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Abstract 

Thompson and Sigman (2000) introduced an estimation procedure for estimating medians from highly 
positively skewed population data. Their procedure uses interpolation over data-dependent intervals (bins). The 
earlier paper demonstrated that this procedure has good statistical properties for medians computed from a 
highly skewed sample. This research extends the previous work to decile estimation methods for a positively 
skewed population using complex survey data. We present three different interpolation methods along with the 
traditional decile estimation method (no bins) and evaluate each method empirically, using residential housing 
data from the Survey of Construction and via a simulation study. We found that a variant of the current 
procedure using the 95th percentile as a scaling factor produces decile estimates with the best statistical 
properties. 

 
Key Words: Median; Modified half-sample replication; Interpolation; Deciles. 

 
 

1  Introduction 
 

Developing viable decile estimates for positively skewed populations from complex survey data poses 
interesting challenges. The literature supports two different approaches to percentile estimation with 
complex survey data. The first method (the “traditional” method) obtains decile estimates from empirical 
cumulative-distribution functions, selecting the item value that corresponds to the sample percentile 
computed by summing associated survey weights. This approach yields decile estimates that are “close to 
unbiased” but unstable. An alternative approach is to group the continuous data into disjoint intervals 
(bins), then use linear interpolation over the bin containing the decile. With appropriately defined bins, 
this approach also produces nearly unbiased decile estimates while improving their stability – at least for 
the percentiles that are far from the tail of the distribution. For the upper percentiles, often the binned data 
contain very few observations, with little or no uniformity. Hence, the reliability of the large decile 
estimates (e.g., 90th percentile or greater) is rarely comparable to that of the other deciles. 

Although the usage of interpolation is advantageous for developing stable estimates, developing an 
optimal set of bins for a given characteristic is not always an easy task. Often, the distributions change 
over time, and the bin widths/locations in the sample should reflect this change in scale. For example, the 
average sales price for single-family homes in a geographic area may increase over time due to inflation, 
but the population of single-family homes in that area is still characterized by a skewed distribution, with 
a few expensive homes located in the tail. Many economic data programs share this trait. Consequently, 
developing a fixed set of bins for interpolation with an ongoing survey is unwise. To address this, 
Thompson and Sigman (2000) introduced an estimation procedure for estimating medians from highly 
positively skewed population data. Their procedure uses interpolation over data-dependent intervals 
(bins), after scaling by the 75th percentile. The earlier paper examined the estimation and variance 
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estimation properties of the considered methods, using modified half sample (MHS) replication for 
variance estimation (Fay 1989; Judkins 1990).  

This research extends the previous work to decile estimation methods using complex survey data 
sampled from a positively skewed population. We present three different interpolation methods along with 
the traditional decile estimation method (no bins) and evaluate each method empirically, using residential 
housing data from the Survey of Construction (SOC) conducted by the U.S. Census Bureau and via a 
simulation study. Our research was motivated by a recent request from the SOC data users to estimate and 
publish complete sets of decile estimates for several housing characteristics. Thus, our research was 
conducted under the constraints of maintaining comparably reliable median estimates as those currently 
published and using MHS replication for variance estimation.  

Section 2 presents the candidate decile estimation methods and gives an overview of modified half-
sample replication. Section 3 evaluates these procedures, using empirical and simulated data from the 
Survey of Construction (SOC). Finally, we conclude with recommendations in Section 4. 

 
2  Methodology 
 

2.1  Decile estimation 
 

We consider two approaches to decile estimation for continuous data: the sample decile (SD) method 
and interpolation. The SD method uses ordered sample weights to locate the estimate (Rao and Shao 
1996). For this, the characteristics values are sorted in ascending order, and the sample weights are 
accumulated until they exceed the desired decile’s percent of the total weight.  

Interpolation methods group the continuous data in bins and interpolate over the bin containing the 

decile. To obtain the decile estimate   ,d  we use the Woodruff formula (Woodruff 1952) for 

interpolation provided below: 

                                                 1
ˆ

ˆ *d

i

dN cf
F dN ll i

f


 
      

 
 (2.1) 

where 

F   cumulative frequency of the characteristic using sample weights, 

ll   lower limit of the bin containing the decile, 

N̂   estimated total number of elements in the population, 

cf   cumulative frequency in all intervals preceding the bin containing the sample decile, 

if   decile class frequency (estimated total number of elements in the population of the 

  interval containing the sample decile), 

i   width of the bin containing the sample decile, 

d   desired decile (0.1, 0.2, 0.3, …, 0.9). 
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Notice that this formula does not require that each bin to be of equal length. However, it does require 
that the data within each bin be uniformly distributed. This later requirement poses the true challenge with 
a highly skewed population, especially in the upper tail. 

