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A weighted composite likelihood approach to inference for 
two-level models from survey data 

J.N.K. Rao, François Verret and Mike A. Hidiroglou1 

Abstract 

Multi-level models are extensively used for analyzing survey data with the design hierarchy matching the 
model hierarchy. We propose a unified approach, based on a design-weighted log composite likelihood, for 
two-level models that leads to design-model consistent estimators of the model parameters even when the 
within cluster sample sizes are small provided the number of sample clusters is large. This method can handle 
both linear and generalized linear two-level models and it requires level 2 and level 1 inclusion probabilities 
and level 1 joint inclusion probabilities, where level 2 represents a cluster and level 1 an element within a 
cluster. Results of a simulation study demonstrating superior performance of the proposed method relative to 
existing methods under informative sampling are also reported. 

 
Key Words: Composite likelihood; Inclusion probabilities; Informative sampling; Multi-level models. 

 
 

1  Introduction 
 

Data collected from large-scale socio-economic, health and other surveys are extensively used for 
analysis purposes, such as inference on the regression parameters of linear and logistic linear regression 
population models. Ignoring the survey design features (such as stratification, clustering and unequal 
selection probabilities) can lead to erroneous inferences on model parameters because of sample selection 
bias caused by informative sampling. It is tempting to expand the models by including among the 
auxiliary variables all the design variables that define the selection process at the various levels and then 
ignore the design and apply standard methods to the expanded model. The main difficulties with this 
approach are the following (Pfeffermann and Sverchkov 2003): (1) Not all design variables may be known 
or accessible to the analyst; (2) Too many design variables can lead to difficulties in making inference 
from the expanded model; (3) The expanded model may no longer be of scientific interest to the analyst. 
On the other hand, the design-based approach can provide asymptotically valid repeated sampling 
inferences without changing the analyst’s model. A unified approach based on the survey weighted 
estimating equations leads to design-consistent estimators of the “census” or finite population parameters 
which in turn estimate the associated model parameters. Further, re-sampling methods, such as the 
jackknife and the bootstrap for survey data, can provide valid variance estimators and associated 
inferences on the census parameters. The same methods may also be applicable to inference on the model 
parameters, in many cases of large-scale surveys. In other cases, it is necessary to estimate the model 
variance of the census parameters from the sample. The estimator of the total variance is then given by the 
sum of this estimator and the re-sampling variance estimator. Beaumont and Charest (2010) extended the 
bootstrap to estimate the total variance associated with the model parameters. We refer the reader to Rao 
et al. (2010) for an overview of methods for making inference on regression parameters from complex 
survey data. 
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In this paper, our focus is on making design-based inference on the variance component parameters 
and regression parameters of multi-level models from data obtained from multi-stage sampling designs 
corresponding to the levels of the model. For example, in an education study of students, schools (first-
stage sampling units) may be selected with probabilities proportional to school size and students (second-
stage units) within selected schools by stratified random sampling. Again, ignoring the survey design and 
using traditional methods for multi-level models can lead to erroneous inferences in the presence of 
sample selection bias. In the design-based approach, estimation of variance component parameters of the 
model is more difficult than that of regression parameters. Past work on multi-level models for survey data 
is summarized in Section 2. Our main purpose is to present a unified approach to making inference for 
general multi-level models from survey data, based on a weighted log composite likelihood approach 
(Section 4). The proposed methods lead to asymptotically valid inferences on the variance component 
parameters even when the within-cluster sample sizes are small, provided the number of sample clusters is 
large, unlike some of the existing methods summarized in Section 2. Limited simulation results are 
presented in Section 5. 

 
2  Two-level models: Past work 
 

2.1  Two-level models 
 

Multi-level (or hierarchical) models are extensively used in social sciences, education, health and other 
areas to analyze survey data with a hierarchical structure. Here we focus on two-level models associated 
with two-stage sampling of clusters (level 2): a sample, ,s  of level 2 units, ,i  is selected according to a 
specified design and then a sample, ( ),s i  of elements (or level 1 units), ,j  is selected from each sampled 

level 2 unit i  according to another specified design. We assume, following the literature on multi-level 

models for survey data, that the model matches the design hierarchy, as in the example of an educational 
survey of students. However, in some multipurpose surveys, the design hierarchical structure could be 
quite different from the model hierarchy. For example, the Canadian National Longitudinal Survey of 
Children and Youth uses a multi-stage design where the stages are geographical areas, households within 
an area and students within a household, whereas an educational multilevel model may include as levels 
students, classes, schools and school boards (Rao and Roberts 1998). Since the design clusters cut across 
the model clusters for such surveys, it is difficult to develop a suitable design-weighted method of 
inference on the model parameters that can handle informative sampling of clusters and or elements within 
sampled clusters. Under informative sampling, the assumed model for the population may not hold for the 
sample. 

Let N  be the number of level 2 units in the population and iM  be the number of level 1 units in the 

level 2 unit .i  A two-level super-population model is given by 

                     1| , ~ | , , ,ij ij i ind ij ij iy f yx v x v θ   2~ | , 1,...,i iid if i Nv v θ ; 1,..., ,ij M  (2.1) 

where ijy  and  0 , 1,...,
T

ij ij ij px x x  are the response and a p-vector of covariate values associated with 

element j  within cluster i  and 0 1,ijx  iv  denotes a level 2 random effect, and 1θ  and 2θ  denote the 
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parameters associated with the two stages of the assumed model. Here  1| , ,ij ij if y x v θ  and  2|if v θ  

are specified density functions of ijy  given ijx  and iv  and of ,iv  respectively. Note that in model (2.1), 

the responses ijy  for a given i are assumed to be conditionally independent given the random effect iv  

but they are correlated marginally due to the common iv . The model formulation (2.1) covers both linear 

two-level models and generalized linear two-level models. Under informative sampling of clusters and or 
elements within sampled clusters, standard methods for multi-level models that ignore the design and 
assume that model (2.1) holds for the sample can lead to asymptotically biased estimators of model 
parameters 1θ  and 2θ  (Pfeffermann et al. 1998).  

