaaaaOWaaabuaeqaleaacaWGRbGaeyicI4Saam4Caaqab0Ga eyyeIuoakmaaqafabaWaaSaaaeaacqqHuoardaWgaaWcbaGaam4Aai aadYgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadUgacaWGSbaabeaa aaGcdaWcaaqaaiaadMfadaWgaaWcbaGaam4AaaqabaGcdaqadaqaai aadkhaaiaawIcacaGLPaaaaeaacqaHapaCdaWgaaWcbaGaam4Aaaqa baaaaOWaaSaaaeaacaWGzbWaaSbaaSqaaiaadYgaaeqaaOWaaeWaae aacaWG0baacaGLOaGaayzkaaaabaGaeqiWda3aaSbaaSqaaiaadYga aeqaaaaaaeaacaWGSbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaaxM aacaWLjaGaaCzcamaabmaabaaeaaaaaaaaa8qacaaIYaGaaiOlaiaa ikdaa8aacaGLOaGaayzkaaaaaa@6CD2@

 pour tout ( r,t )[ 0,T ]×[ 0,T ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGYbGaaGilaiaadshaaiaawIcacaGLPaaacqGHiiIZdaWadaqaaiaa icdacaaISaGaamivaaGaay5waiaaw2faaiabgEna0oaadmaabaGaaG imaiaaiYcacaWGubaacaGLBbGaayzxaaGaaGOlaaaa@46EE@

2.1  Prise en compte d'information auxiliaire pour l'estimation de la trajectoire moyenne

Il est bien connu que l'utilisation d'une information auxiliaire qui explique bien la variable d'intérêt peut beaucoup améliorer la précision de l'estimateur de Horvitz-Thompson. Dans le cas des données EDF, la température extérieure ou le type de contrat pourraient sans doute être des variables auxiliaires intéressantes. Une stratification selon la position géographique permettrait également d'obtenir des estimations pour les différentes régions. Dans cette étude, nous disposons comme variable auxiliaire de la consommation électrique totale de la semaine précédente. Nous supposons que cette variable (réelle) est observée pour tous les éléments de la population.

Nous présentons dans cette section l'estimateur de Horvitz-Thompson pour la courbe moyenne ainsi qu'une estimation de la fonction de covariance de cet estimateur pour le sondage stratifié avec échantillonnage aléatoire simple sans remise (ÉASSR) dans chaque strate, noté dans la suite STRAT, et pour l'échantillonnage proportionnel à la taille sans remise que l'on note πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ . Nous considérons également un estimateur de la courbe moyenne assisté par un modèle linéaire fonctionnel.

2.1.1    Le sondage stratifié avec ÉASSR dans chaque strate (STRAT)

La population U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvaa aa@3ADA@  est supposée être stratifiée en un nombre fixé H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisaa aa@3ACD@  de strates U 1 ,, U H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaamyvamaa BaaaleaacaWGibaabeaaaaa@402C@  de tailles N 1 ,, N H . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaamOtamaa BaaaleaacaWGibaabeaakiaai6caaaa@40E0@  À l'intérieur de chaque strate U h , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaBaaaleaacaWGObaabeaakiaacYcaaaa@3CAD@  on tire un échantillon s h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Cam aaBaaaleaacaWGObaabeaaaaa@3C11@  de taille n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBam aaBaaaleaacaWGObaabeaaaaa@3C0C@  selon un plan ÉASSR.

Notons μ h ( t )= k U h Y k ( t )/ N h , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqiVd02aaSbaaSqaaiaadIgaaeqaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyypa0ZaaabeaeqaleaacaWGRbGaeyicI4Saamyvam aaBaaabaGaamiAaaqabaaabeqdcqGHris5aOGaamywamaaBaaaleaa caWGRbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaac+caca WGobWaaSbaaSqaaiaadIgaaeqaaOGaaGilaaaa@50AB@  pour t[ 0,T ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamiDaiabgIGiopaadmaabaGaaGimaiaaiYcacaWGubaacaGLBbGa ayzxaaGaaGilaaaa@4389@  la courbe moyenne dans chaque strate et μ ^ h ( t )= k s h Y k ( t )/ n h , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GafqiVd0MbaKaadaWgaaWcbaGaamiAaaqabaGcdaqadaqaaiaadsha aiaawIcacaGLPaaacqGH9aqpdaaeqaqabSqaaiaadUgacqGHiiIZca WGZbWaaSbaaeaacaWGObaabeaaaeqaniabggHiLdGccaWGzbWaaSba aSqaaiaadUgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaai 4laiaad6gadaWgaaWcbaGaamiAaaqabaGccaaISaaaaa@50F9@  son estimation. L'estimateur de la courbe moyenne μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@37AC@  est alors défini par