Figure 2.1 below illustrates how to use the Woodruff method to estimate the 80th decile. The sample 
data have been grouped into twelve separate bins. The empirical CDF is produced from the complete set 
of weighted sample data (as one referee noted, the empirical CDF is extremely smooth for sample survey 
data; in practice, the curve would include discrete steps. The Woodruff method procedure would be the 
same, however). The decile estimate is located at the intersection of the empirical CDF curve and red 
asymptote at Y 0.80.  The 80th decile is  1F 0.80 ,  contained in the 5th bin; the interpolated estimate 

of the 80th percentile would therefore be obtained by using (2.1) over the fifth bin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1 Illustration of the Woodruff method 
 

 

Determining the optimal bin size for both estimation and variance estimation can be difficult. As the 
bins narrow (approaching width 1), then the variance estimates become more unstable. Smoothing the 
estimates via the interpolation reduces the instability of variance, but increases the bias in the estimate. 
The bias component increases as the bin widths increase. 

Economic data generally have a positive skewed distribution. Moreover, the subdomains’ characteristic 
distributions will vary, and their respective moments change over time as the economy changes. 
Consequently, developing a standard set of fixed bins for interpolation that work consistently over time is 
nearly impossible. Instead, Thompson and Sigman (2000) developed a “data-dependent” binning 
procedure, where the width of each bin is determined separately by the estimation cell. Their 
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recommended method linearly transforms each characteristic to a standard scale and then uses a standard 
set of bins for every characteristic. The authors use the following linear transformation 

75

1,000
i iX X

Q
    

where 75Q  is the 75th percentile (3rd quartile) of the sample distribution, obtained using the SD method. 

The interpolated-median estimate of the X   is multiplied by  75 1,000Q  to obtain a value on the 

original scale. This procedure is equivalent to simply dividing the original sample in each estimation cell 
from 0 to 75Q  into Z  bins of equal width and placing the remainder of the sample into one bin, which, by 

design, is much larger than the others. With the highly positive skewed housing data, this transformation 
works well for estimating the median because it is far from the 75Q  scaling parameter. However, it does 

not permit estimation of either the 80th or 90th deciles. Thus, if we wanted to continue using an 
interpolation method, we needed to consider alternative transformations.  

The simplest approach is to use the original data-dependent bin method with a higher scaling 
parameter, i.e., use any percentile value larger than 90%. We use the 95th percentile as the scaling factor 
and hereafter refer to this method as the “P95 method”. 

The P95 method does create uniform distributions within the majority of the bins but is still 
problematic at the upper end of the distribution for two reasons. First, the final bin contains only five 
percent of the sample distribution, and the values within this bin are generally very different. Second, the 
data-dependent binning procedure requires that each decile be “far from” the large final bin; if not, then 
the decile estimates exhibit the same instability as those obtained using the “SD method.” Unfortunately, 
the bin containing the 90th percentile is often close to the final bin when using a scaling parameter of 95%.  

To address the second issue, we considered another data-binning approach, denoted as the “P75 
method.” For this, we create two sets of bins per estimation cell, each with different widths above and 
below the cell’s 75Q  value. This requires two separate linear transformations per estimation cell, given by 

   
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75

75
100 75

100

1,000
 when 

1,000

         when  and  maximun value in sample.

i i i
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X X X

   
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

 

 

The iX   is then placed into Z  equal length bins, and iX   into K  equal length bins, where .Z K  

The interpolation is performed independently for each decile, with the appropriate inverse transformation 
being applied to each interpolated decile. This procedure ensures that median estimates exactly match 
those obtained with the current procedure.  

Our third considered interpolation approach makes parametric assumptions about the characteristics. 
Often, economic data are approximately log-normally distributed (e.g., Steel and Fay 1995). The Normal 
Binning method (denoted “NB”) uses the properties of the normal distribution applied to the 
log-transformed data to obtain data-dependent bins. The binning technique ensures that areas of high 
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probability have smaller bin widths to limit the amount of observations per bin and areas of low 
probability have larger bin width to increase the amount of observations per bin.  