 
Special cases 
 

(1) A simple nested error mean model that is often used in simulation studies related to two-level models 
is given by 

                                              2 2, ~ 0, , ~ 0, ,ij i ij ij iid e i iid vy v e e N v N       (2.2) 

where 1,..., ; 1,..., .ii N j M   Model (2.2) may be written in the form (2.1) as  

     2 2 2 2
1 2| ~ , , ~ 0, , , , .ij i ind i e i iid v e vy v N v v N         θ  

Marginally,  2 2~ ,ij v ey N      but ijy  and iky ( )j k  are correlated:  corr ,ij iky y     

 2 2 2 , .v v e j k      

(2) A linear two-level model, often used in practice, is given by 

                                                     , 1,..., ; 1,..., ,T
ij ij i ij iy e i N j M   x β  (2.3) 

where  , ~ , , 1,...,i i i iid p vN i N  β β v v 0 Σ  and  2~ 0, .ij iid ee N   This model may also be expressed 

in the form (2.1) as  

                                             2| , ~ , , ~ 0,T T
ij ij i ind ij ij i e i iid p vy N N x v x β x v v Σ  (2.4) 

where  2
1 ,

TT
e θ β  and 2θ  is the vector of  1 2p p   distinct elements of vΣ . Marginally, 

 2~ , ,T T
ij ij ij v ij ey N  x β x Σ x  but ijy  and iky ( )j k  are correlated through the common random effect 

.iv  However, in the case of a generalized linear two-level model, the marginal distribution of ijy  

generally does not yield a closed-form expression; for example, in the case of a logistic linear two-level 
model for binary responses. 

 
2.2  Point estimation 
 

The “census” or population log-likelihood under the assumed two-level model (2.1) is given by 
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1 1

log ( ) log ( ) ( ) ( ),
N N

i i
i i

L L l l
 

   θ θ θ θ  (2.5)  

where θ  is the vector with elements 1θ  and 2,θ  and   

                                               1 2
1

( ) exp log , , |
iM

i ij ij i i i
j

L f y f d


 
  

 
θ x v θ v θ v  (2.6) 

see Asparouhov (2006) and Rabe-Hesketh and Skrondal (2006). The census score function 
( ) ( )l  U θ θ θ  satisfies { ( )} ,mE U θ 0  where mE  denotes the model expectation. The census 

parameter Nθ  is defined as the unique solution to ( ) U θ 0  and Nθ  is model consistent for ,θ  where Nθ  

is the vector with elements 1Nθ  and 2 .Nθ  

Let the sample consist of n  clusters with im  elements from sample cluster .i  Let i  and |j i  

respectively denote the level 2 and level 1 inclusion probabilities associated with cluster i  and element j  

within cluster .i  Then the level 2 and level 1 weights are given by 1
i iw    and 1

| |j i j iw    respectively. 

Asparouhov (2006) and Rabe-Hesketh and Skrondal (2006) proposed a weighted sample pseudo log-

likelihood obtained by replacing 
1
(.)iM

j  in (2.6) by | (.)
i

j ij s
w

  and 
1
(.)

N

i  in (2.5) by (.),ii s
w

  

where s denotes the sample of clusters and ( )s i  denotes the sample of elements within clusters .i s  It is 

given by  

                                                                      ( ) ( )w i wi
i s

l w l


 θ θ 
 

(2.7) 

where ( ) log ( )wi wil Lθ θ   and  

                                     | 1 2
( )

( ) exp log ( | , , ) ( | ) .wi j i ij ij i i i
j s i

L w f y f d


 
  

 
θ x v θ v θ v  (2.8) 

Maximizing the pseudo log-likelihood ( ),wl θ  given by (2.7), we get a pseudo maximum likelihood (PML) 

estimator .wθ  Computational details are discussed in Asparouhov (2006) and Rabe-Hesketh and Skrondal 

(2006). In the special case of linear two-level models, Pfeffermann et al. (1998) used an iterative 
generalized least squares method proposed by Goldstein (1986). Note that we need both level 1 and level 
2 weights to compute ,wθ  unlike in the case of marginal models that require only the unconditional 

element weights | .ij i j iw w w  

Design consistency of the PML estimator 2wθ  of the census parameter 2Nθ  or design-model 

consistency of 2wθ  as an estimator of the model parameter 2θ  requires that both the number of sample 

clusters, ,n  and the within cluster sample sizes, ,im  tend to infinity, even in the linear case. Also, the 

relative bias of the estimators will be considerable when im  are small. To remedy this problem, several 

weight-scaling methods have been proposed in the literature. In particular, level 1 weights |j iw  in (2.8) are 

scaled by a factor 1ik  before maximizing the pseudo log-likelihood (2.7). We consider only two weight-

scaling methods here, denoted A and A1 (Asparouhov 2006). Method A uses  



Survey Methodology, December 2013 267 
 

 
Statistics Canada, Catalogue No. 12-001-X 

                                                                       1 |
( )

i i j i
j s i

k m w


   (2.9) 

In method A1, 1ik  is the same as in method A but level 2 weights iw  are also scaled by the factor 

2 11i ik k  to offset level 1 weight scaling. Asparouhov (2006) mentioned the use of accelerated EM 

algorithm for calculating the PML estimator wθ  with M plus 3: www. Statmodel.com: Muthén and 

Muthén, 1998-2005. 

 
2.3  Variance estimation 
 

Turning to variance estimation, Asparouhov (2006) proposed a Taylor linearization “sandwich” 
variance estimator of .wθ  It is given by 

                                                          1 12

2 ,
T

L w w i i wi wi w
i s

v k w
 



       
θ l l l l      (2.10) 

where wl  and wl  respectively denote the first derivative vector and the second derivative matrix of ( )wl θ  

evaluated at ,wθ θ  and wil  is the first derivative of ( )wil θ  evaluated at .wθ θ  If the level 2 sampling 

fraction is small, then  L wv θ  tracks the variance of wθ  well, but not the MSE of wθ  if the relative bias of 

wθ  is large.  

Kovacevic et al. (2006) studied bootstrap variance estimators for .wθ  They considered two options: 

options 1 and 2. In option 1, level 2 bootstrap weights ( ),iw b  based on the Rao, Wu and Yue (1992) 

method, are used and level 1 weights are not changed, i.e., | |( ) ,j i j iw b w  where 1,...,b B  denote the B  

bootstrap samples. For option 2, the Rao, Wu and Yue (1992) bootstrap method is applied to both level 1 
and level 2, and the level 1 bootstrap weights are rescaled. Replacing the weights iw  and |j iw  by ( )iw b  

and | ( )j iw b  in (2.7) and (2.8), bootstrap PML estimators ( ), 1,...,w b b Bθ  are obtained and the resulting 

bootstrap variance estimator is given by 

                                                 
1

1
( ) ( ) .