μ ^ strat ( t )= 1 N h=1 H N h μ ^ h ( t )= h=1 H N h N ( 1 n h k s h Y k ( t ) ), t[ 0,T ].       ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GafqiVd0MbaKaadaWgaaWcbaGaae4CaiaabshacaqGYbGaaeyyaiaa bshaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaS aaaeaacaaIXaaabaGaamOtaaaadaaeWbqaaiaad6eadaWgaaWcbaGa amiAaaqabaaabaGaamiAaiabg2da9iaaigdaaeaacaWGibaaniabgg HiLdGccuaH8oqBgaqcamaaBaaaleaacaWGObaabeaakmaabmaabaGa amiDaaGaayjkaiaawMcaaiabg2da9maaqahabaWaaSaaaeaacaWGob WaaSbaaSqaaiaadIgaaeqaaaGcbaGaamOtaaaaaSqaaiaadIgacqGH 9aqpcaaIXaaabaGaamisaaqdcqGHris5aOWaaeWaaeaadaWcaaqaai aaigdaaeaacaWGUbWaaSbaaSqaaiaadIgaaeqaaaaakmaaqafabaGa amywamaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDaaGaayjkai aawMcaaaWcbaGaam4AaiabgIGiolaadohadaWgaaqaaiaadIgaaeqa aaqab0GaeyyeIuoaaOGaayjkaiaawMcaaiaaiYcacaqGGaGaamiDai abgIGiopaadmaabaGaaGimaiaaiYcacaWGubaacaGLBbGaayzxaaGa aGOlaiaaxMaacaWLjaGaaCzcamaabmaabaaeaaaaaaaaa8qacaaIYa GaaiOlaiaaiodaa8aacaGLOaGaayzkaaaaaa@7CDC@

 L'estimateur de Horvitz-Thompson de la fonction de covariance γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4SdC gaaa@3BA7@  est alors

γ ^ strat ( r,t )= 1 N 2 h=1 H N h 2 ( 1 n h 1 N h ) S Y( r )Y( t ), s h r,t[ 0,T ],       ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaam4CaiaadshacaWGYbGaamyyaiaadshaaeqaaOWa aeWaaeaacaWGYbGaaGilaiaadshaaiaawIcacaGLPaaacqGH9aqpda WcaaqaaiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaa qahabeWcbaGaamiAaiabg2da9iaaigdaaeaacaWGibaaniabggHiLd GccaWGobWaa0baaSqaaiaadIgaaeaacaaIYaaaaOWaaeWaaeaadaWc aaqaaiaaigdaaeaacaWGUbWaaSbaaSqaaiaadIgaaeqaaaaakiabgk HiTmaalaaabaGaaGymaaqaaiaad6eadaWgaaWcbaGaamiAaaqabaaa aaGccaGLOaGaayzkaaGaam4uamaaBaaaleaacaWGzbWaaeWaaeaaca WGYbaacaGLOaGaayzkaaGaamywamaabmaabaGaamiDaaGaayjkaiaa wMcaaiaaiYcacaWGZbWaaSbaaeaacaWGObaabeaaaeqaaOGaaGjcVl aaysW7caWGYbGaaGilaiaadshacqGHiiIZdaWadaqaaiaaicdacaaI SaGaamivaaGaay5waiaaw2faaiaaiYcacaWLjaGaaCzcamaabmaaba aeaaaaaaaaa8qacaaIYaGaaiOlaiaaisdaa8aacaGLOaGaayzkaaaa aa@70EC@

S Y( r )Y( t ), s h = 1 n h 1 k s h ( Y k ( r ) μ ^ h ( r ) )( Y k ( t ) μ ^ h ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGzbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaamywamaa bmaabaGaamiDaaGaayjkaiaawMcaaiaaiYcacaWGZbWaaSbaaeaaca WGObaabeaaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBamaa BaaaleaacaWGObaabeaakiabgkHiTiaaigdaaaWaaabuaeqaleaaca WGRbGaeyicI4Saam4CamaaBaaabaGaamiAaaqabaaabeqdcqGHris5 aOWaaeWaaeaacaWGzbWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaaca WGYbaacaGLOaGaayzkaaGaeyOeI0IafqiVd0MbaKaadaWgaaWcbaGa amiAaaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaaaiaawIcaca GLPaaadaqadaqaaiaadMfadaWgaaWcbaGaam4AaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaacqGHsislcuaH8oqBgaqcamaaBaaale aacaWGObaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjk aiaawMcaaaaa@657F@

est l'estimateur de la fonction de covariance S Y( r )Y( t ), U h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaam4uamaaBaaaleaacaWGzbWaaeWaaeaacaWGYbaacaGLOaGaayzk aaGaamywamaabmaabaGaamiDaaGaayjkaiaawMcaaiaaiYcacaWGvb WaaSbaaeaacaWGObaabeaaaeqaaaaa@467B@  dans la strate h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaa aa@3AED@ . Pour r=t[ 0,T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamOCaiabg2da9iaadshacqGHiiIZdaWadaqaaiaaicdacaaISaGa amivaaGaay5waiaaw2faaaaa@44D0@ , on obtient l'estimateur de la fonction de variance comme suit