The NB method centers the log-transformed data around the weighted sample median, then scales the 
centered data by an estimate of the population standard deviation. We use the sample median because it is 
more outlier resistant than the sample mean. Of course, the mean and median are equivalent with normally 
distributed data. Given a standard normal distribution where 0   and 1,   then 

     
3 1

0.67449* -0.67449* 0.67449 0.67449 * 1.34898.

IQR Q Q

IQR

 

          

We estimated the standard deviation (sigma) as the ratio 1.34898,IQR   where the IQR is 

obtained from the empirical CDF in the estimation cell. To normalize the data, we applied the following 
transformation 

 Logi iY X  med med

1.34898
i i

i
y y

Y Y Y Y
Y

IQR

 
  


 

where  

medY   log-transformed sample median over domain ,i  

yIQR   log-transformed sample interquartile range over domain .i  

 

Again, the sample deciles and interquartile ranges are obtained via the SD method. If the data are log-
normally distributed, iY   should have a standard normal distribution, so that roughly 68.3% of the data are 

within one standard deviation of the mean and 95.4% of the data are within two standard deviations of the 
mean. Using those properties, we split the transformed iY   into the five different zones and created the 45 

bins shown in Table 2.1. 

 

 

Table 2.1 
Bins for the log-normal transformation (Normal method) 
 

Zone 1 2 3 4 5
Range [Low, -2) [-2, -1) [-1, 1) [1, 2) [2, High]
Percent in Zone 2.3 13.6 68.2 13.6 2.3
Bins 1 6 31 6 1
Average Percent of Sample Units per Bin 2.3 2.3 2.2 2.3 2.3

 

 

There are four different bin widths with roughly the same average percentage of sampled units per bin. 
Woodruff’s method is applied to the transformed data to obtain the deciles and we exponentiate these 
decile estimates to obtain values on the original scale. Unlike the linear rescaling methods presented 
above, there is an additional induced estimation bias caused by the power transformation. It may have 
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been possible to make a bias adjustment for the transformation via a Taylor expansion, as suggested by a 
referee, but we did not consider this approach. 

 
2.2  Variance estimation 
 

The MHS replication method (aka “Fay’s method”) is a “compromise” between the stratified jackknife 
and the BRR method (Fay 1989). Rao and Shao (1999) demonstrate that the MHS variance estimator is 
asymptotically consistent for both smooth statistics such as ratio estimators and for non-smooth statistics 
such as sample quantiles estimated using the SD method outlined in 2.1. Their paper does not extend this 
property to interpolated decile estimates, although it does follow that these variance estimates should be 
consistent as the bin width approaches width 1. Like BRR, MHS replication uses a Hadamard matrix to 
form replicates, but uses replicate weights of 1.5 and 0.5 instead of the values of 2 and 0 used in BRR. The 

MHS formula for standard error estimation of any estimate ̂  is 

                                                        2

0
1

4ˆ ˆ ˆˆ *
R

r
r

S
R 

      (2.2) 

where ˆ
r  is the thr  replicate estimate  1, 2, ,r R   and 0̂  is the full sample estimate. The sum of 

squared error term is adjusted by a factor of   2
4 1 1 0.5   to prevent negative bias in the variance 

estimate (Judkins 1990).  

 
3  Empirical analysis 
 
3.1  SOC sample design 
 

As mentioned in the introduction, our research was motivated by a request from data users of the 
Survey of Construction (SOC). The SOC is a national survey that collects information on characteristics 
of new residential housing in the United States. The SOC data are used to produce three principle 
economic indicators published each month by the U.S. Census Bureau: housing starts, housing 
completions, and housing sales (single-family homes only). In addition, SOC publishes monthly, 
quarterly, and annual estimates on a variety of housing characteristics, such as sales price and average 
sales price per square foot of sold houses, length of time from permit authorization to housing start, and 
length of time from start to completion of housing construction. This paper examines two key housing 
characteristics that are published annually: sales price and price per square foot of sold homes. Both 
characteristics are collected monthly as they become available from the homebuilders. Currently, average 
and median estimates for both characteristics are included in the annual reports; average and median sales 
price of sold homes are also published monthly.  