B
T

Boot w w w w w
b

v b b
B 

        θ θ θ θ θ      (2.11) 

A simulation study of (2.11), based on the simple mean model (2.2), showed that option 1 may lead to 
underestimation of the variance of 2 .ew  Option 2 performed better than option 1. Grilli and Pratesi (2004) 

studied an alternative bootstrap method for variance estimation.  

 
3  Design-weighted estimating equations 
 

In Sections 3 and 4 we study methods of generating design-weighted estimating equations for the 
model parameters of multi-level models that lead to design-model consistent estimators, even in the case 
of small within-cluster sample sizes. The proposed methods depend only on the first order inclusion 
probabilities i  and |j i  and the joint inclusion probabilities |jk i  within clusters. Section 3 introduces a 
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simple moment-based weighted estimating equations approach applicable to linear nested error regression 
models. A unified method, based on weighted log composite likelihoods, is proposed in Section 4. This 
method can handle linear and generalized linear multi-level methods, unlike the moment-based method, 
and it leads to design-model consistent estimators. It also depends only on ,i |j i  and | .jk i  

 
3.1  Point estimation 
 

We first illustrate the weighted estimating equations approach, using the simple mean model (2.2). 

Here our interest is to estimate  2 2, ,
T

v e   θ  from a two-stage cluster sampling design matching the 

model hierarchy. We have chosen the following three estimating functions (EF) for this purpose:  

                                                                     1 , ,ij iju y y  θ   (3.1) 

                                                            2 2 2
2 ,ij ij v eu y y      θ  (3.2)  

                                    
2

2 2 2
3 , , 2 2 , ,ij ik ij ik e ijk eu y y y y z j k             θ  (3.3) 

where .ijk ij ikz y y   The corresponding census estimating equations are given by  

                                           1 1 2 2
1 1 1 1

( ) , 0, ( ) , 0
i iN M N M

ij ij
i j i j

U u y U u y
   

    θ θ θ θ
 

(3.4) 

                                                        3 3
1 1

( ) , , 0.
iN M

ij ik
i j k

U u y y
  

  θ θ  (3.5) 

The resulting census parameter, Nθ , is model-consistent for θ  because the model expectations of the 

three estimating functions (3.1) – (3.3) are zero. It follows from (3.4) and (3.5) that the design-weighted 
estimating equations (WEE) are given by 

                                             1 | 1 1
( )

ˆ ˆ( ) , ( ) 0w i j i ij i w i
i s j s i i s

U w w u y wU
  

    θ θ θ   (3.6) 

                                             2 | 2 2
( )

ˆ ˆ( ) , ( ) 0w i j i ij i w i
i s j s i i s

U w w u y wU
  

    θ θ θ
 

(3.7) 

                                        3 | 3 3
( )

ˆ ˆ( ) , , ( ) 0,w i jk i ij ik i w i
i s j k s i i s

U w w u y y wU
   

    θ θ θ  (3.8) 

where 1
| | .jk i jk iw    The WEE estimator, ˆ ,wθ  is obtained by solving (3.6) – (3.8). For the mean model, we 

obtain explicit solutions to WEE as 

                                                       
( ) ( )

ˆ w ij ij ij w
i s j s i i s j s i

w y w y
   

 
   

 
   

 
(3.9) 
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                                                  22 2

( ) ( )

ˆ ˆvw ij ij w ij ew
i s j s i i s j s i

w y y w
   

       
 

(3.10) 

                                                2 2
| |

( ) ( )

ˆ 2 ,ew i jk i ijk i jk i
i s j k s i i s j k s i

w w z w w
     

 
   

 
     (3.11) 

where |ij i j iw w w . Note that the above moment method is distribution free. 

We note that ˆ ( ), 1,2,3wtU t θ  are estimating functions with zero expectation with respect to the 

design and the model, i.e.,  ˆ ( ) 0m p wtE E U θ . Using this result, it can be shown that the WEE estimator 

 2 2ˆ ˆ ˆ ˆ, ,
T

w w vw ew   θ  is design-model consistent for θ  as the number of level 2 units in the sample, n , 

increases, even when the within cluster sample sizes, im , are small. This property does not necessarily 

hold for the estimators presented in Section 2. The proposed method, however, requires the within-cluster 
joint inclusion probabilities |jk i . The latter are readily available for simple random or stratified random 

sampling within clusters, or when the within cluster sampling fraction is small. Also several good 
approximations to |jk i  when sampling within clusters is based on unequal probability sampling are also 

available, and those approximations depend only on the marginal inclusion probabilities |j i  (Haziza, 

Mecatti and Rao 2008). The WEE estimator ˆ
wθ  is also design-consistent for Nθ , noting that 

 ˆ ( ) 0p wt NE U θ , 1,2,3t  . 

The choice of estimating functions (3.1) – (3.3) is not necessarily unique. For example, we could 

replace the previous  2 ,iju y θ  by      2
2 , ,ij ik ij ik vu y y y y      θ  in (3.7) and retain (3.6) and 

(3.8). The resulting WEE estimator is also design-model consistent for θ  as the number of level 2 units 

increases. The weighted pairwise composite likelihood approach of Section 4 provides a unified method of 
generating the estimating functions. 

Korn and Graubard (2003) used an alternative approach for the mean model which has some 
similarities with the proposed approach. Under this approach, “census parameters”, 2

eS  and 2
vS  are first 

obtained by assuming that the model holds for the finite population. Survey weighted estimators 2ˆ
ewS  and 

2ˆ
vwS  of the census parameters are then obtained, assuming iM  is known for the sampled clusters. The 

estimator 2ˆ
ewS  is given by 

                         
1

22
| |

( ) ( )

1ˆ 1 1 ,
2ew i i jk i ij ik jk i i i

i s j k s i j k s i i s

S M w w y y w M w


     

               
     (3.12)  

assuming 1im   for all sampled clusters. Note that (3.12) requires the joint inclusion probabilities |jk i  

as in the proposed method, but it induces within-cluster ratio bias when the within-cluster sample sizes are 

small unlike our method. The expression for 2ˆ
vwS  is more complicated and we refer the reader to Korn and 

Graubard (2003) for the relevant formula.  