γ ^ strat ( r )= 1 N 2 h=1 H N h 2 ( 1 n h 1 N h ) S Y( r ), s h 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaam4CaiaadshacaWGYbGaamyyaiaadshaaeqaaOWa aeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXa aabaGaamOtamaaCaaaleqabaGaaGOmaaaaaaGcdaaeWbqabSqaaiaa dIgacqGH9aqpcaaIXaaabaGaamisaaqdcqGHris5aOGaamOtamaaDa aaleaacaWGObaabaGaaGOmaaaakmaabmaabaWaaSaaaeaacaaIXaaa baGaamOBamaaBaaaleaacaWGObaabeaaaaGccqGHsisldaWcaaqaai aaigdaaeaacaWGobWaaSbaaSqaaiaadIgaaeqaaaaaaOGaayjkaiaa wMcaaiaadofadaqhaaWcbaGaamywamaabmaabaGaamOCaaGaayjkai aawMcaaiaaiYcacaWGZbWaaSbaaeaacaWGObaabeaaaeaacaaIYaaa aOGaaGilaaaa@5BEF@

S Y( r ), s h 2 = 1 n h 1 k s h ( Y k ( r ) μ ^ h ( r ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGzbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaaGilaiaa dohadaWgaaqaaiaadIgaaeqaaaqaaiaaikdaaaGccqGH9aqpdaWcaa qaaiaaigdaaeaacaWGUbWaaSbaaSqaaiaadIgaaeqaaOGaeyOeI0Ia aGymaaaadaaeqbqabSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaeaaca WGObaabeaaaeqaniabggHiLdGcdaqadaqaaiaadMfadaWgaaWcbaGa am4AaaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaacqGHsislcu aH8oqBgaqcamaaBaaaleaacaWGObaabeaakmaabmaabaGaamOCaaGa ayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa a@575E@

est l'estimateur de la variance S Y( r ), U h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGzbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaaGilaiaa dwfadaWgaaqaaiaadIgaaeqaaaqaaiaaikdaaaaaaa@3DB3@  dans la strate h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaa aa@3AED@ . Cardot et Josserand (2011) proposent une extension, au cadre fonctionnel, de l'allocation optimale de Neyman. Les tailles n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBam aaBaaaleaacaWGObaabeaaaaa@3C0C@  des échantillons s h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Cam aaBaaaleaacaWGObaabeaaaaa@3C11@  vérifiant

n h =n N h 0 T S Y( r ), U h 2 dr h=1 H N h 0 T S Y( r ), U h 2 dr ,  h=1,,H,       ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamOBamaaBaaaleaacaWGObaabeaakiabg2da9iaad6gadaWcaaqa aiaad6eadaWgaaWcbaGaamiAaaqabaGcdaGcaaqaamaapedabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakiaadofadaqhaaWcbaGaamyw amaabmaabaGaamOCaaGaayjkaiaawMcaaiaaiYcacaWGvbWaaSbaae aacaWGObaabeaaaeaacaaIYaaaaOGaamizaiaadkhaaSqabaaakeaa daaeWbqaaiaad6eadaWgaaWcbaGaamiAaaqabaaabaGaamiAaiabg2 da9iaaigdaaeaacaWGibaaniabggHiLdGcdaGcaaqaamaapedabeWc baGaaGimaaqaaiaadsfaa0Gaey4kIipakiaadofadaqhaaWcbaGaam ywamaabmaabaGaamOCaaGaayjkaiaawMcaaiaaiYcacaWGvbWaaSba aeaacaWGObaabeaaaeaacaaIYaaaaOGaamizaiaadkhaaSqabaaaaO GaaGilaiaabccacaqGGaGaamiAaiabg2da9iaaigdacaaISaGaeSOj GSKaaGilaiaadIeacaaISaGaaCzcaiaaxMaacaWLjaWaaeWaaeaaqa aaaaaaaaWdbiaaikdacaGGUaGaaGynaaWdaiaawIcacaGLPaaaaaa@7384@

permettent de rendre minimale la variance intégrée, 0 T γ ^ strat ( t )dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Waa8qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGafq4SdCMb aKaadaWgaaWcbaGaae4CaiaabshacaqGYbGaaeyyaiaabshaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaamizaiaadshaaaa@4AF0@ , de l'estimateur stratifié. Cette allocation est similaire à l'allocation obtenue dans le cadre multivarié par Cochran (1977). En remplaçant la variable Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaa aa@3ADE@  par une autre variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiwaa aa@3ADD@  connue sur toute la population et très corrélée avec la variable d'intérêt, on obtient une allocation dite x­ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEae rbhv2BYDwAHbacfaGaa8xRaaaa@3F0C@  optimale.

Remarque 2.1 Pour H=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaamisaiabg2da9iaaigdacaaISaaaaa@3F5F@  nous obtenons le plan aléatoire simple sans remise (ÉASSR) et la courbe moyenne μ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqiVd02aaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@4053@  est estimée par

μ ^ éassr ( t )= 1 n ks Y k ( t ),   t[ 0,T ].       ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GafqiVd0MbaKaadaWgaaWcbaGaamy6aiaadggacaWGZbGaam4Caiaa dkhaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaS aaaeaacaaIXaaabaGaamOBaaaadaaeqbqaaiaadMfadaWgaaWcbaGa am4AaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaISaaale aacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoakiaabccacaqGGaGa amiDaiabgIGiopaadmaabaGaaGimaiaaiYcacaWGubaacaGLBbGaay zxaaGaaGOlaiaaxMaacaWLjaGaaCzcamaabmaabaaeaaaaaaaaa8qa caaIYaGaaiOlaiaaiAdaa8aacaGLOaGaayzkaaaaaa@61EF@