The SOC universe comprises two sub-populations: areas that require building permits and areas that do 
not. Areas that require building permits are covered in the Survey of the Use of Permits (SUP) and non 
permit issuing areas are covered by the Nonpermit Survey (NP). The vast majority of the sample comes 
from SUP. Both populations are sampled from the same PSUs, but are independent samples at subsequent 
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stages. Since the majority of the SOC sample consists of sampled permits, we focus entirely on the SUP 
portion of the SOC in our research. 

The SUP is selected in three stages. The first stage selects a probability proportional to size (PPS) 
subsample of Primary Sampling Units (PSUs) from the 2000 Current Population Survey design (CPS) and 
is performed once every ten years. The CPS PSUs are land areas such as counties or townships. The 
second stage of the SUP sample is a stratified systematic sample of permit-issuing places within sampled 
PSUs, also performed once every ten years. The third stage of sampling is performed monthly in each of 
the sampled permit-issuing places. Each month, the Field Representatives develop complete lists of new 
building permits from the permit offices in the sampled places and select a systematic sample of building 
permits. Sampling rates are assigned to permit offices to obtain an overall sampling rate of one-in-fifty for 
one to four unit structures. Larger buildings of five or more units are included with certainty (i.e., are 
self-representing).  

The SOC uses the MHS replication method to estimate variances with a 200 200  Hadamard matrix, 

assigning a total of 198 rows to replicate groups. Since SOC does not have a two-PSU per stratum design, 
SOC uses a collapsed stratum approach for creating replicates: see Thompson (1998) for details. 

 
3.2  Empirical data analysis of SOC data 
 

Our empirical analyses uses SOC data collected from 2006 through 2009. SOC uses the 
data-dependent binning method described in Section 2.1 with 41 bins to produce median estimates. We 
use 51 bins for the P95 method, with 95% of the sample spread over 50 equally sized bins; the 51st bin 
contains any data greater than the 95th percentile. The P75 method uses 40 equal-sized bins for all values 
below the 75th percentile and 10 equal-sized bins for all values between the 75th percentile and the 
maximum value of the sample distribution. Finally, the NB method uses a total number of 45 bins. 

For sales price and price per square foot, all of the decile estimates obtained via the P75, P95, and SD 
methods are quite comparable to each other for the 10th through 70th deciles; the NB deciles were 
generally slightly larger than their other counterparts. However, the P75 method decile estimates for the 
80th and 90th deciles were consistently larger than the other three methods’ estimates. The explanation is 
straightforward: with the P75 method, both the 80th and 90th deciles are almost always located in the same 
bin. Both characteristic’s distributions are quite skewed. Consequently, the majority of the upper 25 
percent of the sample is contained in the bin closest to the 75 percentile.  

The patterns displayed by the decile estimates for each method were extremely consistent at both the 
national and regional levels. Unlike the estimate comparisons, there are fewer clear patterns with the 
variance estimates. The variance estimates for 80th decile obtained using the P75 method were 
considerably larger than those obtained by the three other methods and the 90th was likewise considerably 
smaller. With respect to the other three methods, the NB variances tend to be smaller than the 
corresponding P95 method and SD variances; these differences are more pronounced with the sales price 
per square foot decile estimates.  

Three of the four considered methods yielded comparable sets of decile estimates. The P75 method 
proved intractable given the highly skewed distributions considered; we simply could not find an adequate 
“bin width” for the upper quartile of data. Thus, the empirical data evaluation reduced our candidate set of 
estimation methods to three. However, although the corresponding estimates were quite similar, the 
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variance estimates were clearly different. Consequently, we decided to conduct a simulation study to 
evaluate the statistical properties of the alternative estimators over repeated samples. 

 
3.3  Simulation study 
 

3.3.1  Modeling and sample selection procedure 
  

For our simulation, we developed a population that mimics the qualities of the majority of the SUP 
population. That is, we developed stratified populations of permit offices (PSUs), from which we selected 
permit samples (SSUs). There were several advantages to developing such a complex simulation set up. 
From a practical immediate perspective, it was beneficial for interpreting the empirical results presented in 
Section 3.2. More important, the earlier research conducted by Thompson and Sigman (2000) obtained 
nearly perfect results for the data-dependent interpolated medians on a simulated population that did not 
include clustering; the distinctions between the statistical properties of each method only became apparent 
when clustering was incorporated into the design.  

