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Abstract 

At national statistical institutes experiments embedded in ongoing sample surveys are frequently conducted, for 
example to test the effect of modifications in the survey process on the main parameter estimates of the survey, 
to quantify the effect of alternative survey implementations on these estimates, or to obtain insight into the 
various sources of non-sampling errors. A design-based analysis procedure for factorial completely randomized 
designs and factorial randomized block designs embedded in probability samples is proposed in this paper. 
Design-based Wald statistics are developed to test whether estimated population parameters, like means, totals 
and ratios of two population totals, that are observed under the different treatment combinations of the 
experiment are significantly different. The methods are illustrated with a real life application of an experiment 
embedded in the Dutch Labor Force Survey. 

 
Key Words: Completely randomized designs; Design-based inference; Embedded experiments; Measurement error 

models; Model-assisted inference; Randomized block designs. 

 
 

1  Introduction 

 

The fields of randomized experiments and probability sampling are traditionally two separated 
domains of applied statistics. Both, however, come together if experiments are embedded in ongoing 
sample surveys. Randomized experiments embedded in ongoing sample surveys are frequently conducted 
to compare and test the effect of alternative survey implementations on the outcomes of a sample survey. 
The purpose of such empirical research is to improve the quality and efficiency of the underlying survey 
processes or to obtain more quantitative insight into the various sources of non-sampling errors. Many 
experiments conducted in this context are small scaled or conducted with specific groups. The value of 
empirical research into survey methods is strengthened as conclusions can be generalized to populations 
larger than the sample that is included in the experiment. Selecting experimental units randomly from a 
larger target population, is an important tool to secure that results of an experiment can be generalized to 
populations larger than the group of people included in the experiment, as emphasized by Fienberg and 
Tanur (1987, 1988, 1989 and 1996). This naturally leads to randomized experiments embedded in ongoing 
sample surveys. In the survey literature, such experiments are also referred to as split-ballot designs or 
interpenetrating subsampling, and date back to Mahalanobis (1946). 

At national statistical offices such experiments are particularly useful to quantify discontinuities in the 
series of repeated surveys due to adjustments to the survey process. Repeatedly conducted surveys make 
up series that describe the development of target parameters. Embedded experiments can be used to avoid 
one or more modifications in the survey process resulting in unexplained differences in the series of a 
survey. 
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An important issue in the analysis of this kind of experiment is to find the right mode of inference. The 
statistical inference in survey sampling is traditionally design based or model assisted. This implies that 
the inference is predominantly based on the stochastic structure induced by the sampling design. A well-
known design-based estimator is the Horvitz-Thompson (HT) estimator, developed by Narain (1951) and 
Horvitz and Thompson (1952) for unequal probability sampling from finite populations without 
replacement. Under the model assisted approach developed by Särndal, Swensson and Wretman (1992), 
the accuracy of the HT estimator is improved by taking advantage of available auxiliary information about 
the complete target population, resulting in the generalized regression (GREG) estimator. Many national 
statistical institutes rely on this design-based and model-assisted approach to compile official statistics. 

The statistical inference that is traditionally employed in the theory of design and analysis of 
randomized experiments is predominantly model-based. The observations that are obtained in the 
experiment are assumed to be the realization of a linear model. To test hypotheses about treatment effects, 
F -tests are derived under the assumption of normally and independently distributed observations. An 
exception is Kempthorne (1955), where a randomization approach is proposed in a way that is similar to 
the design-based inference approach in sampling theory. The F -test is used as an approximation of the 
randomization test. The model-based inference for randomized experiments is not necessarily appropriate 
for the analysis of embedded experiments, particularly if a design-based or model-assisted inference is 
used in the ongoing survey to compile official statistics. 

In an embedded experiment the probability sample of the ongoing survey is randomly divided into 
different subsamples according to an experimental design. Each subsample can be considered as a 
probability sample drawn from the finite target population and can be used to estimate parameters such as 
means, totals and ratios, that are observed under the different survey implementations or treatments of the 
experiment using the estimation procedure that is applied in the regular survey to compile official 
statistics. The purpose of such embedded experiments is to compare the effect of alternative survey 
implementations on the main parameter estimates of the ongoing survey and to test whether the observed 
differences between these parameter estimates are statistically significant. This is obtained with a design-
based approach where point and variance estimates for the population parameters, are (approximately) 
design-unbiased with respect to the sample design used to draw an initial probability sample from the 
target population, and the experimental design used to randomize this sample over the different 
subsamples. This analysis must also reflect the specific details of the regular estimation approach used to 
compile official statistics, as far as this is possible with the available sample size under the different 
treatments. 

Previous research has proposed such a design-based theory for the analysis of single-factor 
experiments that are designed as completely randomized designs (CRDs) or randomized block designs 
(RBDs) to test the effect of one factor on 2K   levels (van den Brakel (2008); van den Brakel and 
Renssen (1998, 2005); van den Brakel and van Berkel (2002)). In their approach the GREG estimator is 
applied to derive design-based Wald- and t-statistics to test whether the differences between finite 
population parameter estimates observed under the different survey implementations are significantly 
different. This theory is further extended to the experiments embedded in rotating panel designs by 
Chipperfield and Bell (2010). 

From standard experimental design theory it is well known that it is efficient to test different treatment 
factors simultaneously in one factorial design instead of conducting separate single-factor experiments 
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(Hinkelmann and Kempthorne (1994); Montgomery (2001)). It can be expected that different design 
parameters in a survey process interact with each other, e.g., when different questionnaire designs and data 
collection modes are compared empirically. Factorial setups are indeed appropriate if more than one factor 
in the survey is adjusted and tested in an embedded experiment, since fewer experimental units are 
required to test the main effects of the treatment factors whereas interactions between the factors can be 
analyzed. Another advantage of testing different treatments simultaneously in a factorial design is that the 
validity of the observed results is extended, since the effects are observed over a wider range of conditions 
(Hinkelmann and Kempthorne (1994)). Therefore the design-based theory for the analysis of embedded 
experiments is extended to factorial designs in this paper. 

The theory for factorial designs where the effect of two factors is tested simultaneously is developed in 
section 2. Subsequently the methodology is extended to higher order factorial designs in section 3. In 
section 4, the methodology is extended to test hypotheses about ratios of population totals and designs 
where clusters of sampling units are randomized over the treatment combinations. In section 5 these 
methods are applied to a factorial experiment with advance letters in the Dutch Labor Force Survey (LFS). 
The paper concludes with a discussion in section 6. 

 
2  Analysis of embedded K L  factorial experiments 
 
2.1  Experimental designs embedded in probability samples 
 

In a K L  factorial design, the effects of two factors are tested simultaneously. The first factor, 
denoted A  contains 2K   levels. The second factor, denoted B  contains 2L   levels. The purpose of 
the experiment is to test the main effects of the two factors and the interactions between both factors on 
the main parameter estimates of the ongoing survey. To this end a probability sample s  of size n  is 
drawn from a finite target population U  of size N  according the sample design of the regular survey. 
This sample design can be generally complex, and is described by its first order inclusion probabilities i  

for unit i  and second order inclusion probabilities 'ii  for units i  and i . 

Subsequently, this sample is randomly divided into KL  subsamples according to a randomized 
experiment. In the case of a CRD, the sample s  of size n  is randomly divided into KL  subsamples kls , 

each with a size of kln  sampling units. The sampling units of each subsample are assigned to one of the 

KL  treatment combinations. Under a CRD, 
1 1

K L

klk l
n n  

    denotes the total number of sampling 

units in the sample s . The probability that sampling unit i is assigned to subsample kls , conditionally on 

the realization of s , equals /kln n . The unconditional probability that sampling unit i  is selected in 

subsample kls  equals * ( / )i i kln n  . 