The WEE method readily extends to the nested error linear regression model 
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                                         2 2; ~ 0, , ~ 0, .T
ij ij i ij ij iid e i iid vy v e e N v N    x β  (3.13) 

In this case, the estimating function (3.1) is changed to 

                                                                  1 , ,T
ij ij ij iju y y θ x x β   (3.14) 

(3.2) to 

                                                            2 2 2
2 , T

ij ij ij v eu y y     θ x β  (3.15) 

and (3.3) to 

                                              
2

2
3 , , 2 , ,

T

ij ik ijk ij ik eu y y z j k        
θ x x β  (3.16) 

where θ  is the vector with elements 2, vβ  and 2
e  and ijk ij ikz y y  . Explicit solutions to 

ˆ ( ) 0, 1,2,3wtU t θ  corresponding to (3.14) – (3.16) are obtained as  

                                                  
1

( ) ( )

ˆ ,T
w ij ij ij ij ij ij

i s j s i i s j s i

w w y


   

   
    
   
   β x x x

 
 (3.17) 

                                              22 2

( ) ( )

ˆˆ ˆT
vw ij ij ij w ij ew

i s j s i i s j s i

w y w
   

       x β   (3.18) 

and  

                            
2

2
| |

( ) ( )

ˆˆ 2 .
T

ew i jk i ijk ij ik w i jk i
i s j k s i i s j k s i

w w z w w
     

           
   x x β   (3.19) 

 
3.2  Variance estimation 
 

A Taylor linearization sandwich variance estimator of the WEE estimator ˆ
wθ  can be obtained along 

the lines of the variance estimator (2.10), provided the level 2 sampling fraction is small. Let ˆ ( )wU θ  be 

the column vector with components 1
ˆ ( ),wU θ 2

ˆ ( )wU θ  and 3
ˆ ( )wU θ  and similarly ˆ ( )wiU θ  be the column 

vector with components 1
ˆ ( ),w iU θ 2

ˆ ( )w iU θ  and 3
ˆ ( )w iU θ . Then the linearization variance estimator is given 

by 

                                                       1 12ˆ ˆ ˆ ˆ ˆ ,
T

T
L w w i wi wi wi s

v w
 


     θ U U U U   (3.20) 

where ˆ
wiU  and ˆ

wU  denote ˆ ( )wiU θ  evaluated at ˆ
wθ θ  and the first derivative ˆ ( )wU θ  evaluated at 

ˆ
wθ θ , respectively. Properties of the variance estimator (3.20) are studied through simulation in Section 

5.2. 
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4  Weighted log composite likelihood: A unified approach 
 

In this section we propose a unified approach applicable to both linear and generalized linear multi-
level models. This approach is based on the concept of composite likelihood which has become popular in 
the non-survey literature to handle clustered or spatial data (see e.g., Lindsay 1988, Lele and Taper 2002 
and Varin, Reid and Firth 2011). A pairwise marginal composite likelihood is obtained by multiplying the 
likelihood contributions from all the distinct pairs within clusters. Note that the composite likelihood is 
obtained by pretending the sub-models are independent. When the super-population model holds for the 
sample, then we can obtain parameter estimators by maximizing the pairwise composite likelihood. Here 
we extend this approach to handle informative designs by obtaining weighted estimating equations that 
require only the marginal weights iw  and |j iw  and the pairwise weights | ,jk iw  as in Section 3.  

The census log pairwise composite likelihood is given by 

                                                           
1 1

( ) log , ,
iN M

C ij ik
i j k

l f y y
  

  θ θ   (4.1) 

where  ,ij ikf y y θ  is the marginal joint density of ijy  and .iky  We estimate (4.1) by the design-

weighted log pairwise composite likelihood  

                                                     
( )

( ) log ,wC i ij ikjk i
i s j k s i

l w w f y y
  

  θ θ   (4.2) 

which depends only on the first order level 1 and level 2 inclusion probabilities and the second order level 
1 probabilities. We then solve the weighted composite score equations 

                                                                ˆ ( ) ( ) ,wC wCl   U θ θ θ 0   (4.3) 

obtained from (4.2) to get a weighted composite likelihood estimator, ˆ ,wCθ  of θ . The proposed method is 

applicable to linear and generalized linear two-level models. 

We note that ˆ ( )wCU θ , given by (4.3), is a vector of estimating functions with zero expectation with 

respect to the design and the model, i.e.,  ˆ ( ) .m p wCE E U θ 0  Using this result, it can be shown that the 

weighted composite likelihood (WCL) estimator ˆ
wCθ  of θ  is design-model consistent as the number of 

level 2 units in the sample, ,n  increases, even when the within cluster sample sizes, ,im  are small. Details 

of the proof are given in Yi, Rao and Li (2012). In the non-survey context, we have limited theoretical and 
empirical evidence that the composite likelihood approach leads to efficient estimators (e.g., Bellio and 
Varin 2005, Lindsay et al. 2011). Our simulation study (Section 5) indicates that the weighted composite 
likelihood approach performs well in terms of efficiency, even for small within-cluster sample sizes.  

In the case of the nested error model (3.13), following Lele and Taper (2002) we can simplify the 

pairwise composite likelihood approach by replacing the bivariate density function  ,ij ikf y y θ  by the 

univariate density functions of ijy  and the difference .ijk ij ikz y y   For the mean model (2.2), we have 

 2 2~ ,ij v ey N      and  2~ 0, 2ijk ez N  . By reparametrizing  2 2, ,
T

v e   θ  as  2 2, ,
T

e     
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where 2 2 2 ,v e      we see that the parameters of the two univariate density functions are distinct and 

the log composite likelihoods corresponding to ijy  and ijkz  are given by 

   2 2

( )

, log ,wCy i ijj i
i s j s i

l w w f y
 

       

and 

   2 2

( )

log .wCz e i ijk ejk i
i s j k s i

l w w f z
  

     

We then solve the resulting weighted composite score equations 

     2 2 2
1

ˆ , , 0,
i

wCy wCy i ijj i
i s j s

U l w w y
 

              

     2

2 2 2
2 2 4

( )

1 1ˆ , , 0
2

ij

wCy wCy i j i
i s j s i

y
U l w w 

 

  
           

  
 

   

   
2

2 2 2
2 4

( )

1 1ˆ 0
2 2

ijk
wCz e wCz e e i jk i

i j k s i e e

z
U l w w 

 

 
            

   

to get the weighted composite likelihood (WCL) estimators 2ˆ ˆ,wC vwC   and 2ˆ ewC . The WCL estimators are 

identical to (3.9) – (3.11) obtained by the weighted estimating equations approach of Section 3. 