L'estimateur de la fonction de covariance défini en (2.2) est alors

γ ^ éassr ( r,t )=( 1 n 1 N ) S Y( r )Y( t ),s .       ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gafq4SdCMbaKaadaWgaaWcbaGaamy6aiaadggacaWGZbGaam4Caiaa dkhaaeqaaOWaaeWaaeaacaWGYbGaaiilaiaadshaaiaawIcacaGLPa aacqGH9aqpdaqadaqaamaalaaabaGaaGymaaqaaiaad6gaaaGaeyOe I0YaaSaaaeaacaaIXaaabaGaamOtaaaaaiaawIcacaGLPaaacaWGtb WaaSbaaSqaaiaadMfadaqadaqaaiaadkhaaiaawIcacaGLPaaacaWG zbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGilaiaadohaaeqaaO GaaGOlaiaaxMaacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaikdacaGG UaGaaG4naaWdaiaawIcacaGLPaaaaaa@5DA1@

2.1.2  L'échantillonnage proportionnel à la taille sans remise ( πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@ )

Les plans d'échantillonnage proportionnels à la taille avec ou sans remise sont souvent utilisés en pratique car leur efficacité est supérieure à celle de plans à probabilités égales lorsque la variable d'intérêt est plus ou moins proportionnelle à une variable auxiliaire X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@36D3@  qui a des valeurs strictement positives.

Dans le cas des échantillons de taille fixe n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E9@  tirés sans remise, il est possible de donner l'équivalent de la formule de Yates et Grundy (1953) et Sen (1953). La fonction de covariance de μ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaK aaaaa@37BC@  vérifie,

γ( r,t )= 1 2 1 N 2 kU lU,lk ( π kl π k π l )( Y k ( r ) π k Y l ( r ) π l )( Y k ( t ) π k Y l ( t ) π l ), r,t[ 0,T ].       ( 2.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaeq4SdC2aaeWaaeaacaWGYbGaaiilaiaadshaaiaawIcacaGLPaaa cqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaamaalaaaba GaaGymaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaOWaaabuaeqa leaacaWGRbGaeyicI4Saamyvaaqab0GaeyyeIuoakmaaqafabeWcba GaamiBaiabgIGiolaadwfacaaISaGaamiBaiabgcMi5kaadUgaaeqa niabggHiLdGcdaqadaqaaiabec8aWnaaBaaaleaacaWGRbGaamiBaa qabaGccqGHsislcqaHapaCdaWgaaWcbaGaam4AaaqabaGccqaHapaC daWgaaWcbaGaamiBaaqabaaakiaawIcacaGLPaaadaqadaqaamaala aabaGaamywamaaBaaaleaacaWGRbaabeaakmaabmaabaGaamOCaaGa ayjkaiaawMcaaaqaaiabec8aWnaaBaaaleaacaWGRbaabeaaaaGccq GHsisldaWcaaqaaiaadMfadaWgaaWcbaGaamiBaaqabaGcdaqadaqa aiaadkhaaiaawIcacaGLPaaaaeaacqaHapaCdaWgaaWcbaGaamiBaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaadMfadaWg aaWcbaGaam4AaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaae aacqaHapaCdaWgaaWcbaGaam4AaaqabaaaaOGaeyOeI0YaaSaaaeaa caWGzbWaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOa GaayzkaaaabaGaeqiWda3aaSbaaSqaaiaadYgaaeqaaaaaaOGaayjk aiaawMcaaiaaiYcacaqGGaGaamOCaiaaiYcacaWG0bGaeyicI48aam WaaeaacaaIWaGaaGilaiaadsfaaiaawUfacaGLDbaacaaIUaGaaCzc aiaaxMaadaqadaqaaabaaaaaaaaapeGaaGOmaiaac6cacaaI4aaapa GaayjkaiaawMcaaaaa@95D0@

Supposons que les valeurs x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaaaaa@380F@  de la variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@36D3@  sont connues pour toutes les unités k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E6@  de la population. Il est alors possible de définir les probabilités d'inclusion :

π k =n x k kU x k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadUgaaeqaaOGaeyypa0JaamOBamaalaaabaGaamiEamaa BaaaleaacaWGRbaabeaaaOqaamaaqafabeWcbaGaam4AaiabgIGiol aadwfaaeqaniabggHiLdGccaWG4bWaaSbaaSqaaiaadUgaaeqaaaaa kiaai6caaaa@455C@

Des méthodes ont été proposées dans la littérature pour le cas π k >1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqiWda3aaSbaaSqaaiaadUgaaeqaaOGaeyOpa4JaaGymaaaa@40C1@  (Särndal et coll. 1992).