The power of an experiment might be improved by using sampling structures such as strata, clusters or 
interviewers as block variables in an RBD since restricted randomization removes the variance between 
the blocks from the analysis of the experiment (Fienberg and Tanur (1987, 1988)). In the case of an RBD, 
the sampling units are deterministically grouped in B  more or less homogeneous blocks bs . Within each 

block, the sampling units are randomly assigned to one of the KL  treatment combinations. Let bkln  

denote the number of sampling units in block b  assigned to treatment combination kl , and 
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1 1

K L

b bklk l
n n  

    the number of sampling units in block b . The probability that sampling unit i  is 

assigned to subsample kls , conditionally on the realization of s  and bi s , equals /bkl bn n  , bi s . 

The unconditional probability that sampling unit i  is selected in subsample kls  equals *
i   

( / ).i bkl bn n   

In many practical applications one of the KL  subsamples is assigned to the regular survey and serves, 
besides being used to produce estimates for the regular publication, as the control group in the experiment. 
In such situations, the size of this subsample will be substantially larger than the other subsamples. 

There are a lot of issues in the planning and design stage of embedded experiments. The field staff, for 
example, requires special attention, since an embedded experiment can have a large impact on their daily 
routine of data collection, to which they are accustomed. See van den Brakel and Renssen (1998) and van 
den Brakel (2008) for more details about such design issues. 

Although factorial designs are efficient from a statistical point of view, there might be strong practical 
arguments against a factorial set-up. The number of treatment combinations increases rapidly with the 
number of factors in full factorial designs, which might be difficult to implement in the data collection of a 
survey process. A general solution, known from standard experimental design theory, is to confound 
higher order interactions with blocks or to apply fractional factorial designs (Hinkelmann and Kempthorne 
(2005); Montgomery (2001)). These balanced designs, however, are generally hard to combine with the 
fieldwork restrictions encountered in the daily practice of survey sampling. In many applications the 
factors that changed in a survey redesign are therefore combined into one treatment. The total effect of 
these modifications is tested against the standard alternative in a two-treatment experiment. This implies 
that the effects of all factors in the experiment are confounded and cannot be separately estimated. 

 
2.2  Testing hypotheses about finite population parameters 
 

The purpose of embedded experiments is to test whether alternative survey implementations result in 
significantly different estimates for finite population parameters. Such differences are the result of non-
sampling errors, like measurement errors and response bias. A measurement error model is required to 
link systematic differences between finite population parameters due to different survey implementations 
or treatments. Therefore the measurement error model for single-factor experiments proposed by van den 
Brakel and Renssen (2005) and van den Brakel (2008) is extended to factorial designs.  

Let iqkly  denote the observation obtained from the thi  individual observed under the thkl  treatment 

combination and the thq  interviewer. It is assumed that the observations are a realization of the 

measurement error model 

                                                              iqkl i kl q ikly u      . (2.1) 

Here iu  is the true intrinsic value of the thi  individual, kl  the effect of the thkl  treatment combination 

and ikl  an error component. The model also allows for interviewer effects, i.e., q q    , where   

denotes a systematic interviewer bias and q  the random effect of the thq  interviewer, respectively. Let 

Em  and cov m  denote the expectation and the covariance with respect to the measurement error model. It 
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is assumed that E ( ) 0m ikl  , 2var ( )m ikl ikl  , and that measurement errors between sampling units are 

independent. Furthermore it is assumed that E ( ) 0m q  , 2var ( )m q q   and that random interviewer 

effects between interviewers are independent. As a result the model allows for correlated response 
between sampling units that are interviewed by the same interviewer. The measurement error model 
allows for separate variances for measurement errors under different treatment combinations and separate 
variances for interviewers. 

The treatment effects kl  can be interpreted as the bias in the estimated population parameter if the 

true intrinsic population value of u  is measured by means of the thkl  survey implementation. The 

treatment effect can be decomposed in the traditional way of an analysis of variance for a two-way layout: 

                                                                kl k l klu A B AB     , (2.2) 

with u  the overall effect, kA  and lB  the main effects of treatment factors A  and B  and klAB  the 

interactions between treatment factors A  and B . If the treatment effects are defined as fixed deviations 
from the individuals' intrinsic value iu , then the overall mean u  equals zero. In that case kA  corresponds 

with the bias associated with the thk  level of factor A  averaged over all levels of factor B , lB  the bias 

associated with the thl  level of factor B , averaged over all levels of factor A , and klAB  the additional 

bias associated with the combination of the thk  level of factor A  and the thl  level of factor B  on top of 

kA  and lB . 

The following restrictions are required to identify model (2.2): 

                                                                 
1 1

0,  0,
K L

k l
k l

A B
 

    (2.3) 

and 

                                     
1 1

0, 1, 2, , ,  0, 1, 2, , .
K L

kl kl
k l

AB l L AB k K
 

       (2.4) 

For each sampling unit, a potential response variable is defined under each of the KL  treatment 
combinations. Therefore the measurement error model can be expressed in matrix notation as: 

                                                           iq KL i KL q iu    y j β j ε , (2.5) 

where 11( , ..., , ..., )y t
iq iq iqkl iqKLy y y , 11( , ..., , ..., )β t

kl KL    , jKL  a vector of order KL  with each 

element equal to one and 11( , ..., , ..., )ε t
i i ikl iKL    . The sampling units are assigned to one of the 

treatment combinations only, so only one of the responses of y iq  is actually observed. The model 

assumptions specified above are stated as: 

                                                                           E ,m i ε 0  (2.6) 

                                                            :
cov , ,

:
i

m i i

i i

i i



  

Σ
ε ε

Ο
 (2.7) 
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                                                                           E 0,m q   (2.8) 

                                                           
2 :

cov , ,
0 :

q
m q q

q q

q q


  

   
 (2.9) 

                                                                     cov , 0,m ikl q    (2.10) 

where 0  is a vector of order KL  with each element zero, Σ i  a matrix of order KL KL  containing the 

variances of the measurement errors 2
ikl , and Ο  a matrix of order KL KL  with each element zero. 

Let 11 1 1( , ..., , ..., , ..., , ..., )Y t
L kl K KLY Y Y Y Y  denote the KL dimensional vector of population means of 

y iq  defined by (2.5). These are the values obtained under a complete enumeration of the finite population 

under each of the treatment combinations and are defined as: 

                                        
1 1 1

1 1N Q N
q

KL i KL KL q i
i q i

N
u

N N N
 

  

      Y j β j j ε , (2.11) 

where Q  denotes the total number of interviewers available for the data collection and qN  the number of 

units assigned to the thq  interviewer in the case of a complete enumeration. 

Only systematic differences between the population parameters that are reflected by the treatment 
effects β  should lead to a rejection of the null hypotheses of no treatment effects. This is accomplished by 

formulating hypotheses about Y  in expectation over the measurement error model, i.e.,  

                                                        
1

1
E

N

m KL i KL
i

u
N




  Y j β j . (2.12) 

Consequently, hypotheses about main effects and interactions are formulated as. 

                                                                      0

1

: E ,

: E ,
m

m

H

H





C Y 0

C Y 0
 (2.13) 

where C  denotes an appropriate contrast matrix, and 0  a vector with elements equal to one and a 
dimension that is equal to the number of contrasts (rows) defined by C . The contrast matrix for the 

hypothesis about the main effects of factor A  is defined as 

                                                ( 1) ( 1)

1 1
| t t

K K L LL L     A AC j I j C j , (2.14) 

with ( 1)I K   the identity matrix of order 1K  . Matrix AC  defines the 1K   contrasts between the K  

levels of factor A , averaged over the L  levels of factor B . From (2.12) and due to restrictions (2.3) and 
(2.4) it follows that the contrasts between the population parameters exactly correspond to the contrasts 
between the main effects of the first factor:  

1 2 1E ( , ..., ) t
m KA A A A   A AC Y C β  . 



Survey Methodology, December 2013 329 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The contrast matrix for the hypothesis about the main effects of factor B  is defined as 

                                                ( 1) ( 1)

1 1
|t t

K L L KK K     B BC j j I j C . (2.15) 

This matrix defines the 1L   contrasts between the L  levels of factor B , averaged over the K  levels 
of factor A . From (2.12) and due to restrictions (2.3) and (2.4) it follows that the contrasts between the 
population parameters exactly correspond to the contrasts between the main effects of the second factor: 

1 2 1E ( , ..., ) t
m LB B B B   B BC Y C β  . 