We now turn to the nested error linear regression model (3.13). We first note that  2~ ,T
ij ijy N x β  

where 2 2 2 ,v e      and   2~ , 2 .
T

ijk ij ik ij ik ez y y N   x x β  It follows that the weighted 

composite score equations are given by 

 
 

2 2
1

( )

ˆ ( , ) ,wCy wCy

T
i ij ij ijj i

i s j s i

l

w w y
 

    

   
U β β β

x x β 0
  

 
 

2 2 2
2

2

2 4
( )

ˆ ( , ) ,

1 1
0

2

wCy wCy

T
ij ij

i j i
i s j s i

l

y
w w

 

    

 
    
  
 

 

U β β

x β  

and  

 
 

2 2 2

2

2 4
( )

ˆ ( )

1 1
0.

2 2

wCz e wCz e e

T

ijk ij ik

i jk i
i s j k s i e e

l

z
w w

  

    

          
  

 

 

U

x x β  
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The resulting WCL estimators of β , 2
v  and 2

e  are given by 

1

( ) ( )

ˆ ,T
wC ij ij ij ij ij ij

i s j s i i s j s i

w w y


   

   
    
   
   β x x x  

 22

( ) ( )

ˆˆ ,T
wC ij ij ij wC ij

i s j s i i s j s i

w y w
   

     x β  

and 

 
2

2

( ) ( )

ˆˆ 2 .
T

ewC i ijk ij ik wC ijk i jk i
i s j k s i i s j k s i

w w z w w
 

     

           
   x x β  

The estimator of 2
v  is given by 2 2 2ˆ ˆ ˆ .vwC wC ewC      Again, the WCL estimators ˆ

WCβ , 2ˆ vWC  and 2ˆ eWC  are 

identical to (3.17) – (3.19) obtained from the weighted estimating equations approach of Section 3. 

The above composite likelihood approach, based on ijy  and ijk ij ikz y y  , is not applicable to the 

linear two-level model given by (2.4) because the parameter vector, θ , is not identifiable under the 
composite likelihood obtained from the ijy  and ijkz . We need the pairwise method to handle model (2.4). 

Marginally,  ,
T

ij iky y  is bivariate normal with means T
ijx β  and T

ikx β  and 2 2  covariance matrix 

2

( ) 2
.

T T
e ij v ij ij v ik

i jk T T
ik v ij e ik v ik

  
 
   

x Σ x x Σ x
Σ

x Σ x x Σ x
 

It now follows from (4.3) that the weighted composite score equations are given by 

                                   1
( ) ( ) ( ) ( )

( )

ˆ: T T
wC i i jk i jk i jk i jkjk i

i s j k s i

w w 

  

   ββ U X Σ y X β 0   (4.4) 

and 

          

   ( )1 1
( ) ( ) ( ) ( ) ( ) ( )

( )

( )1
( )

1ˆ:
2

tr , 1,..., ( 1) 2 1

T i jkT T
wCl i i jk i jk i jk i jk i jk i jkjk i

i s j k s i l

i jk
i jk

l

w w

l p p P

 


  




   

 
       

 
Σ

τ U y X β Σ Σ y X β

Σ
Σ 0

 (4.5) 

where ( )i jkX  is the 2 p  matrix with rows T
ijx  and T

ikx ,  ( ) ,
T

i jk ij iky yy  and τ  is the P-vector with 

elements 2
1 e    and the  1 2p p   distinct elements of vΣ  denoted by 2 ,..., P  . We can solve the 

weighted composite score equations (4.4) and (4.5) iteratively using the Newton-Raphson method or some 

other iterative method to obtain the WCL estimators ˆ
wCβ  and ˆ wCτ . 

In the special case of the nested error linear regression model (3.13), the census score equations, based 
on the full census log-likelihood ( )l θ  given by (2.5), can be written in a closed form. The corresponding 

sample weighted score equations depend only on the level 1 weights 
j i

w 
 and 

jk i
w 

 and the level 2 weights 
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,iw  similar to the weighted composite score equations (see the Appendix). The resulting estimators are 

design-model consistent for θ , unlike the estimators based on the weighted pseudo log-likelihood ( )wl θ  

given by (2.7) and (2.8). However, for more complex models, such as two level models with random 
slopes, the sample weighted score equations will depend on third order and fourth order level 1 inclusion 
probabilities, unlike the weighted composite score equations (4.3) that depend only on the first order and 
second order level 1 inclusion probabilities, even for complex multi-level models. We have therefore not 
included the weighted score equations approach, based on the full census log-likelihood, in the simulation 
study. 

 
5  Simulation study 
 

We conducted a small simulation study on the performance of the proposed WEE estimators under the 
simple nested error mean model, using 0.5  , 2 0.5v   and 2 2.0.e   The population consists of N 
1,000 clusters, each containing 100iM M   elements. A two-stage sampling design with n  50 

sample clusters and 5im m   sample elements from each sample cluster is used. Clusters are selected 

by simple random sampling, and the elements within clusters by the Rao-Sampford probability 
proportional to size (PPS) sampling method (Rao 1965 and Sampford 1967) with specified size measures 

.ijz  The size measures are chosen to reflect different levels of informativeness. 

Following Asparouhov (2006), we considered both invariant and non-invariant selections. For 
invariant selection, the size measure ijz  depends only on the level 1 errors and is invariant across clusters. 

In particular, we let 

                                               
1

1/2* 21 exp 0.5 1 ,ij ij ijz e e


            
  (5.1) 

where *
ije  is independent of ije  but with the same distribution,  20, 2.0eN   . For non-invariant 

selection, the size measure ijz  depends on both level 1 and level 2 errors and hence non-invariant across 

clusters. In particular, we replace ije  and *
ije  in (3.7) by i ijv e  and * *

i ijv e  respectively, where *
iv  is 

independent of iv  but with the same distribution  20, 0.5vN   . We considered four values of   in 

(5.1): 1, 2, 3, ,    where     corresponds to non-informative sampling within each cluster, 1   

corresponds to the most informative sampling and informativeness decreases as   increases.  