We used a “bottom-up” approach to develop viable simulated population data. First, we modeled 
multivariate populations of permit data within each region. Next, we combined the modeled permit data to 
form “clusters” representing the permit offices (the primary sampling units). To guard against model 
misspecification, we independently developed two artificial populations of permit data with each permit 
record containing sales price and price per square foot, modeling one population as log-normally 
distributed within region using the algorithm outlined in Lienhard (2004) and modeling the other using a 
nonparametric SIMDATA algorithm (Thompson 2000) in each region.  

In general, the modeled permit data in the nonparametric population is a better representation of the 
corresponding levels at each decile of the training data. However, the distributions of permits in the log-
normal population are quite smooth, whereas the nonparametric population distributions are “choppy,” 
with large breaks (steps) between adjacent point estimates. Table 3.1 presents key percentiles and means 
from the simulated populations for both modeled characteristics, comparing them to the empirical values 
from the SOC data (denoted by the “Training Data” column). 

Our simulation procedure developed populations of permits (the SSUs), then created the artificial first 
stage clusters (permit offices) and stratified them. The two-step cluster creation and stratification process 
described below assumes that the permits within population strata are heterogeneous with respect to sales 
price and price per square foot and that permits issued from the same permit office have similar housing 
characteristics. These criteria were obtained from the subject matter experts, who believe that modeling 
variation between permit offices was more realistic than modeling variation within permit offices. The 
multivariate log-normal population lends itself better to this than the nonparametric population; the 
assigned elements within each cluster tend to be homogeneous because of the smoother distribution. 

We used discriminant analysis to group the simulated permits into disjoint strata. After applying the 
same discriminant function to each simulated permit data population (log-normal and nonparametric), we 
clustered the permits within strata to form approximately 14,000 active permit offices per population. The 
cluster analysis application created permit offices of variable size with homogenous characteristics within 
office. 
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Table 3.1 
Simulated populations’ statistics and empirical data statistics 
 

         
                  Simulated Population Training Data 

(Weighted) Log-normal Nonparametric 

Sa
le

s P
ri

ce
 

D
ec

ile
 

1 74,747.74 94,323.27 95,000.00 
5 105,009.64 120,073.33 120,000.00 

10 126,492.43 136,009.85 140,000.00 
20 158,517.61 158,931.57 160,000.00 
30 186,927.58 181,941.12 180,000.00 
40 215,346.44 205,003.46 210,000.00 
50 245,502.91 230,188.69 230,000.00 
60 280,064.08 260,524.68 260,000.00 
70 322,790.68 301,374.90 300,000.00 
80 381,501.24 359,138.64 360,000.00 
90 482,209.62 488,517.45 490,000.00 
95 586,359.10 622,185.68 630,000.00 
99 855,983.47 1,167,704.85 1,300,000.00 

Mean 283,085.94 287,134.16 290,000.00 

  

                  Simulated Population Training Data 
(Weighted) Log-normal Nonparametric 

Sa
le

s P
ri

ce
 p

er
 S

qu
ar

e 
Fo

ot
 

D
ec

ile
 

1 32.76 32.68 35.00 
5 43.11 47.27 47.00 

10 49.86 54.70 55.00 
20 59.26 63.74 64.00 
30 67.22 70.71 72.00 
40 74.91 77.14 78.00 
50 83.11 83.60 84.00 
60 92.42 90.60 91.00 
70 103.75 98.70 99.00 
80 119.61 109.57 110.00 
90 147.62 130.02 130.00 
95 178.94 155.08 160.00 
99 265.10 262.68 270.00 

Mean 93.58 94.90 96.00 
 

 

We selected 5,000 repeated samples from our simulated population using a much simplified version of 
the SOC design described above. The first stage of sampling selects permit offices. The largest 250 offices 
at the US level were selected with a probability of one (certainty), so that each repeated sample contains 
the same self-representing offices. Then, we selected a probability proportionate to size sample of two non 
self-representing permit offices in each stratum, with each office receiving its own permit office weight.  