The contrast matrices for the main effects use the first level of factors A  and B  as the reference 
category. This implies that treatment combination 1 1A B  is considered as the control group in the 

experiment. 

Interactions between the two treatment factors are defined as the 1L   contrasts of factor B  between 
the 1K   contrasts of factor A  or, equivalently, as the 1K   contrasts of factor A  between the 1L   
contrasts of factor B , Hinkelmann and Kempthorne (1994, chapter 11). Therefore the contrast matrix for 
the hypothesis about the interactions between factor A  and B  can be defined as 

                                                 1 1 1 1
.

K K L L        AB A BC j I j I C C   (2.16) 

This matrix contains the ( 1)( 1)K L   contrasts that define the interactions between factor A  and 

.B  The contrasts between the population parameters exactly correspond to the interactions between the 

first and the second factor, since 

11 12 21 22

11 1 21 2

11 12 1 2

11 1 1

E ( , ...,

, ...,

, ...,

) .

m

L L

K K

t
L K KL

AB AB AB AB

AB AB AB AB

AB AB AB AB

AB AB AB AB

    
  
  

  

AB ABC Y C β 

 

Each element of this ( 1)( 1)K L   vector defines one of the ( 1)( 1)K L   interactions, which neatly 

corresponds to the contrasts between the interaction effects defined by (2.2). The first element e.g., can be 
interpreted as the deviation of the treatment effect of the particular combination of factor A  at level 2 and 
factor B  at level 2 from the two main effects of these factors. 

 
2.3  Wald test 
 

The hypotheses specified in section 2.2, can be tested with a Wald test (Wald 1943), which is 
frequently applied in design-based testing procedures, see for example Skinner, Holt and Smith (1989) or 

Chambers and Skinner (2003). If Ŷ  denotes a design-unbiased estimator for Y , C  the contrast matrix 

AC , BC , or ABC  defined in (2.14), (2.15) and (2.16), and ˆcov( )CY  the covariance matrix of the 

contrasts between Ŷ , then hypotheses can be tested with the Wald statistic 1ˆ ˆ ˆ{cov( )}Y C CY CYt tW  . 
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The GREG estimators, proposed by van den Brakel and Renssen (2005) and van den Brakel (2008) for 
single-factor experiments are extended to embedded factorial designs in this section. For notational 
convenience, the subscript q  will be omitted in iqkly , since there is no need to sum explicitly over the 

interviewer subscript in most of the formulas developed in the rest of this paper. 

To apply the model-assisted mode of inference to the analysis of embedded experiments, it is assumed 
for each unit in the population that the intrinsic value iu  in measurement error model (2.5) is an 

independent realization of the following linear regression model: 

                                                                       t
i i iu e xβ , (2.17) 

where x i  H -vector with auxiliary information, β  a H -vector with the regression coefficients and ie  the 

residuals, which are independent random variables with variance 2
i . It is required that all 2

i  are known 

up to a common scale factor, that is 2 2
i i   , with i  known. The GREG estimator for klY , based on 

the kln  observations of subsample kls , is defined as (Särndal et al. 1992) 

                               ;
ˆ ˆ ˆˆ ( ), 1, 2, , ,  and   1, 2, , ,t

kl greg kl klY KY k l L    b X X  (2.18) 

where, 

                                                                        *
1

1ˆ
kln

ikl
kl

i i

y
Y

N 

  , (2.19) 

denotes the HT estimator for klY , X  the finite population means of the auxiliary variables x , and X̂  the 

HT estimator for X  based on the kln  sample units of subsample kls . Furthermore, 

                                                             

1

2 * 2 *
1 1

ˆ
kl kltn n

i i i ikl
kl

i ii i i i

y

   



 

 
   
 
 

x x x
b , (2.20) 

denotes the HT-type estimator for the regression coefficients in (2.17) based on the kln  sampling units in 

subsample kls . In (2.19) and (2.20), *
i  are the first order inclusion probabilities for the sampling units in 

the KL  different subsamples, derived in subsection 2.1. Now 11; ;
ˆ ˆ ˆ( , ..., )GREGY t

greg KL gregY Y  is an 

approximately design-unbiased estimator for Y  and also for E Ym  by definition. 

Under the null hypotheses that there are no treatment effects and no interactions, it follows that 

' 'b bkl k l . In that case, it might be efficient to substitute for b̂ kl  in the GREG estimator (2.18) the 

pooled estimator 

                                                         

1

2 * 2 *
1 1 1 1

ˆ
kltn K L n

i i i ikl

i k l ii i i i

y

   



   

 
   
 
 

x x x
b . (2.21) 

Since H  instead of KL H  regression coefficients have to be estimated, the pooled estimates of the 
regression coefficients b̂  will be more precise, particularly in the case of small subsamples. Note, 
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however, that many commonly used weighting schemes meet the condition that a constant vector   exists 
such that 2 xi i   for all i U . In this situation the GREG estimator reduces to the simplified form 

;
ˆ b̂ Xt

kl greg klY   (Särndal et al. 1992, section 6.5). Under this simplified form, the treatment effects are 

completely included in the regression coefficients. In case of the pooled estimator (2.21), the KL  GREG 

estimators are exactly equal by definition, since ;
ˆ b̂ Xt

kl gregY   for all k  and l . 

An expression for the covariance matrix of the contrasts between the elements of ˆ
GREGY  where the 

covariance is taken over the sampling design, the experimental design and the measurement error model, 
is given by 

                                                             ˆcov( ) E E t
m sGREGCY CDC , (2.22) 

where E s  denotes the expectation with respect to the sampling design, and D  a KL KL  diagonal 

matrix with diagonal elements 

                           
   

2

' '

1 ' 1 '

1 1

1

t tn n
ikl kl i i kl kl i

kl
i ikl i i

n y n y
d

n n N n N 

 
 

  

  
  

  
 

 
b x b x

, (2.23) 

in the case of a CRD and 

                      
   

2

' '

1 1 ' 1 '

1 1

1

b b
t tB n n

b ikl kl i b i kl kl i

kl
b i ibkl b i b i

n y n y
d

n n N n N 

 
 

   

  
  

  
 

  
b x b x

, (2.24) 

in the case of an RBD. An estimator for D  can be derived from the experimental design, conditionally on 
the measurement error model and the sampling design. Therefore the covariance matrix (2.22) is 
conveniently stated implicitly as the expectation over the measurement error model and the sampling 
design. A design-based estimator for this covariance matrix is given by 

                                                           ˆ ˆˆcov( ) E E t
m sGREGCY CDC , (2.25) 

with D̂  a KL KL  diagonal matrix with elements 

                             

2

' '

1 ' 1 '

ˆ ˆ1 ( ) 1 ( )ˆ
( 1)

kl klt tn n
ikl kl i i kl kl i

kl
i ikl kl i kl i

n y n y
d

n n N n N 
 

 

  
     

 
b x b x

, (2.26) 

in the case of a CRD and 

                        

2

' '

1 1 ' 1 '

ˆ ˆ1 ( ) 1 ( )ˆ
( 1)

bkl bklt tB n n
b ikl kl i b i kl kl i

kl
b i ibkl bkl i bkl i

n y n y
d

n n N n N 
 

  

  
     
  

b x b x
,  (2.27) 
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in the case of an RBD. Proofs for (2.22) and (2.25) are given by van den Brakel (2010) and resemble the 
derivation of the covariance matrix for single factor experiments, given by van den Brakel and Renssen 
(2005) and van den Brakel (2008). 

The results for (2.22) and (2.25) are obtained under the condition that a constant H -vector a  exists 
such that 1a xt

i   for all i U . This is a rather weak condition, since it implies that a weighting model 

is used that at least uses the size of the finite population as a priori information. See van den Brakel and 
Renssen (2005) or van den Brakel (2008) for a more detailed discussion. 