We used the design-model ( pm ) approach to simulate 1,000R   samples for each specified   and 

separately for invariant and non-invariant selections. Under this approach, we generated a population with 
1,000N   and 100iM M   from the model and then selected a two-stage sample of elements as 

specified above. The two-step process was repeated 1,000R   times to simulate 1,000  samples. 

 
5.1  Performance of estimators 
 

From each sample, we computed the estimates of 2, v   and 2
e  using REML, weighted scaling 

methods A and A1, the proposed WEE method and the alternative method of Korn and Graubard 
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(abbreviated KG). Biases and variances of the estimators were computed from the 1,000  estimates. 

Performance of alternative estimators is judged using two performance measures: Bias ratio = BR = 
(Bias)/(square root of variance) and relative root mean squared error = RRMSE = (square root of MSE)/ 
(true parameter value). Tables 5.1, 5.2 and 5.3 respectively report the BR values of the estimators of 2, v   

and 2
e . RRMSE values of the estimators of 2, v   and 2

e  are reported in Tables 5.4, 5.5 and 5.6 

respectively. 
 
 
 
Table 5.1  
Bias ratio (%) of estimators of    
 

  Invariant Non-invariant 

REML A A1/WEE/KG REML A A1/WEE/KG 

1 346.5 80.2 2.2 370.9 83.9 3.0 

2 167.7 40.1 0.3 172.3 45.3 6.1 

3 114.3 30.7 4.5 114.9 30.8 4.8 

∞ 2.0 2.5 2.1 -1.5 -2.4 -2.2 

 
 
 

Table 5.1 reports bias ratio (%) of the estimators of   based on REML, weight-scaling methods A and 

A1, KG and WEE. Note that in the case of  , estimators A1, KG and WEE (WCL) are identical. Results 

in Table 5.1 show that BR is similar for invariant and non-invariant selections and that BR of REML and 
A decrease as   increases. Further, REML leads to large bias under informative sampling, even for

3;   for example, BR for REML ranges from 114% to 346% under invariant selection. Method A also 

leads to significant BR under informative sampling; for example BR for A ranges from 30.8% to 83.9% 
under non-invariant selection. On the other hand, BR of WEE, A1 and KG does not depend on   and it is 
small ( | | 6%BR  ). Under non-informative sampling, REML performs well as expected ( | | 3%BR  ). 

Turning to the estimation of 2
v , we first note that the proportion of times the estimate of 2

v  is 

negative is zero in the simulations for all four values of   and for all the estimation methods (REML, A, 

A1, WEE and KG). Table 5.2 reports BR values of the estimators of 2
v . It shows that the BR of REML is 

not affected by   under invariant selection, but is affected under non-invariant selection. In the latter 
case, REML leads to serious underestimation for 1   (BR = -49%) but |BR| decreases as   increases. 

Table 5.2 also shows that methods A and A1 do not perform well under informative sampling (BR ranging 
from 16% to 60%). KG did not perform well for 1   (BR=33% under invariant selection and BR = 24% 
under non-invariant selection). On the other hand, WEE performs well for all values of   (BR ranging 
from -4% to -13%) although underestimation is consistent across values of  . 

Table 5.3 reports BR values of the estimators of 2
e . It shows that BR values are similar for invariant 

and non-invariant selections, as in the case of  . REML and KG lead to serious underestimation when 

1   (BR = -107% for REML and BR = -71% for KG under invariant selection), but |BR| decreases as 
  increases and becomes negligible for    . Estimators A and A1 perform poorly for all values of   
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including   . On the other hand, WEE performs well for all values of   with |BR|<8%. It appears 

that the instability introduced by the scale factor (2.9) might have contributed to the large |BR| for 
methods A and A1 even for the case of non-informative sampling ( )   . 
 

 

Table 5.2 
Bias ratio (%) of estimators of 2v  
 

  REML A A1 WEE  KG  

Invariant Selection 

1 0.6 59.5 59.3 -8.5 33.2 

2 0.5 24.5 26.3 -10.0 8.0 

3 -3.4 16.1 18.2 -13.6 0.4 

∞ -0.1 14.8 17.1 -8.9 0.6 

Non-invariant Selection 

1 -49.0 50.1 58.9 -4.4 24.0 

2 -10.9 24.6 28.7 -7.0 7.1 

3 -4.0 20.0 22.7 -7.8 4.6 

∞ -1.3 12.8 13.9 -13.3 -1.6 

 

 

 

Table 5.3 
Bias ratio (%) of estimators of 2e  
 

  REML A A1 WEE  KG  

Invariant Selection 

1 -106.9 -118.4 -66.9 2.4 -71.2 

2 -22.7 -43.6 -34.3 2.1 -16.5 

3 -9.4 -31.7 -28.4 2.9 -6.5 

∞ -0.4 -21.8 -23.8 0.3 0.4 

Non-invariant Selection 

1 -115.3 -131.3 -79.6 -6.9 -82.6 

2 -30.4 -51.1 -43.3 -7.6 -23.9 

3 -12.5 -34.9 -32.2 -2.3 -10.3 

∞ 1.1 -20.2 -21.8 2.6 1.6 
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Table 5.4 
Relative root mean squared error (%) of estimators of   
 

  Invariant Non-invariant 

REML A A1/WEE/KG REML A A1/WEE/KG 

1 93.3 35.9 29.4 92.5 35.4 29.2 

2 51.6 29.3 27.8 52.8 30.4 28.9 

3 40.5 28.2 27.5 40.8 28.7 28.1 

∞ 25.8 26.1 26.5 26.6 27.3 27.7 

 
 
 
Relative root mean squared error 
 

Table 5.4 shows that the RRMSE (%) values for estimators of   are similar for invariant and non-

invariant selections and that RRMSE of REML and A decrease as   increases. For informative sampling 
with 1  , RRMSE for REML is large relative to RRMSE for WEE (A1 and KG) due to large BR. For 

example, RRMSE=93% for REML compared to RRMSE=29% for WEE. As expected, REML has the 
smallest RRMSE under non-informative sampling, but the increase in RRMSE for the other methods is 
quite small. Also, RRMSE of WEE (A1 and KG) depends on  . 