Les probabilités d'inclusion d'ordre deux sont en général très difficiles à calculer pour les plans πps MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iCaiaadohaaaa@39A0@  et par conséquent, la formule (2.2) ne peut pas être utilisée. Il existe cependant une approximation asymptotique simple de la variance qui a été proposée par Hájek (1964) et qui ne fait intervenir que les probabilités d'inclusion d'ordre un. Cette approximation se révèle très performante lorsque la taille de l'échantillon est grande et l'entropie du plan de sondage proche de l'entropie maximale. Pour sélectionner l'échantillon s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caa aa@3AF8@  avec des probabilités d'inclusion π k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda 3aaSbaaSqaaiaadUgaaeqaaOGaaiilaaaa@3D93@  l'algorithme du cube (Deville et Tillé 2004) équilibré sur la variable π= ( π k ) kU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba acceGae8hWdaNaeyypa0ZaaeWaaeaacqaHapaCdaWgaaWcbaGaam4A aaqabaaakiaawIcacaGLPaaadaWgaaWcbaGaam4AaiabgIGiolaadw faaeqaaaaa@46CA@  peut être utilisé. Deville et Tillé (2005) montrent que pour ce plan de sondage particulier la formule de Hàjek est très performante pour estimer la variance d'un total ou d'une moyenne. Cette formule d'approximation de la variance peut aussi être utilisée pour la covariance, qui est alors estimée par

γ ^ πps ( r,t )= 1 N 2 ks ( 1 π k )( Y k ( r ) π k R ^ ( r ) )( Y k ( t ) π k R ^ ( t ) ),  r,t[ 0,T ],       ( 2.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gafq4SdCMbaKaadaWgaaWcbaGaeqiWdaNaaeiCaiaabohaaeqaaOWa aeWaaeaacaWGYbGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpda WcaaqaaiaaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaa qafabeWcbaGaam4AaiabgIGiolaadohaaeqaniabggHiLdGcdaqada qaaiaaigdacqGHsislcqaHapaCdaWgaaWcbaGaam4Aaaqabaaakiaa wIcacaGLPaaadaqadaqaamaalaaabaGaamywamaaBaaaleaacaWGRb aabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaaaqaaiabec8aWnaa BaaaleaacaWGRbaabeaaaaGccqGHsislceWGsbGbaKaadaqadaqaai aadkhaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaqadaqaamaalaaa baGaamywamaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDaaGaay jkaiaawMcaaaqaaiabec8aWnaaBaaaleaacaWGRbaabeaaaaGccqGH sislceWGsbGbaKaadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawI cacaGLPaaacaaISaGaaeiiaiaabccacaWGYbGaaGilaiaadshacqGH iiIZdaWadaqaaiaaicdacaaISaGaamivaaGaay5waiaaw2faaiaaiY cacaWLjaGaaCzcamaabmaabaaeaaaaaaaaa8qacaaIYaGaaiOlaiaa iMdaa8aacaGLOaGaayzkaaaaaa@800C@

R ^ ( t )= ks Y k ( t ) π k ( 1 π k ) ks ( 1 π k ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaaja WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaadaae qbqabSqaaiaadUgacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaSaaae aacaWGzbWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaaabaGaeqiWda3aaSbaaSqaaiaadUgaaeqaaaaakmaabm aabaGaaGymaiabgkHiTiabec8aWnaaBaaaleaacaWGRbaabeaaaOGa ayjkaiaawMcaaaqaamaaqafabeWcbaGaam4AaiabgIGiolaadohaae qaniabggHiLdGcdaqadaqaaiaaigdacqGHsislcqaHapaCdaWgaaWc baGaam4AaaqabaaakiaawIcacaGLPaaaaaaaaa@594A@

Nous avons également utilisé le sondage systématique à probabilités inégales proposé par Madow (1949) en raison de sa simplicité d'utilisation. Il est malheureusement difficile d'estimer la variance pour ce type de plan et nous ne l'utiliserons donc pas pour construire les bandes de confiance.

2.2  L'estimateur assisté par un modèle ("model-assisted")

Considérons p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@  variables auxiliaires réelles X 1 ,, X p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiwam aaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaamiwamaa BaaaleaacaWGWbaabeaaaaa@405A@  et soit x kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGRbGaamOAaaqabaaaaa@3D08@  la valeur de la variable X j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiwam aaBaaaleaacaWGQbaabeaaaaa@3BF8@  pour le k ème MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aam aaCaaaleqabaGaaei6aiaab2gacaqGLbaaaaaa@3E60@  individu. Notons par x k =( x k1 ,, x kp ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaaCiEamaaBaaaleaacaWGRbaabeaakiabg2da9iaacIcacaWG4bWa aSbaaSqaaiaadUgacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaam iEamaaBaaaleaacaWGRbGaamiCaaqabaGccaGGPaaccaGae8NmGika aa@4AA8@  le vecteur contenant les valeurs de p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCaa aa@3AF5@  variables auxiliaires mesurées sur le k ème MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aam aaCaaaleqabaGaaei6aiaab2gacaqGLbaaaaaa@3E60@  individu. On considère que la relation entre la variable d'intérêt et les variables auxiliaires est modélisée par le modèle de superpopulation suivant