Since the KL  subsamples are drawn without replacement from a finite population, there is a nonzero 

design covariance between elements of ˆ
GREGY . From that point of view, it is remarkable that (2.25) has a 

structure as if the subsamples are drawn independently through sampling with replacement using unequal 
selection probabilities. This gives rise to an attractive variance estimation procedure for embedded 
experiments, since no design covariances between the subsample estimates appear in (2.25) and no second 
order inclusion probabilities are required in the variance estimators (2.26) and (2.27). This result is 

obtained since the covariance matrix of the contrasts between ˆ
GREGY  is derived instead of the covariance 

matrix of ˆ
GREGY  itself. A detailed interpretation of this result is given by van den Brakel and Renssen 

(2005) or van den Brakel (2008). See van den Brakel and Binder (2000) and Hidiroglou and Lavallée 

(2005) for approximations of the covariance matrix of ˆ
GREGY . 

The design-based estimators ˆ
GREGY  and ˆˆcov( )GREGCY can be used to construct a design-based Wald 

statistic to test the hypotheses described in section 2.2: 

                                                         1ˆ ˆˆ( )t t tW  GREG GREGY C CDC CY . (2.28) 

Design-based inferences are generally based on normal large-sample approximations to construct 
confidence intervals for point estimates or p-values and critical regions for test statistics. Under this 
approach it follows under the null hypothesis that the Wald statistic is asymptotically distributed as a 
central chi-squared random variable, where the number of degrees of freedom equals the number of 
contrasts specified in the hypothesis. 

The Wald statistic for the hypotheses about the main effects and interactions are given by (2.28) using 
the contrast matrix AC , BC , or ABC . Under the null hypothesis, it follows that 2

[ 1]KW    for the test 

about the main effects of factor A , 2
[ 1]LW    for the test about the main effects of factor B  and 

2
[( 1)( 1)]K LW     for the test about interactions, where 2

[ ]p  denotes a central chi-squared distributed 

random variable with p degrees of freedom. 

The Wald test for the main effects can be further simplified. Expressions are developed for the Wald 
test for the main effects for factor A . Similar expressions can be derived for the main effects of factor B . 
Denote 

                                  
1.; .; .; ;

1

1. . . 2
1

1ˆ ˆ ˆ ˆ ˆ( , ..., ) ,  with  ,

1ˆ ˆ ˆ ˆˆ Diag( ,..., ), with .

L
t

greg K greg k greg kl greg
l

L

K k kl
l

Y Y Y Y
L

d d d d
L





 

 





A;GREG

A

Y

D

 (2.29) 
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It follows that ˆ ˆ
A GREG A A;GREGC Y C Y   and ˆ ˆ

A A A A AC DC C D Ct t   . With the matrix inversion lemma, 

the Wald statistic for the main effects of factor A  can be simplified to: 

                                

1

1 1 1
( 1) ( 1)1

212 2
.; .;

1 1 1. . .

ˆ ˆˆ( )

1ˆ ˆˆ ˆ ˆ
ˆTrace( )

ˆ ˆ1
.

ˆ ˆ ˆ

t t t

t t
K K

K K K
k greg k greg

k k kk k k

W

Y Y

d d d



  
 



  



 
  

 

  
         

  

A;GREG A A A A A A;GREG

A;GREG A A A A;GREG
A

Y C C D C C Y

Y D D j j D Y
D

   

 (2.30) 

Finally note that the HT estimator (2.19) does not meet the condition that a constant H -vector a  
exists such that 1a xt

i   for all i U . The minimum use of auxiliary information used in the GREG 

estimator is obtained with a weighting scheme that only uses the size of the finite population as a priori 
knowledge, i.e., ( ) 1ix   and 2 2

i    (Särndal et al. 1992, section 7.4). Under this weighting scheme it 

follows that 

                                                       

1

; * *
1 1

1ˆ
kl kln n

ikl
kl greg kl

i ii i

y
Y y

 



 

   
    
   
   , (2.31) 

and ˆ( )b kl kly  . Expression (2.31) can be recognized as Hájek's ratio estimator for a population mean 

(Hájek 1971). This weighting scheme satisfies the condition that a constant H -vector a  exists such that 
1a xt

i   for all i U . Therefore an approximately design-unbiased estimator for the covariance matrix 

of the contrasts between subsample estimates is given by (2.26) and (2.27) for a CRD and an RBD 
respectively, where b̂ xt

kl i kly  . Estimator (2.31) is preferable above the HT estimator (2.19), since 

(2.31) is more stable and the covariance matrix of the contrasts between (2.31) always has the relatively 
simple form of (2.25). 

 
2.4  Special cases 
 

It will be shown for two special cases that the design-based Wald statistic is equal to the F -test of a 
standard analysis of variance. Therefore, an ANOVA-type pooled variance estimator for the diagonal 
elements of D̂  should be considered as an alternative for (2.26) or (2.27). Such a pooled variance 
estimator for a CRD is given by 

            
' ' ' '

2

' ' ' ' ' ' ' ' ' '

' 1 ' 1 1 ' 1' ' '

ˆ ˆ1 ( ) 1 ( )ˆ
( )

k l k lt tK L n n
ik l k l i i k l k l ip

kl
k l i ikl i k l i

n y n y
d

n n KL N n N 
 

   

  
     

 
b x b x

,  (2.32) 

and for an RBD by 

     
' ' ' '

2

' ' ' ' ' ' ' ' ' '

1 ' 1 ' 1 1 ' 1' ' '

ˆ ˆ1 ( ) 1 ( )ˆ
( )

bk l bk lt tB K L n n
b ik l k l i b i k l k l ip

kl
b k l i ibkl b i bk l i

n y n y
d

n n KL N n N 
 

    

  
     
   

b x b x
.(2.33) 
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Now consider a CRD that is embedded in a self-weighted sample, i.e., /i n N , with equally 

sized subsamples, i.e., ' 'kl k l sn n n  . The inclusion probabilities for all units in the KL  subsamples 

are given by * /i sn N . Let 
1

(1 / ) sn

s ikli
y n y


  . Under Hájek's ratio estimator (2.31) and the 

pooled variance estimator (2.32) it follows that ;
ˆ

kl greg klY y , b̂ kl kly , and 

 
2

2 ;
' ' ' '

' 1 ' 1 1

ˆ1ˆ
( )

sK L n
p CRDp

kl ik l k l
k l is s

S
d y y

n n KL n  

  
  . 

The parameter estimates of the K  levels of factor A  averaged over the L  levels of factor B  are 
denoted as 

                                               .
1 1 1

1 1
, 1, ...,

sL L n

k kl ikl
l l ik

y y y k K
L n  

    , (2.34) 

with 
1

L

k kll
n n 

  . The diagonal elements of ˆ
AD  are now given by 

                                      
2 2

; CRD ; CRD
. 2 2

1 1

ˆ ˆ1 1ˆ ˆ , 1, , .
L L

p pp p
k kl

l l s k

S S
d d k K

n nL L  

       (2.35) 

Let .. 1 1 1
(1 / ) sK L n

iklk l i
y n y   

    . Inserting (2.34) and (2.35) into (2.30), gives rise to the 

following expression for the Wald statistic of the main effects of factor A  

                                                        2 2
. ..2

1;

1
ˆ

K

k k
kp CRD

W n y n y
S  



 
  

 
 .  (2.36) 

Note that / ( 1)W K   in (2.36) corresponds with the F -statistic for the main effects of an analysis of 

variance for the two-way layout with interactions (Scheffé 1959, chapter 4). Under the null hypothesis and 
the assumption of normally and independently distributed errors, the F -statistic in the two-way layout 
follows an F -distribution with ( 1)K   and ( )n KL   degrees of freedom, which is denoted as 

[ 1]
[ ]

K
n KLF



 . If n   , then [ 1] 2

[ ] [ 1] / ( 1)K
n KL KF K



   . Consequently the F -statistic and the Wald 

statistic have the same limit distribution. 

Now consider an RBD that is embedded in a self-weighted sampling design with equal subsample 

sizes, thus /i n N  and ' 'kl k l sn n n  , with 
1

B

bb
n n 

  . Let 
1

(1 / ) bkln

bkl bkl ikli
y n y


  . 