 
 
 
Table 5.5  
Relative root mean squared error (%) of estimators of 2v  
 

  REML A A1 WEE  KG  

Invariant Selection 

1 36.5 47.3 51.1 43.6 43.8 

2 37.1 39.7 41.1 40.5 39.5 

3 36.3 37.3 38.7 39.5 37.8 

∞ 35.8 36.9 38.1 38.7 37.2 

Non-invariant Selection 

1 36.7 44.6 52.6 43.4 41.5 

2 35.6 37.9 40.4 39.3 37.7 

3 37.0 38.7 40.4 40.2 38.8 

∞ 36.6 37.2 38.0 39.0 37.8 
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Turning to RRMSE of estimators of 2
v , Table 5.5 shows that REML performs well for all   under 

invariant selection due to small BR in this case. We also note that KG and WEE are comparable in terms 
of RRMSE for all values of  . Table 5.5 also shows that A and A1 lead to somewhat larger RRMSE for 

1  : 51% for A1 and 47% for A under invariant selection compared to 44% for WEE. 
 
 
 
Table 5.6 
Relative root mean squared error (%) of estimators of 2e  
 

  REML A A1 WEE  KG  

Invariant Selection 

1 13.5 14.5 12.8 13.9 12.9 

2 9.7 10.4 10.4 11.0 10.0 

3 9.5 10.0 10.1 10.7 9.8 

∞ 10.1 10.3 10.5 11.1 10.3 

Non-invariant Selection 

1 13.7 14.8 12.9 13.2 13.0 

2 10.0 10.9 10.9 11.3 10.3 

3 9.7 10.4 10.7 11.2 10.2 

∞ 10.3 10.6 10.8 11.4 10.7 

 
 
 

Table 5.6 gives RRMSE values of the estimators of 2
e  and we note that the values are similar for 

invariant and non- invariant selections. It also shows that RRMSE values are comparable for methods 
WEE, A, Al and KG even though in terms of bias ratio A, Al and KG performed poorly relative to WEE. 
This is due to larger variance for WEE compared to other methods. For example, in the case of invariant 
selection and 1   we have the following variances for WEE, KG and REML: 0.0771, 0.0438 and 

0.0339 with corresponding bias ratios (%) from Table 5.3: 2.4, -71.2, and -106.9. 

 
5.2  Performance of variance estimator 
 

We now report some simulation results on the relative bias of the linearization variance estimator 

(3.12) of the WEE (WCL) estimator ˆ
wθ . We first repeated the two-step process 1 2,000R   times and 

computed  ( ) ˆr
L wv θ  from each two-stage sample 1,..., 2,000.r   The averages of the diagonal elements of 

      11 ( )
1 1

ˆ ˆ ˆR r
L w L w L wr

E v v R v
  θ θ θ  are denoted by    2ˆ ˆ,L w L vwv v   and  2ˆL ewv   respectively. 

We then generated 2 10,000R   independent samples and computed the empirical mean squared error 
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(MSE) of the three estimators 2ˆ ˆ,w vw   and 2ˆ .ew  We have    2
21 ( )

2 1
ˆ ˆMSE

R r
w wr

R
      where ( )ˆ r

w  is 

the estimate of   from the r-th simulated sample, and similar expressions for  2ˆMSE vw  and  2ˆMSE .ew   

The relative bias of  ˆL wv   is calculated as 

      ˆ ˆ ˆRB MSE 1L w L w wv v        

and similarly   2ˆRB L vwv   and   2ˆRB L ewv   were calculated. Table 5.7 reports the RB values of the 

three variance estimators for invariant and non-invariant selections and 1, 2, 3, .    It is clear from 

Table 5.7 that the linearization variance estimator performs well over all combinations with RB 10%.  

 
 
 
Table 5.7 
Relative bias (%) of variance estimators 
 

  ˆ( )L wv  ˆ 2( )L vwv  ˆ 2( )L ewv  

Invariant Selection 

1 -3.0 -6.2 -7.5 

2 -5.2 -4.5 -3.1 

3 -1.3 -3.8 -1.8 

∞ -0.9 -2.5 -2.0 

Non-invariant Selection 

1 -3.8 -8.3 -4.2 

2 -4.5 -5.8 -7.3 

3 -4.3 -4.6 -5.7 

∞ -2.4 -2.7 -2.9 

 

 

 

6  Concluding remarks 
 

In this paper, we have proposed a unified weighted composite likelihood (WCL) approach for two-
level models to make inferences from complex survey data. The proposed WCL methods are 
asymptotically valid even when the sample sizes within sampled clusters (level 1 units) are small, unlike 
some of the existing methods, but knowledge of the joint inclusion probabilities within sampled clusters is 
required. Often it may be possible to treat the sample within clusters as drawn with replacement because 
of small sampling fractions within clusters. Also, excellent approximations to joint inclusion probabilities, 
depending only on the marginal inclusion probabilities, are also available when the sampling fractions are 
not small (Haziza et al. 2008). We plan to study the accuracy of such approximations in a future study. 
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Simulation studies on the performance of the WCL estimators (4.5) and (4.6) for two-level models (2.3), 
based on the pairwise method, will also be conducted.  

Composite likelihood methods are mostly used when the full likelihood is complex. Our development 
in the survey sampling context demonstrates that the full likelihood method with weights is not feasible 
for multi-level models whereas the weighted composite likelihood method facilitates valid inferences even 
when the cluster sample sizes are small. 

 
7  Acknowledgements 
 

We thank two referees and the associate editor for constructive comments and suggestions. 