ξ: Y k ( t )= x k β( t )+ ε kt ,  t[ 0,T ]       ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaeqOVdGNaaiOoaiaadMfadaWgaaWcbaGaam4AaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaacqGH9aqpceWH4bGbauaadaWgaaWcba Gaam4AaaqabaGccaWHYoWaaeWaaeaacaWG0baacaGLOaGaayzkaaGa ey4kaSIaeqyTdu2aaSbaaSqaaiaadUgacaWG0baabeaakiaaiYcaca qGGaGaaeiiaiaadshacqGHiiIZdaWadaqaaiaaicdacaaISaGaamiv aaGaay5waiaaw2faaiaaxMaacaWLjaWaaeWaaeaaqaaaaaaaaaWdbi aaikdacaGGUaGaaGymaiaaicdaa8aacaGLOaGaayzkaaaaaa@5D56@

avec

E ξ ( ε kt )=0, E ξ ( ε kt ε l t )=0 pour kl et  E ξ ( ε kt ε k t )= σ t t 2  pour k=l. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbi qaaqigcaWGfbWaaSbaaSqaaiabe67a4bqabaGcdaqadaqaaiabew7a LnaaBaaaleaacaWGRbGaamiDaaqabaaakiaawIcacaGLPaaacqGH9a qpcaaIWaGaaGilaiaadweadaWgaaWcbaGaeqOVdGhabeaakmaabmaa baGaeqyTdu2aaSbaaSqaaiaadUgacaWG0baabeaakiabew7aLnaaBa aaleaacaWGSbGabmiDayaafaaabeaaaOGaayjkaiaawMcaaiabg2da 9iaaicdacaqGGaGaaeiCaiaab+gacaqG1bGaaeOCaiaabccacaWGRb GaeyiyIKRaamiBaiaabccacaqGLbGaaeiDaiaabccacaWGfbWaaSba aSqaaiabe67a4bqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGRb GaamiDaaqabaGccqaH1oqzdaWgaaWcbaGaam4Aaiqadshagaqbaaqa baaakiaawIcacaGLPaaacqGH9aqpcqaHdpWCdaqhaaWcbaGaamiDai qadshagaqbaaqaaiaaikdaaaGccaqGGaGaaeiCaiaab+gacaqG1bGa aeOCaiaabccacaWGRbGaeyypa0JaamiBaiaac6caaaa@7B1B@

Ce modèle est une généralisation immédiate à plusieurs variables auxiliaires du modèle linéaire fonctionnel proposé par Faraway (1997). 

L'estimation de β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOSda aa@3B3E@  basée sur le modèle ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B9@  et le plan de sondage p( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaeyyXICnacaGLOaGaayzkaaaaaa@3ABE@  est donnée par

β ^ ( t )= ( ks x k x k π k ) 1 ks x k Y k ( t ) π k ,  t[ 0,T ].       ( 2.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GabCOSdyaajaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0Za aeWaaeaadaaeqbqabSqaaiaadUgacqGHiiIZcaWGZbaabeqdcqGHri s5aOWaaSaaaeaacaWH4bWaaSbaaSqaaiaadUgaaeqaaOGabCiEayaa faWaaSbaaSqaaiaadUgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadU gaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGym aaaakmaaqafabeWcbaGaam4AaiabgIGiolaadohaaeqaniabggHiLd GcdaWcaaqaaiaahIhadaWgaaWcbaGaam4AaaqabaGccaWGzbWaaSba aSqaaiaadUgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaba GaeqiWda3aaSbaaSqaaiaadUgaaeqaaaaakiaaiYcacaqGGaGaaeii aiaadshacqGHiiIZdaWadaqaaiaaicdacaaISaGaamivaaGaay5wai aaw2faaiaai6cacaWLjaGaaCzcamaabmaabaaeaaaaaaaaa8qacaaI YaGaaiOlaiaaigdacaaIXaaapaGaayjkaiaawMcaaaaa@6FC6@

Remarquons que les poids de sondage ne dépendent pas du temps t[ 0,T ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamiDaiabgIGiopaadmaabaGaaGimaiaaiYcacaWGubaacaGLBbGa ayzxaaGaaGOlaaaa@438B@  Soit Y ^ k ( t )= x k ' β ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKk Fr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm ywayaajaWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyypa0JaaCiEamaaDaaaleaacaWGRbaabaGaai4jaa aakiqahk7agaqcamaabmaabaGaamiDaaGaayjkaiaawMcaaaaa@4450@  l'estimateur basé sur le plan de sondage de la prédiction sous le modèle ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG haaa@3BC3@  de Y k (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywam aaBaaaleaacaWGRbaabeaakiaacIcacaWG0bGaaiykaaaa@3E56@ . Par analogie directe avec le cas univarié (Särndal et coll. 1992), nous obtenons finalement l'estimateur suivant pour la moyenne, pour t[ 0,T ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamiDaiabgIGiopaadmaabaGaaGimaiaaiYcacaWGubaacaGLBbGa ayzxaaGaaGilaaaa@4389@