At the second sampling stage, we selected permit records from each sampled permit office. We 
selected a simple random sample (SRS) of permits from each office, with an office sampling rate obtained 
by dividing the permit office’s weight by 50, thus obtaining an overall one-in-fifty sample of permits (if 
the permit office weight is greater than fifty, all permits within the office are sampled). Final weights for 
each record were calculated by multiplying the permit office weight and the permit weight. The permits 
selected from the certainty offices vary in each repeated sample due to the independent sampling unless 
the office contained more than 50 permits. 
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Finally, in each sample, we assigned permits or permit offices to replicates. We did not mimic the SOC 
partially balanced half sample application described in Section 3.1. Collapsing strata induces bias in the 
variance estimates. To eliminate this bias component from our simulation, we used a two-PSU per stratum 
design and 572 replicates (i.e., a 572 572  Hadamard matrix), so that each of the 250 self-representing 

offices and each of the 321 non self-representing strata (pairs of sampled permit offices) received its own 
Hadamard matrix row. Mimicking the SOC production method, each self-representing office is treated as 
a “pseudo stratum,” and replicate panels are obtained by randomly splitting the permits within each office. 

Within each sample, a set of estimates at the US and regional level were calculated for the three 
considered decile estimation methods in each replicate and the MHS replicate variance estimates for each 
decile were computed using (2.2) with 572.R   

 
3.3.2  Evaluation methodology 
 

The simulation study examines the statistical properties of each decile estimation method and 
associated variance estimates over repeated samples. Let d

m  represent the decile d  estimate calculated by 

using method  SD, P95, NB .m m   

To assess estimation properties of method m  for decile d  over repeated samples, we computed the 

relative bias and the empirical mean squared error. The relative bias of each decile estimate for each 
estimation procedure is given by 

 ˆ 100 1d d d
m m pB          

where d
ms  is the estimated decile d  estimate from method m  in sample , d

ms   is the average over the 

5,000 samples, and d
p  is the population decile (evaluation measures for estimates and variance estimates 

for domain i  (Northeast, Midwest, South, and West in the simulation study presented in Section 4) are 

available upon request to the authors, but are omitted for brevity). 

The empirical mean squared error (MSE) of each decile estimate for each estimation method is given 
by 

       

     

5,000 5,000
2 2 2

1 1

2

1 1
MSE

5,000 5,000

ˆˆMSE .

d d d d d d d
m ms p ms m m p

s s

d d d
m m mB

 

            

     

 

 

To assess the variance estimation properties of the estimation method for decile d  over repeated 

samples, we computed the following statistics: 
 

Relative bias of the variance    ˆ100 MSE 1d d
m mv       where  ˆ d

mv   is the average variance 

estimate of decile d  from method m  over 5,000 samples i.e.,    ˆ ˆ 5,000 .d d
m msv v    In our case 
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study, the variance estimates in each sample  ˆ, ,d
mss v   are modified half-sample replicate variance 

estimates described in Section 3.3.1. 

Stability of the variance estimate       
5,000 2

1

ˆ MSE 5,000 MSE .d d d
ms m m

s

v


     

Coverage rates (CR) = the proportion of 90% confidence intervals for a given method that contain the 
   true population decile .d

p  

 

The stability of the variance is a measure of the variance of the variance estimates. Ideally, both the 
relative bias and stability measures should be near zero. Coverage rates demonstrate the combined effect 
of the estimate and variance estimate on inference. 

 
3.3.3  Simulation study results 
 

The following sections summarize our simulation study results, presenting in illustrative graphs (tables 
available upon request to the authors). 

 
3.3.3.1  Estimation properties of each method 
 

Figure 3.1 plots the relative biases of the national level decile estimates by estimation method in the 
log-normal population. Recall that unbiased estimates will have a relative bias of zero indicated by the 
grey horizontal asymptote on each figure. Caution is advised in visual comparisons of bias levels, as the 
two characterics’ graphs may not be on the same scale. 

The SD method produces the least biased decile estimates for both sales price and price per square 
foot. That said, the biases of the decile estimates for both characteristics obtained using the P95 and NB 
methods are trivial. The largest biases can be found at the 10th percentile and the 90th percentile, that is, 
near the tails of the distribution where the sample is expected to be less stable. Although the SD decile 
estimates are less biased than their P95 and NB counterparts, they are less precise. In general, the P95 
deciles have the minimum MSE among the three competing methods, although in many cases, the 
differences between the P95 and NB MSEs are negligible. 