Furthermore, it is assumed that the fraction of sampling units assigned to each treatment combination 
within each block is equal, i.e., / /bkl b sn n n n  , and that the block sizes are sufficiently large to 

assume that / ( ) 1b bn n KL    . Under Hájek's ratio estimator (2.31) and the pooled variance 

estimator (2.33) it follows that ;
ˆ

kl greg klY y , b̂ kl kly , and 
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The parameter estimates of the K  levels of factor A  averaged over the L  levels of factor B  and the 
blocks are denoted as 

                                         . .
1 1 1 1

1 1
, 1, , ,

bklL B L n

k kl ikl
l b l ik

y y y k K
L n    

      (2.37) 

where 
1 1

B L

k bklb l
n n   

   . The diagonal elements of ˆ
AD  are given by 

                                                  
2

; RBD
. 2

1

ˆ1ˆ ˆ , 1, , .
L

pp p
k kl

l k

S
d d k K

nL   

     (2.38) 

Let ... 1 1 1 1
(1 / ) bklB K L n

iklb k l i
y n y    

     . If these results are inserted into (2.30), then the 

expression for the Wald statistic of the main effects of factor A  can be simplified to 

                                                      2 2
. . ...2

1;

1
ˆ

K

k k
kp RBD

W n y n y
S   



 
  

 
 . (2.39) 

It can be recognized that / ( 1)W K   in (2.39) corresponds with the F -statistic for the main effects 

of an analysis of variance for the three-way layout with interactions, (Scheffé 1959, chapter 4). As in the 
case of a CRD, this Wald and F -statistic have the same limit distribution. 

 
3  Factorial designs with more than two factors 
 

The results developed for K L  factorial designs are extended to designs with more than two factors. 
A more general notation for the treatment factors is introduced first. Let gA  denote the thg  treatment 

factor in the experiment with levels 1, ...,g ga M . In the general case there are g 1,...,G  factors 

included in the experiment. The population parameters observed under the 1 2 ... GM M M  treatment 

combinations are collected in the vector 
1 2 1 211...1 ... ...( , ..., , ..., )Y

G G

t
a a a M M MY Y Y . The index for the levels 

of a factor runs within each level of its preceding factor. Thus index ga  runs from 1, ...,g ga M  within 

each level of ( 1)ga  . Hypotheses about the main effects and interactions are, as motivated in section 2.2, 

formulated about Y  in expectation over the measurement error model. 

The contrast matrices for the main effects and interactions in (2.13) are developed for the general case 
of a 1 2 ... GM M M    factorial design. Let {1, ..., }GA  denote the set of labels for the factors and 

( 1) ( 1)( | )
gAC j I

g gM M   . The following three functions are defined first: 
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 1 1
... : 1

,
1 : 1

t t
M M g

g

g


    


g1

j j
J  

 1
... :

,
1 :

G

t t
MM g

g G

g G


    


g2

j j
J  

   1 ' 1
... : ' 1

.
1 : ' 1

t t
M g M g

g g

g g

 
     

 
g,g'3

j j
J  

The main effect of factor gA  is defined as the 1gM   contrasts between the gM  levels, averaged 

over the levels of the other 1G   factors and is given by: 

  
1

1

1\
, 1, , .gg g

M g G



   g g g g1 1 1 1

A 1 A 2C J C J 
A

 

Postmultiplication of 
g1

AC  by 
g1

2J  sums over the levels of the factors 
1( 1) ...g GA A  that are nested 

within each level of 
1gA .Subsequently, 

g1
AC  defines the 

1
1gM   contrasts between the levels of 

1gA  

that are nested within each combination of the levels of 
11 ( 1)... gA A  . Premultiplication of 

g1
AC  by 

g1
1J  

adds the contrast matrices 
g1

AC  that are nested within all combinations of the levels of 
11 ( 1)... gA A  . 

The interaction between 
1gA  and 

2gA  is defined as the 
2

1gM   contrasts of factor 
2gA  between the 

1
1gM   contrasts of 

1gA  averaged over the levels of the other 2G   factors and is given by: 

  
1 2

1

\ ,

1 2 1 2

,

                 1, , 1, 1, , , .

gg g g
M

g G g G g g




    

   

g g g g g ,g g g1 2 1 1 1 2 2 2
A A 1 A 3 A 2C J C J C J 

 
A  

Postmultiplication of 
g 2

AC by 
g2

2J  adds the levels of the factors 
2( 1) ...g GA A  that are nested within 

each level of 
2gA . 

g 2
AC  defines the contrasts of the main effect of factor 

2gA  which are nested within 

each combination of the levels of 
21 ( 1)... gA A  . Postmultiplication of 

g1
AC  by 

g ,g1 2
3J  sums the contrast 

matrices 
g 2

AC  over the levels of 
1 2( 1) ( 1)...g gA A   that are nested within each combination of the levels of 

11... gA A . Premultiplication of 
g ,g g g1 2 2 2

3 A 2J C J   with 
g1

AC  defines the contrasts of the interactions 

between 
1gA  and 

2gA , within each combination of the levels of 
11 ( 1)... gA A  . Finally, Premultiplication of 

g1
AC  by 

g1
1J  sums the contrasts of the interactions between 

1gA  and 
2gA  over the levels of 

11 ( 1)... gA A  . 

The interaction between 
1gA , 

2gA  and 
3gA  is defined as the 

3
1gM  contrasts of factor 

3gA  between 

the interactions of 
1gA  and 

2gA , averaged over the levels of the other 3G   factors. This process 

expands in a similar way to higher order interactions, which results in the following definitions of the 
higher order interactions: 
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The number of rows of each contrast matrix coincides with the number of contrasts that define the 
various main effects and interactions. The number of columns of these matrices equals 1 2 ... GM M M . 

These contrast matrices are inserted in (2.13) to define the various hypotheses about the main effects 
and interactions between the G  treatment factors. The sampling units in the initial sample are randomly 

divided over all possible treatment combinations according to a CRD or an RBD, resulting in 

1 2 ... GM M M  different subsamples. Let 
1 ... Ga an  denote the number of sampling units assigned to treatment 

combination 1... Ga a in subsample 
1 ... Ga as  and ...n   the size of the initial sample. In the case of a CRD, the 

first order inclusion probabilities for the units in subsample 
1 ... Ga as  are now given by 

1

*
... ...( / )

Gi i a an n   . In the case of an RBD, the first order inclusion probabilities for the units in 

subsample 
1 ... Ga as  are given by 

1

*
... ...( / )

Gi i ba a bn n     where 
1 ... Gba an  denotes the number of sampling 

units assigned to treatment combination 1... Ga a  in block b  and ...bn    the total number of sampling units 

in block b . 

Now 
1 ... ;

ˆ
Ga a gregY  denotes the GREG estimator for 

1 ... Ga aY  based on the observations obtained in 

subsample 
1 ... Ga as  and is defined analogously to expression (2.18). These 1 2 ... GM M M  GREG estimators 

are collected in the vector 
11...1; ... ;

ˆ ˆ ˆ( , ..., )GREGY
G

t
greg M M gregY Y  and is an approximately design-unbiased 

estimator for Y  and E Ym . Design-based estimators for the covariance matrices of the contrasts between 

the elements of ˆ
GREGY  are defined by (2.25), where the diagonal elements of D̂  are defined analogously 

to expression (2.26) in the case of a CRD or (2.27) in the case of an RBD. 