 
Appendix 
 

Weighted score equations: nested error linear regression model 
 

For the nested error linear regression model (2.3), an explicit form for the census full log-likelihood is 

obtained using the explicit form for the covariance matrix iV  of  1,..., .
i

T

i i iMy yy  We have 

1 2 2 ,T
i e i v i i i       V I 1 1  where 2 2

i e i vM    , iI  is the i iM M  identity matrix and i1  is the 1iM   

unit vector. Using the expression for 1
i
V , the census score equations are obtained as 

           2 1 2 1

1 1 1 1 1 1 1 1 1 1

: 0
i i i i i iM M M M M MN N N N

T T
ij ij v i ij ik ij ij v i ij ik

i j i j k i j i j k

y y 

         

      
         

         
     β x x x x x x β     (A.1) 

                                      2 2 1

1 1 1 1

: 0
i iM MN N

T T
v i ij ij ik ik i i

i j k i

y y M 

   

 
    

 
  x β x β     (A.2) 
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1 1 1 , 1

2 2 1
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: 2

1 0

i iM MN N
T T T

e ij ij i v i v i ij ij ik ik
i j i j k

N

e v i i
i

y M y y

M

 

   





    

  

  



x β x β x β    

    
(A.3) 

From (A.1), we obtain weighted score equations 

                                   

2 1

( ) ( ) ( )

2 1

( ) ( ) ( )

:

0

i ij ij v i i ij ikj i jk i
i s j s i i s j s i k s i

T
i ij ij v i i ij ikj i jk i

i s j s i i s j s i k s i

w w y w w y

w w w w



    



    

 
  

 
  

    
   

    

    

β x x

x x x x β

 

 

  (A.4) 
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where jj i j iw w . Note that the cluster sizes iM  for i s  are assumed to be known. One should not 

replace iM  by its estimate 
( ) j ij s i

w
  because it includes ratio bias due to small within cluster sample 

sizes. The estimating equation (A.4) is design-unbiased for the census equation (A.1). 

Turning to the weighted score equation for 2
v , we obtain from (A.2) 

                      2 2 1

( ) ( ) ( )

: 0T T
v i i ij ij ik ik i ijk i j i

i s j s i k s i i s j s i

w w y y w w 

    

 
    

 
    x β x β      (A.5) 

The estimating equation (A.5) is unbiased for (A.2). Finally, the weighted score equation for 2
e  is 

obtained from (A.3) as 

          

      

 

22 4 2 2 1

( ) , ( )

2 2 1

( )

: 2

1 0

T T T
e i ij ij i i v i v i ij ij ik ikj i jk i

i s j s i i s j k s i

e i v i j i
i s j s i

w w y x w M w y y

w w

 

   



 

    

  

   

 

x β x β     

    
(A.6) 

It follows from (A.4) – (A.6) that the weighted score equations depend only on the first order weights iw  

and j iw  and the second order weights jk iw  in the special case of a nested error linear regression model. 

 
References 

 
Asparouhov, T. (2006). Generalized multi-level modeling with sampling weights. Communications in Statistics - 

Theory and Methods, 35, 439-460. 
 
Beaumont, J.-F., and Charest, A.-S. (2010). Bootstrap variance estimation with survey data when estimating model 

parameters. Unpublished report (courtesy of the authors). 
 
Bellio, R., and Varin, C. (2005). A pairwise likelihood approach to generalized linear models with crossed random 

effects. Statistical Modelling, 3, 217-227. 
 
Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 

73, 43-56. 
 
Grilli, L., and Pratesi, M. (2004). Weighted estimation in multilevel ordinal and binary models in the presence of 

informative sampling designs. Survey Methodology, 30, 93-103. 
 
Haziza, D., Mecatti, F. and Rao, J.N.K. (2008). Evaluation of some approximate variance estimators under the Rao 

Sampford unequal probability sampling design. Metron, 66, 91-108. 
 
Korn, E.L., and Graubard, B.I. (2003). Estimating variance components using survey data. Journal of the Royal 

Statistical Society B, 65, 175-190. 
 
Kovacevic, M.S., Rong, H. and You, Y. (2006). Bootstrapping for variance estimation in multi-level models fitted to 

survey data. Proceedings of ASA Section on Survey Research Methods, American Statistical Association, 3260-
3269. 

 



282 Rao, Verret and Hidiroglou: A Weighted Composite Likelihood Approach to Inference for Two-level Models 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Lele, S., and Taper, M.L. (2002). A composite likelihood approach to (co)variance components estimation. Journal 
of Statistical Planning and Inference, 103, 117-125. 

 
Lindsay, B.G. (1988). Composite likelihood methods. In Statistical Inference from Stochastic Processes, (Ed. 

N.U. Prabhu), Providence: American Mathematical Society, 221-239. 
 
Lindsay, B.G., Yi, G.Y. and Sun, J. (2011). Issues and strategies in the selection of composite likelihoods. Statistica 

Sinica, 21, 71-105. 
 
Muthén, L.K., and Muthén, B.O. (1998-2005). Mplus User’s Guide. 3rd ed. Los Angeles, CA: Muthén & Muthén. 
 
Pfeffermann, D., and Sverchkov, M. (2003). Fitting generalized linear models under informative sampling. In 

Analysis of Survey Data, (Eds. R. Chambers and C.J. Skinner) 175-196, Wiley, Chichester. 
 
Pfeffermann, D., Skinner, C.J., Holmes, D.J., Goldstein, H. and Rasbash, J. (1998). Weighting for unequal selection 

probabilities in multi-level models. Journal of the Royal Statistical Society B, 60, 23-56. 
 
Rabe-Hesketh, S., and Skrondal, A. (2006). Multilevel modeling of complex survey data. Journal of the Royal 

Statistical Society A, 169, 805-827. 
 
Rao, J.N.K. (1965). On two simple schemes of unequal probability sampling without replacement. Journal of the 

Indian Statistical Association, 3, 173-180. 
 
Rao, J.N.K., and Roberts, G. (1998). Discussion on the papers by Firth and Bennett and Pfeffermann et al. Journal of 

the Royal Statistical Society B, 60, 50-51. 
 
Rao, J.N.K., Wu, C.F.J. and Yue, K. (1992). Some recent work on resampling methods for complex surveys. Survey 

Methodology, 18, 209-217. 
 
Rao, J.N.K., Hidiroglou, M., Yung, W. and Kovacevic, M. (2010). Role of weights in descriptive and analytical 

inferences from survey data: An overview. Journal of the Indian Society of Agricultural Statistics, 64, 129-135. 
 
Sampford, M.R. (1967). On sampling without replacement with unequal probabilities of selection. Biometrika, 54, 

499-513. 
 
Varin, C., Reid, N. and Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21, 5-42. 
 
Yi, G.Y., Rao, J.N.K. and Li, H. (2012). A weighted composite likelihood approach for analysis of survey data under 

two level models. Available on request to jrao@math.carleton.ca. 