Figure 3.2 plots the relative biases of the national level decile estimates by estimation method in the 
nonparametric population. The bias patterns for price per square foot follow the same patterns as above, as 
do the MSEs. However, the pattern of the bias and MSE of sales price is different. Here, the SD estimates 
are the least biased, but the largest bias occurs at the median (0.005). This is also true for the two 
interpolation methods, with the P95 and NB medians each having a relative positive bias of seven tenths 
of a percent. For the 50th and 60th deciles, the MSE of the P95 estimates is somewhat larger than the other 
corresponding estimates, reflecting the impact of this estimator. 

Some of the biases from the nonparametric population are large enough to warrant concern, especially 
for the median estimate. That said, the log-normal population does appear to more closely mimic the true 
SOC data, so the nonparmetric results are not necessarily reflective of SOC’s “reality.” These results do 
reflect the impact of the constant bias term in the decile estimates caused by interpolation. 



362 Kaputa and Thompson: Estimation and replicate variance estimation of deciles for complex survey data 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1  Relative bias of sales price and sales price per square foot estimates from the 
log-normal population (Expressed in percentages) 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2  Relative bias of the sales price and sales price per square foot estimates from the 

nonparametric population (Expressed in percentages) 
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Overall, the MSEs follow similar patterns for both populations and both characteristics. Minimal 
MSEs can be found around the center deciles. The lower tail deciles have slightly higher MSEs and the 
upper tail decile MSEs increase at a rapid rate.  

 
3.3.3.2  Variance estimation properties of each method (Given MHS replication) 
 

As demonstrated in Figure 3.3, all relative variance biases of the MHS variance estimates in the log-
normal population are positive regardless of estimator, and the SD variance estimates are the most biased. 
The P95 and NB methods have similar relative biases for all characteristics, with all being less biased than 
those obtained via the SD method. Overall, the P95 variance estimates are the least biased. Notice that all 
of the variance estimates for sales price are positively biased with all estimators, to save space, the y-axis 
begins at 5%. The same cautions about visual comparisons stated in Section 3.3.3.1 apply to the figures in 
this section. 

The SD variance estimates for both characteristics are by far the least stable. This result is expected, 
since the interpolation variance estimates benefit from smoothing. Of the two interpolation methods, the 
P95 method yields more stable variance estimates for all deciles except for a handful of the upper tail 
deciles. The more stable variances in the NB upper deciles are likely a result of using properties of a 
normal distribution to obtain equal percentages of the sample in each bin. 

None of the three considered methods yielded 90% coverage rates for sales price or price per square 
foot (Figure 3.4). Most of the coverage rates are slightly anti-conservative (below the 90% horizontal 
asymptote), and no decile estimation method appears to exhibit superior coverage properties over the 
others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3  Relative bias of the variance for sales price and sales price per square foot from the 

log-normal population (Expressed in percentages) 
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Figure 3.4  Coverage rates for sales price and sales price per square foot (Log-normal 
population) 

 

 

 

Figure 3.5 illustrates the relative biases of the MHS variances obtained from the nonparametric 
population where both the P95 and NB interpolation methods are generally much smaller than their SD 
counterparts, and the P95 methods tend to produce less biased variance estimates for both characteristics. 
The relative bias of sales price for the nonparametric population does not follow the same pattern as the 
log-normal characteristics. The SD’s relative biases are always positive and higher than the two 
interpolation methods. The two interpolation methods produced different results across populations of 
sales price. The nonparametric population contains many negative relative biases as opposed to all 
positive biases. The relative biases for sales price per square foot does follow the same pattern as the log-
normal population, with large positive biases for the SD method, and lower similar positive biases for the 
two interpolation methods.  

The stability of the nonparametric variance estimates matched up well with those obtained from the 
log-normal population, except for a few differences with sales price decile estimates. Sales price stability 
estimates for the SD method are still always larger than the other two interpolation methods, but follow a 
more erratic pattern. The NB method has a large stability estimate for the 40th decile, which does not 
follow the expected trend. 

The coverage rates for sales price per square foot follow the same pattern as in the log-normal 
population (Figure 3.6). However, the pattern of the sales price rates is more variable. 
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Figure 3.5  Relative bias of the variance of sales price and sales price per square foot 
(Nonparametric population) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6  Coverage rates of sales price and sales price per square foot (Nonparametric 

population) 
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3.3.3.3  Additional simulations to assess bin size effects 
 

Overall, the statistical properties of the P95 estimates and variance estimates obtained from the log-
normal population (both characteristics) and from the nonparametric population for sales price per square 
foot are quite promising. However, none of the considered methods have nearly as solid properties for 
sales price in the nonparametric population. This is troubling, despite the previous caveats about the 
nonparametric population modeling. 