Finally hypotheses about main effects and interactions are tested with the Wald statistic (2.28), which 
is asymptotically distributed as a chi-squared random variable where the number of degrees of freedom 
equals the number of contrasts specified in the various hypotheses. As an example, the contrast matrices 
of the main effects and interactions in a factorial design with four factors are given in Table 3.1. 
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Table 3.1   
Contrasts in a 1 2 3 4M M M M    factorial design 
 

Contrast matrix Number of contrasts (degrees of freedom) 

 
2 3 42 3 41 / t t t

M M MM M M   
1 1A AC C j j j  1 1M   

 
1 3 41 3 41 /

2 2A AC j C j jt t t
M M MM M M     2 1M   

 
1 2 41 2 41 /

3 3A AC j j C jt t t
M M MM M M     3 1M   

 
1 2 31 2 31 /

4 4A AC j j j Ct t t
M M MM M M      4 1M   

 
3 43 41 /

1 2 1 2A A A AC C C j jt t
M MM M         1 21 1M M   

 
2 42 41 /

1 3 1 3A A A AC C j C jt t
M MM M         1 31 1M M   

 
2 32 31 /

1 4 1 4A A A AC C j j Ct t
M MM M         1 41 1M M   

 
1 41 41 /

2 3 2 3A A A AC j C C jt t
M MM M         2 31 1M M   

 
1 31 31 /

2 4 2 4A A A AC j C j Ct t
M MM M         2 41 1M M   

 
1 21 21 /

3 4 3 4A A A AC j j C Ct t
M MM M         3 41 1M M   

 
441 /

1 2 3 1 2 3A A A A A AC C C C jt
MM            1 2 31 1 1M M M    

 
331 /

1 2 4 1 2 4A A A A A AC C C j Ct
MM            1 2 41 1 1M M M    

 
221 /

1 3 4 1 3 4A A A A A AC C j C Ct
MM            1 3 41 1 1M M M    

 
111 /

2 3 4 2 3 4A A A A A AC j C C Ct
MM            2 3 41 1 1M M M    

1 2 3 4 1 2 3 4A A A A A A A AC C C C C               1 2 3 41 1 1 1M M M M     

 
 
4  Further extensions 
 

So far, experimental designs are considered where the ultimate sampling units of the sampling design 
are randomized over the treatments. Owing to restrictions in the field work there might be practical 
reasons to randomize clusters of sampling units over the different treatments, at the cost of reduced power 
for testing hypotheses about treatment effects. It might for example be attractive to assign the sampling 
units that belong to the same household or are assigned to the same interviewer to the same treatment 
combination. In van den Brakel (2008) a design-based analysis procedure is developed for single-factor 
experiments designed as CRDs and RBDs where clusters of sampling units are randomized over the 



Survey Methodology, December 2013 339 
 

 
Statistics Canada, Catalogue No. 12-001-X 

treatments. These methods directly extend to the analysis of the factorial designs that are considered in 
this paper. 

Consider the general case of a 1 2 ... GM M M    factorial design. The clusters of sampling units in 

the initial sample are randomized over the different treatment combinations. The conditional probability 
that a sampling unit is assigned to a subsample is now derived from the fractions of clusters that are 
assigned to the different treatment combinations within the sample or within each block. See van den 
Brakel (2008) for details. The GREG estimator for 

1 ... Ga aY  is defined analogously to expression (2.18). 

Design-based estimators for the covariance matrices of the contrasts between the elements of ˆ
GREGY  are 

defined by (2.25), where the diagonal elements of D̂  are defined analogously to expression (4.6) in van 
den Brakel (2008), which is based on the variance between the estimated cluster totals. 

The target parameters of a survey are often defined as a ratio of two population totals. In van den 
Brakel (2008) a design-based analysis procedure is developed to test hypotheses about ratios in single-
factor experiments designed as a CRD or an RBD. These results can be extended to the analysis factorial 
designs treated in this paper. Based on each subsample a ratio of two GREG estimators can be constructed 
for each treatment combination. Design-based estimators for the covariance matrices of the contrasts 
between the ratios are defined by (2.25), where the diagonal elements of D̂  are defined analogously to 
expression (4.11) in van den Brakel (2008), which is an estimator for the variance of the ratio of two 
GREG estimators. Hypotheses about main effects and interactions are tested with the Wald statistic (2.28). 

 
5  Testing new advance letters for the Dutch Labor Force Survey 
 

In this section an experiment with different advance letters embedded in the Dutch Labor Force Survey 
(LFS) is described, which serves as a numerical example to illustrate the methodology developed in this 
paper. 

 
5.1  Survey design 
 

The LFS is based on a rotating panel survey. Each month a stratified two-stage cluster sample of about 
6,000 addresses is drawn from a register of all known addresses in the Netherlands. Strata are formed by 
geographical regions, municipalities are considered as primary sampling units, and addresses as secondary 
sampling units. All households residing at an address, with a maximum of three, are included in the 
sample. In the first wave, data are collected by means of computer assisted personal interviewing. The 
respondents are re-interviewed four times at quarterly intervals by means of computer assisted telephone 
interviewing. 

The weighting procedure of the LFS is based on the GREG estimator of Särndal et al. (1992). The 
inclusion probabilities reflect the sample design used to select households as well as the different response 
rates between geographical regions. The weighting scheme is based on a combination of different socio-
demographic categorical variables. One of the most important parameters of the LFS is the unemployed 
labor force, which is defined as the ratio of the total unemployment and the total labor force. 
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5.2  Experimental design 
 

Advance letters are one of the design parameters of a survey that affect response rates and cooperation 
of respondents (De Leeuw, Callegaro, Hox, Korendijk and Lensveit-Mulders (2007)). The standard 
advance letter of the LFS is addressed to the occupants of the accommodation and the tone is formal and 
high-handed. As a result, this letter does not conform to social psychological theories regarding survey 
participation proposed by Groves, Cialdini and Couper (1992) and Groves and Couper (1998). In an 
attempt to improve the LFS response rates, Luiten, Campanelli, Klaasen and Beukenharst (2008) proposed 
different advance letters for the LFS that better meet these principles about survey participation. The 
effects of these alternative letters are investigated empirically by means of a large-scale field experiment 
embedded in the LFS. 

The first factor considered in this experiment, say A , concerns the salutation of the respondent on two 
levels, i.e., the standard approach where the letter is addressed to the occupants of the accommodation 

1( )A  versus a named letter ( 2A ). It is anticipated that named letters are more likely to be read and 

therefore increase response rates and survey participation. The second factor, say B , concerns the content 
of the letter on three levels, i.e., the standard formal letter ( 1B ) versus two alternative letters ( 2B  and 3B ). 

In the first alternative, the content of the standard letter is adapted by explaining why the survey is 
conducted, what the respondent gains by participating and why it is important for Statistics Netherlands 
that the respondent participates in the survey. The second alternative attempts to improve the formal tone 
of the standard letter. The three versions of the advance letters can be found in van den Brakel (2010). 

A new letter is only considered for implementation as a standard in the LFS, if its positive effect on 
response behavior has been demonstrated and if its effect on the main parameter estimates is quantified in 
a randomized experiment. Both factors are tested in a 2 3  factorial design resulting in six treatment 

combinations. This experiment is embedded in the first wave of the LFS for a period of five months 
(December 2007 through April 2008). During this period the monthly gross sample size is randomized 
over six subsamples according to an RBD with interviewers as the block variables. About 220 
interviewers were available for the field work. In the analysis, adjacent interviewer regions were collapsed 
into 13 blocks. A fraction of 0.8 of the sample is assigned to the regular advance letter, i.e., treatment 
combination 1 1A B . A fraction of 0.04 of the sample is assigned to each of the other five alternative 

treatment combinations. 

The allocation of the sampling units over the treatments is predominantly based on practical 
arguments. Embedding experiments in ongoing sample surveys serves two competing purposes. To 
estimate official figures as precisely as possible it is beneficial to allocate as many sampling units as 
possible to the control group, since this subsample is also used for regular publication purposes. To 
estimate the contrasts in the experiment as precisely as possible it is, on the other hand, beneficial to 
divide the total sample equally over the different treatment combinations. In this application it was 
decided that a loss of at most 20% of the sample size for regular publication purposes could be tolerated. 
This led to the aforementioned allocation over the treatment combinations. Under a response rate of 56% 
and a monthly sample size of 6,000 households it is expected that about 13,440 households are observed 
in the control group 1 1A B  and 670 households in each of the alternative treatment combinations. 