μ ^ MA ( t )= 1 N ks Y ^ k ( t ) 1 N ks ( Y ^ k ( t ) Y k ( t ) ) π k       ( 2.12 ) = 1 N kU Y k ( t ) x k β ^ ( t ) π k + 1 N ( kU x k ) β ^ ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcea abbeaacuaH8oqBgaqcamaaBaaaleaacaWGnbGaamyqaaqabaGcdaqa daqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaae aacaWGobaaamaaqafabaGabmywayaajaWaaSbaaSqaaiaadUgaaeqa aOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaleaacaWGRbGaeyicI4 Saam4Caaqab0GaeyyeIuoakiabgkHiTmaalaaabaGaaGymaaqaaiaa d6eaaaWaaabuaeqaleaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIu oakmaalaaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWcbaGaam4Aaaqa baGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcaWGzbWaaS baaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa caGLOaGaayzkaaaabaGaeqiWda3aaSbaaSqaaiaadUgaaeqaaaaaki aaxMaacaWLjaGaaCzcamaabmaabaaeaaaaaaaaa8qacaaIYaGaaiOl aiaaigdacaaIYaaapaGaayjkaiaawMcaaaqaaiabg2da9maalaaaba GaaGymaaqaaiaad6eaaaWaaabuaeqaleaacaWGRbGaeyicI4Saamyv aaqab0GaeyyeIuoakmaalaaabaGaamywamaaBaaaleaacaWGRbaabe aakmaabmaabaGaamiDaaGaayjkaiaawMcaaiabgkHiTiqadIhagaqb amaaBaaaleaacaWGRbaabeaaiiqakiqb=j7aIzaajaWaaeWaaeaaca WG0baacaGLOaGaayzkaaaabaGaeqiWda3aaSbaaSqaaiaadUgaaeqa aaaakiabgUcaRmaalaaabaGaaGymaaqaaiaad6eaaaWaaeWabeaada aeqbqaaiqahIhagaqbamaaBaaaleaacaWGRbaabeaaaeaacaWGRbGa eyicI4Saamyvaaqab0GaeyyeIuoaaOGaayjkaiaawMcaaiqb=j7aIz aajaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGOlaaaaaa@93B2@

Si le modèle ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B9@  contient la variable constante 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY caaaa@3767@  alors l'estimateur devient

μ ^ MA ( t )= 1 N kU Y ^ k ( t ),   t[ 0,T ].       ( 2.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GafqiVd0MbaKaadaWgaaWcbaGaamytaiaadgeaaeqaaOWaaeWaaeaa caWG0baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam OtaaaadaaeqbqaaiqadMfagaqcamaaBaaaleaacaWGRbaabeaakmaa bmaabaGaamiDaaGaayjkaiaawMcaaiaaiYcaaSqaaiaadUgacqGHii IZcaWGvbaabeqdcqGHris5aOGaaeiiaiaabccacaWG0bGaeyicI48a amWaaeaacaaIWaGaaGilaiaadsfaaiaawUfacaGLDbaacaaIUaGaaC zcaiaaxMaacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaikdacaGGUaGa aGymaiaaiodaa8aacaGLOaGaayzkaaaaaa@5ED6@

Pour r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOCaa aa@3AF7@  et t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaa aa@3AF9@  fixés, la covariance asymptotique de μ ^ MA (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GafqiVd0MbaKaadaWgaaWcbaGaamytaiaadgeaaeqaaOGaaiikaiaa dkhacaGGPaaaaa@41FF@  et μ ^ MA (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GafqiVd0MbaKaadaWgaaWcbaGaamytaiaadgeaaeqaaOGaaiikaiaa dshacaGGPaaaaa@4201@  peut être calculée selon la technique classique des résidus (Särndal et coll. 1992),

γ MA ( r,t ) 1 N 2 kU lU ( π kl π k π l ) ( Y k ( r ) Y ˜ k ( r ) ) π k ( Y l ( t ) Y ˜ l ( t ) ) π l ,       ( 2.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaeq4SdC2aaSbaaSqaaiaad2eacaWGbbaabeaakmaabmaabaGaamOC aiaacYcacaWG0baacaGLOaGaayzkaaqeeuuDJXwAKbsr4rNCHbacfa Gae83qISZaaSaaaeaacaaIXaaabaGaamOtamaaCaaaleqabaGaaGOm aaaaaaGcdaaeqbqabSqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHri s5aOWaaabuaeqaleaacaWGSbGaeyicI4Saamyvaaqab0GaeyyeIuoa kmaabmaabaGaeqiWda3aaSbaaSqaaiaadUgacaWGSbaabeaakiabgk HiTiabec8aWnaaBaaaleaacaWGRbaabeaakiabec8aWnaaBaaaleaa caWGSbaabeaaaOGaayjkaiaawMcaamaalaaabaWaaeWaaeaacaWGzb WaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGaayzk aaGaeyOeI0IabmywayaaiaWaaSbaaSqaaiaadUgaaeqaaOWaaeWaae aacaWGYbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaeqiWda3a aSbaaSqaaiaadUgaaeqaaaaakmaalaaabaWaaeWaaeaacaWGzbWaaS baaSqaaiaadYgaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGa eyOeI0IabmywayaaiaWaaSbaaSqaaiaadYgaaeqaaOWaaeWaaeaaca WG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaeqiWda3aaSba aSqaaiaadYgaaeqaaaaakiaaiYcacaWLjaGaaCzcamaabmaabaaeaa aaaaaaa8qacaaIYaGaaiOlaiaaigdacaaI0aaapaGaayjkaiaawMca aaaa@86B5@