In the nonparametric population, the sales price bins near the median contained more observations than 
bins in the distribution’s tail [Note: this is true for both the P95 and NB methods.] These large bins can 
over-smooth the distribution, resulting in very stable estimates. The over-smoothing manifests itself in the 
replication variance method as underestimation due to lack of variability between replicate estimates for 
the “middle” deciles. Conversely, as expected, the SD method produces unstable estimates throughout and 
consequently overestimates the variance (positive bias).  

The purpose of transforming the data before binning is to obtain uniform distributions within bins. For 
sales price, neither transformation achieves a uniform distribution within the bins, resulting in non-
negligible interpolation bias, in turn affecting the MSE estimates.  

To better understand how the estimation procedure affects the variance estimation procedure, recall 
that our variance estimates are evaluated with respect to the mean squared error (MSE) obtained under the 
estimation procedure. The SD procedure yields essentially unbiased estimates, but the trade-off is a large 
and unstable variance. Using interpolation reduces the sampling variance and improves its stability, but 
can substantively increase the bias squared term of the MSE.  

Ultimately, the P95 method had the most promising results for most characteristics. However, there 
were still several concerns about the bias of the median estimate for nonparametric sales price. To address 
these concerns, we conducted additional simulations on both populations and characteristics, using the 
P95 method with 50 bins, 75 bins, and 100 bins.  

In most cases, using 75 bins with the P95 method generally reduces the estimate bias and MSE without 
detrimentally affecting the variance estimate properties. This is definitely a balancing act. As the number 
of bins increases, the corresponding evaluation statistics begin to mimic those obtained with the SD 
method. This improves the interpolated estimates in the cases where the SD deciles had better statistical 
properties. However, increasing the number of bins has a detrimental effect on the statistical properties of 
the decile estimates and variance estimates when the P95 method with 50 bins yielded less biased 
estimates or more stable variance estimates.  

 
4  Conclusion 
 

The fundamental finding from Thompson and Sigman (2000) was that interpolation methods can be 
used to produce stable median estimates for samples from positively skewed populations, but the 
effectiveness of the interpolation was highly dependent on both the width of the bins and their location in 
the sample. Their primary contribution was to develop a data-dependent binning approach that used each 
individual estimation cell distribution. 
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Our approach to determining a decile estimation method for complex samples from a positively 
skewed population builds on these earlier findings, recognizing both that data-dependent binning is a 
necessity and that the binning method selected must account for a positively skewed distribution to 
facilitate the complete set of decile estimates. We considered three interpolation methods, each of which 
took a different approach to resolving the sparse data problem at the 90th decile posed by the skewed 
distributions. Our empirical analysis showed that all of the studied approaches yielded complete sets of 
decile estimates with reasonable statistical properties, at least for the Survey of Construction. However, 
the properties of the corresponding MHS variance estimates were not as good and exhibited different 
patterns. At the U.S. level, our simulation results demonstrate consistently good statistical properties for 
decile estimation and variance estimation using the P95 transformation and 75 bins in one simulated 
population in terms of estimate bias, MSE, bias of the variance estimates, and stability, while rarely 
achieving a 90% coverage rate.  

Of course, it is much more challenging to estimate a complete set of deciles than a single median, 
especially from positively skewed distributions. However, our recommended method appears to work 
quite well for most decile estimates and could certainly be modified to produce viable quartile estimates if 
the production decile estimates prove too unstable. In the meantime, the SOC program has decided to 
implement the P95 interpolation method and produce complete sets of decile estimates for selected annual 
characteristics in future reports. 

Although we believe that our findings can be extended to other survey designs, we recognize that our 
research is conducted under extremely restrictive conditions, namely multi-stage cluster sampling from a 
highly skewed population, with a two-PSU per stratum design at the first stage. In other applications, 
interpolation with data-dependent bins could be combined with the variance estimator proposed in the 
1952 Woodruff paper, as suggested by J.N.K. Rao. For surveys that are not well suited to BRR or MHS 
replication that publish decile estimates, our data-dependent binning and interpolation approach could be 
used in conjunction with a bootstrap replication method such as the Rao-Wu bootstrap (Rao and Wu 
1988). 
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