Although the allocation is based on practical considerations, it is important to have a notion of the 
power of the planned experiment. The target variable analyzed in this paper is the unemployed labor force, 



Survey Methodology, December 2013 341 
 

 
Statistics Canada, Catalogue No. 12-001-X 

expressed as a percentage. Ignoring the block design of this experiment, it follows that the variance of the 

treatments equals to 2ˆ ˆ /kl kl kld S n , where 2ˆ
klS  is implicitly defined by (2.26). It is assumed that 2ˆ

klS  is 

equal to say 2Ŝ  for each treatment combination. With available sample data it follows for the unemployed 

labor force that 2ˆ 285S  . Now the minimal observable difference for a contrast that would reject the 

null hypothesis under a pre-specified significance and power level equals 

                                                         (1 /2) (1 )var( )( )Z Z      , (5.1) 

where ( )Z   denotes the th  percentile point of the standard normal distribution,   the significance level 

of the test and (1 )   the power. The main effect of factor A  concerns one contrast ˆ
A   

1.; 2.;
ˆ ˆ( )greg gregY Y . From (2.29) it follows that the variance of this contrast equals ˆˆvar( )A   

32
1 21

ˆ( / 9) (1 / 1 / )l ll
S n n


 . The main effect of factor B  concern two contrasts ˆ

lB   

.1; . ;
ˆ ˆ( )greg l gregY Y , 2, 3l   with variances 

22
11

ˆ ˆˆvar( ) ( / 4) (1 / 1 / )
lB k klk

S n n


   , 2, 3l  . The 

interactions between factors A  and B  concern the two contrasts 11; 1 .;
ˆ ˆˆ (

lAB greg l gregY Y     

21; 2 .;
ˆ ˆ )greg l gregY Y  with variances 2

11 1 21 2
ˆ ˆˆvar( ) (1 / 1 / 1 / 1 / )

lAB l lS n n n n     , 2, 3l  . 

Inserting the variances of the different contrasts in (5.1), gives minimum values of differences that 
would reject the null hypothesis for main effects and interactions for pre-specified sample sizes, 
significance levels and power levels. In Table 5.1 these differences for the unemployed labor force are 
calculated for the aforementioned applied allocation, and a balanced design where the sample size for each 
treatment combination is equal to 2,800. Values are given for unspecified alternative hypotheses at a 5% 
significance level and a power of 50%, 80% and 90%. In experimental design theory, 80% is a widely 
accepted power level by sample size determination. In survey sampling minimum sample size 
requirements are generally based on significance level requirements only, which corresponds to a power 
level of 50%. Differences are specified for separate tests of the contrasts. The main effect of factor B  and 
the interaction effects both contain two contrasts. To preserve an overall significance level of 5%, 
differences for both tests are also calculated using Bonferroni's simultaneous comparison procedure. 

Table 5.1 illustrates different aspects of embedded experiments and factorial designs. First it illustrates 
the cost-benefits of a factorial setup. Twice as many experimental units are required if the main effects of 
both factors are tested at the same precision in two separate single factor experiments. Table 5.1 also 
shows that the power for the test of interactions is much smaller than for the tests of the two main effects. 
The more treatment factors that are combined in one experiment, the smaller the sample size allocated to 
each treatment combination and the smaller the power for the tests of interactions. This puts the often 
cited advantage that factorial designs also allow testing of interactions between the different treatment 
factors into perspective. In practice, sample sizes are based on power calculations for the tests on the main 
effects. Consequently, only large interactions can be detected with sufficient power. A factorial design still 
has the advantage that the validity of observed main effects increases, since they are tested over a wider 
range of conditions. 
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Table 5.1   
Observable difference for the unemployed labor force in percentages at 5% significance levels and 
different power levels 
 

Contrast Number of 

contrasts 

Power separate t-test Power Bonferroni t-test 

50% 80% 90% 50% 80% 90% 

Applied design        

Main effect A  1 0.96 1.36 1.58 0.96 1.36 1.58 

Main effect B  2 1.12 1.59 1.85 1.27 1.75 2.00 

Interaction 2 2.23 3.19 3.69 2.55 3.51 4.00 

1 1 k lA B A B    5 1.31 1.87 2.17 1.72 2.28 2.57 

Balanced design        

Main effect A  1 0.51 0.73 0.84 0.51 0.73 0.84 

Main effect B  2 0.63 0.89 1.03 0.71 0.98 1.12 

Interaction 2 1.25 1.79 2.07 1.43 1.97 2.25 

1 1 k lA B A B    5 0.88 1.26 1.46 1.16 1.54 1.74 
 

 

 

If the null hypothesis of no interactions is rejected, then main effects are difficult to interpret. In that 
situation it is more useful to compare the control group, i.e., 1 1A B , with the five alternative treatment 

combinations. The minimum observable differences of these five contrasts that reject the null hypothesis 
at a 5% significance level and different power levels are also included in Table 5.1. 

Comparing minimum values for the differences under the applied design and the balanced design, 
illustrates the loss of power if an extreme skew allocation over the treatment combinations is chosen. 
Minimizing the risk of losing too much precision for the regular publication is the motivation behind the 
choice for this allocation. It clearly illustrates the duality of combining two competing purposes in an 
embedded experiment; estimation for the regular publication purposes versus testing contrasts of different 
treatment combinations. 

To assess the value of the results that can be obtained with this experiment, the minimum observable 
differences with this experiment are related to the standard errors of the regular survey estimates. Standard 
errors for the survey estimates at the national level will generally be much smaller than the minimum 
observable differences with an experiment since the sample size allocated to the alternative treatments is 
generally much smaller than the regular sample size. If, however, the assumption is adopted that 
differences observed with an experiment at the national level also apply to the survey estimates for 
important domains, then the differences observable with the experiment might become comparable with 
the standard errors of these domain estimates. This assumes no interaction between domains and treatment 
effects. The standard errors for the monthly unemployed labor force figures at the national level equals 
0.15 percent points. The standard errors for the domains vary between 0.3 and 1.0 percent points. 
Comparing these standard errors with the differences in Table 5.1 shows that the main effects are still 
larger than the standard errors at the national level but become comparable with the precision of the 
regular monthly domain estimates. 
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5.3  Results 
 

Table 5.2 contains an overview of the response rates of the households in the six subsamples of the 
experiment. It follows that the different advance letters result in relatively small differences in the 
response rates. Factor A  results in an increase of the response of 2.4 percent points by using a 
personalized letter (after correcting proportions for the unbalanced allocation of the sample over the 
treatment combinations). The alternative letters considered in factor B  resulted in a decrease of 1.5 
percent points (alternative 2B ) and 1.9 percent points (alternative 3B ). 

 

 

 

Table 5.2   
Response rates experiment with advance letters 
 

 

 

 

Response behavior is modeled in a logistic regression model to test hypotheses about the effect of the 
two treatment factors. This is a typical conditional analysis that does not account for sample design 
features like unequal selection probabilities and clustering of households within municipalities. Clustering 
induced by the two-stage sample design is ignored, since households are randomized over the treatments 
in the experiment. In this logistic regression analysis interest is focussed on differences in the observed 
sample, in this case due to differences in selective non-response. This gives additional information on 
whether the factors increase the response across the entire target population or that specific groups react 
differently to the treatments. Second and higher order interactions between the two treatment factors and 
socio-demographic categorical variables in the logistic regression model indicate that the variation in 
response between different subpopulations increases and that they react differently to the treatments. 

In the logistic regression model, the dependent binary variable indicates whether a household 
completely responded versus the remaining response categories. The response behavior is assumed to 
depend upon: 

 a general mean, 
 treatment factors A  (name) and B  (content), 
 a block variable in 13 categories, 
 auxiliary variables: 

o urbanization level at five categories, 

Treatment Response Refusal Rest Total

1 1A B  13,234 56.69% 5,127 21.96% 4,985 21.35% 23,346

1 2A B  604 53.59% 271 24.05% 252 22.36% 1,127

1 3A B  635 56.34% 254 22.54% 238 21.12% 1,127

2 1A B  662 59.00% 256 22.82% 204 18.18% 1,122

2 2A B  663 59.09% 236 21.03% 223 19.88% 1,122

2 3A B  627 55.64% 259 22.98% 241 21.38% 1,127
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o gender in three categories, specifying whether a household consists of men only, women 
only, or a mixture of men and women, 

o age as a quantitative variable containing the average age of the household members, 

o ethnicity in seven categories, specifying household compositions of native, western 
background, non-western background, and all possible mixtures, 

o family composition in four categories: partners, single-parent family, single, and a 
remainder category. 