Y ˜ k ( r )= x k β ˜ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GabmywayaaiaWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWGYbaa caGLOaGaayzkaaGaeyypa0JabCiEayaafaWaaSbaaSqaaiaadUgaae qaaGGabOGaf8NSdiMbaGaadaqadaqaaiaadshaaiaawIcacaGLPaaa aaa@481F@  est la prédiction de Y k ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamywamaaBaaaleaacaWGRbaabeaakmaabmaabaGaamiDaaGaayjk aiaawMcaaaaa@40A1@  sous le modèle de superpopulation et β ˜ ( t )= ( U x k x k ) 1 ( U x k Y k ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba acceGaf8NSdiMbaGaadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH 9aqpdaqadaqaamaaqababeWcbaGaamyvaaqab0GaeyyeIuoakiaahI hadaWgaaWcbaGaam4AaaqabaGcceWH4bGbauaadaWgaaWcbaGaam4A aaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaa GcdaqadaqaamaaqababeWcbaGaamyvaaqab0GaeyyeIuoakiaahIha daWgaaWcbaGaam4AaaqabaGccaWGzbWaaSbaaSqaaiaadUgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@56E1@  est l'estimation de β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba acceGae8NSdigaaa@3DC2@  au niveau de la population et r,t[ 0,T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamOCaiaaiYcacaWG0bGaeyicI48aamWaaeaacaaIWaGaaGilaiaa dsfaaiaawUfacaGLDbaaaaa@4480@ . Cardot, Goga et Lardin (2013) montrent que ce résultat reste valable uniformément en r,t[ 0,T ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba GaamOCaiaaiYcacaWG0bGaeyicI48aamWaaeaacaaIWaGaaGilaiaa dsfaaiaawUfacaGLDbaacaaIUaaaaa@4538@

Nous proposons comme estimateur de la fonction de covariance γ MA ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gaeq4SdC2aaSbaaSqaaiaad2eacaWGbbaabeaakmaabmaabaGaamOC aiaaiYcacaWG0baacaGLOaGaayzkaaaaaa@43BF@  l'estimateur de Horvitz-Thompson de la covariance asymptotique donnée par (2.14) où β ˜ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba acceGaf8NSdiMbaGaadaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@4053@  est remplacé par son estimateur β ^ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba acceGaf8NSdiMbaKaadaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@4054@  basé sur le plan de sondage,

γ ^ MA ( r,t )= 1 N 2 k,ls π kl π k π l π kl ( Y k ( r ) Y ^ k ( r ) ) π k ( Y l ( t ) Y ^ l ( t ) ) π l ,  r,t[ 0,T ].       ( 2.15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbcvPDwzYbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0x e9LqFf0xe9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9 q8as0lf9Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcba Gafq4SdCMbaKaadaWgaaWcbaGaamytaiaadgeaaeqaaOWaaeWaaeaa caWGYbGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacaWGobWaaWbaaSqabeaacaaIYaaaaaaakmaaqafabeWc baGaam4AaiaaiYcacaWGSbGaeyicI4Saam4Caaqab0GaeyyeIuoakm aalaaabaGaeqiWda3aaSbaaSqaaiaadUgacaWGSbaabeaakiabgkHi Tiabec8aWnaaBaaaleaacaWGRbaabeaakiabec8aWnaaBaaaleaaca WGSbaabeaaaOqaaiabec8aWnaaBaaaleaacaWGRbGaamiBaaqabaaa aOWaaSaaaeaadaqadeqaaiaadMfadaWgaaWcbaGaam4AaaqabaGcda qadaqaaiaadkhaaiaawIcacaGLPaaacqGHsislceWGzbGbaKaadaWg aaWcbaGaam4AaaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaaai aawIcacaGLPaaaaeaacqaHapaCdaWgaaWcbaGaam4AaaqabaaaaOWa aSaaaeaadaqadeqaaiaadMfadaWgaaWcbaGaamiBaaqabaGcdaqada qaaiaadshaaiaawIcacaGLPaaacqGHsislceWGzbGbaKaadaWgaaWc baGaamiBaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawI cacaGLPaaaaeaacqaHapaCdaWgaaWcbaGaamiBaaqabaaaaOGaaGil aiaabccacaqGGaGaamOCaiaaiYcacaWG0bGaeyicI48aamWaaeaaca aIWaGaaGilaiaadsfaaiaawUfacaGLDbaacaaIUaGaaCzcaiaaxMaa daqadaqaaabaaaaaaaaapeGaaGOmaiaac6cacaaIXaGaaGynaaWdai aawIcacaGLPaaaaaa@8B15@

Remarque 2.2 Il est tout à fait possible de considérer un modèle de superpopulation ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9sq=fFfeu0RXxb9qr0dd9q8as0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG haaa@3BC3@  plus général que le modèle linéaire proposé ici. Des techniques d'estimation basées sur un lissage par des B-splines (Goga et Ruiz-Gazen 2012) peuvent alors être envisagées. Dans notre étude, la relation entre la consommation à l'instant  et la consommation moyenne de la semaine précédente est quasi linéaire (voir figure 4.1) ce qui justifie de ne pas employer ces approches nonparamétriques.

Précédent | Suivant

Date de modification :