 

All third order interactions between the variables are initially considered for backward model selection. 
The final selected model contains the terms that are given in the first column of Table 5.3. For brevity, the 
regression coefficients with their standard errors and test statistics for separate categories are only 
expressed for the treatment factors. The hypothesis that there are no interactions between the two 
treatment factors cannot be rejected ( p -value Wald statistic equals 0.121). From Table 5.3 it follows that 

factor A , i.e., using a letter addressed to a named individual, has a positive but non-significant effect on 
the response rate. Factor B , i.e., two alternative letters with an improved content, has even a slightly 
negative but non-significant effect on the response rates. This is a remarkable result, since the two 
alternative letters attempt to improve the formal tone of the standard letter, but in line with the results of 
an earlier experiment where the response to a more informal advance letter for the LFS also resulted in 
significantly smaller response rates (van den Brakel 2008). Since there are no interactions between the 
treatment factors and the auxiliary variables, there are also no indications that the treatment factors induce 
the response of specific subpopulations. 

 

 

Table 5.3   
Logistic regression analysis for response rates 
 

Parameter Coefficient Standard error Wald statistic D.f. p -value

Mean 0.287 0.078 13.604 1 0.000

Block 212.425 12 0.000

Treatment A  (name, 2A ) 0.083 0.045 3.394 1 0.065

Treatment B  (content) 2.965 2 0.227

   Alternative 1 ( 2B ) -0.046 0.051 0.816 1 0.366

   Alternative 2 ( 3B ) -0.083 0.051 2.678 1 0.102

Urbanization 16.589 4 0.002

Ethnic 127.734 6 0.000

Gender 48.076 2 0.000

Family composition 27.339 3 0.000
 

 

In the second step of this analysis it is tested whether the estimates for the unemployed labor force 
obtained with the six subsamples under the different advance letters are significantly different. The 
design-based analysis procedure developed in this paper is used to account for the sampling design, the 
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experimental design and the estimation procedure of the LFS. The GREG estimator is applied to obtain 
estimates for the unemployed labor force under the six different treatment combinations. With this 
unconditional analysis it is tested whether the different advance letters introduce differences in selection 
bias, after correcting for the differences in response rates using the design-based estimation procedure 
applied in the regular LFS. 

With this analysis, the linear measurement error model (2.1) is applied to a binary response variable. 
This might appear to be ridged, since logistic models are more natural in this case. Under the model-
assisted approach linear regression models, however, are frequently applied to derive a GREG estimator 
for binary response variables. Also in the Dutch LFS a linear regression model is assumed to derive a 
GREG estimator for official labor force figures. To develop a design-based analysis procedure for 
embedded experiments that also account for the GREG estimator used in the regular survey, a linear 
measurement error model is assumed in a similar way. A detailed discussion about the use and 
interpretation of a linear measurement error model applied to binary response variables is given by van 
den Brakel (2008). 

The inclusion probabilities in the GREG estimator (2.18) reflect the sampling design of the LFS and 
the experimental design used to divide the initial sample into six subsamples. The following weighting 
scheme was applied to calibrate the design weights: age + region + marital status + gender + 
urbanization level, where the five variables are categorical. This is a reduced version of the regular 
weighting scheme of the LFS. 

The estimation results for the six subsamples are summarized in Table 5.4, where the unemployed 
labor force is expressed in percentages. It appears that there are no systematic patterns between subsample 
estimates. The subsample estimates and their variance estimates indicate that there are no significant 
differences between the control group and the five alternative treatment combinations. Finally the main 
effects and the interaction effects of the two treatment factors are tested, taking into account that the 
experiment was designed as an RBD where adjacent interviewer regions are collapsed in 13 blocks. The 
analysis results are summarized in Table 5.5. 

 

 

 

Table 5.4   
Point estimates and standard errors unemployed labor force (expressed in percentages) 
 

Treatment combination Estimate ˆ
;kl gregY  Standard error ˆ

kld  

k ( kA )  ll B    

1 1 4.100% 0.145% 

1 2 3.761% 0.646% 

1 3 5.264% 0.753% 

2 1 3.609% 0.608% 

2 2 4.546% 0.666% 

2 3 3.385% 0.664% 
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Table 5.5   
Analysis main effects and interactions unemployed labor force (expressed in percentages) 
 

Source Estimate ˆ
gregCY  Wald statistic D.f. p -value 

Treatment A  (name) 1 2A A  0.528 1.109 1 0.292 

Treatment B  (content)   0.732 2 0.694 
   1 2B B  -0.300    

   1 3B B  -0.471    

Interaction  3.801 2 0.150 
   11 12 21 22AB AB AB AB    1.276    

   11 13 21 23AB AB AB AB    -1.388    

 

 

 

From the analysis results, summarized in Table 5.5, it can be concluded that there are no indications 
that the different advance letters result in different parameter estimates. This is in line with the analysis 
results of the response rates. Since there is no empirical evidence that the different advance letters affect 
response rates of the entire population or a subpopulation, it might be expected that no significant 
differences between the parameter estimates occur. 

There are no indications that the alternative letters, considered in this experiment, improve response 
behavior or result in systematic effects in the estimates for target variables like the unemployed labor 
force. Therefore it was decided not to adapt the standard advance letter of the LFS. 

 
6  Discussion 
 

In factorial designs the levels of two or more treatment factors are varied and all possible treatment 
combinations are considered simultaneously. These designs are widely used in scientific experimentation 
for several reasons. The main effects of the factors are averaged over the levels of the other factors. 
Conclusions about the various effects are therefore based on a wider range of conditions, which increases 
the validity of the results. Furthermore, interaction between the different treatment factors can be 
analyzed, although the power of these tests decreases as the number of factors that are combined in one 
experiment increases. Finally factorial designs are more efficient compared to single-factor experiments, 
since fewer experimental units are required to estimate the main effects with the same precision. 

In this paper a design-based theory is developed for the analysis of factorial designs that are embedded 
in probability samples. This approach is particularly appropriate to quantify the effects of the different 
design parameters of a survey process on the parameter estimates of a sample survey. Applications can be 
found in total survey design, empirical research into survey practice and quantifying discontinuities in 
series of repeatedly conducted surveys. Design-based analysis procedures are developed to test hypotheses 
about population means for factorial designs where the ultimate sampling units are randomized over the 
different treatment combinations through a CRD or an RBD. Procedures for factorial designs where 
clusters of sampling units are randomized over the treatment combinations or to test hypotheses about 
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ratios of population totals are obtained analogously to the methods developed in van den Brakel (2008) for 
single-factor experiments. 

The design-based variance estimator that is developed for the various treatment effects does not require 
joint inclusion probabilities nor design-covariances between the different subsamples. As a result a 
design-based analysis procedure for factorial designs embedded in complex probability samples is 
obtained with the attractive relatively simple structure as if the sampling units are drawn with unequal 
selection probabilities with replacement. The traditional advantages of factorial designs, summarized in 
the first paragraph of the discussion, still apply under this design-based approach. As illustrated with 
variance expression (2.29) fewer experimental units are required to estimate the main effects with the 
same precision in a factorial setup compared to separate single-factor designs. 

The advantage of an RBD over a CRD is that the between block variance is removed from the 
estimated treatment effects. In the standard model-based theory for the analysis of randomized 
experiments, an F -test for the blocks as well as the treatment factors is available. Under restricted 
randomization of an RBD, however, it is generally argued that a F -test for the block effects is not valid. 
In these cases alternative measures to evaluate the efficiency of an RBD are available; see for example 
Montgomery (2001). In the design-based theory developed for RBDs in this paper there is an asymmetry 
between the block and treatment factors, as in the case of the randomization approach followed by 
Hinkelmann and Kempthorne (1994). Due to the restricted randomization within the blocks there is no 
meaningful test for the main effect of the block factor available. 
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