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Objective stepwise Bayes weights in survey sampling 

Jeremy Strief and Glen Meeden1 

Abstract 

Although weights are widely used in survey sampling their ultimate justification from the design 

perspective is often problematical. Here we will argue for a stepwise Bayes justification for weights 

that does not depend explicitly on the sampling design. This approach will make use of the standard 

kind of information present in auxiliary variables however it will not assume a model relating the 

auxiliary variables to the characteristic of interest. The resulting weight for a unit in the sample can 

be given the usual interpretation as the number of units in the population which it represents. 
 

Key Words: Sample survey; Weights; Bayesian inference. 
 
 

1  Introduction 
 

Weights play an important role in the design based approach to survey sampling. In theory the 

weight assigned to an observed unit in a sample is the reciprocal of its selection probability and is 

interpreted as the number of units in the population which it represents. In practice, after a sample 

has been observed, the weights are often adjusted to make the sample better represent the 

population. These adjustments can be made to take into account population information not 

included in the design and for observations missing from the sample. Although such 

modifications of the design based weights are undoubtedly useful in some cases their ultimate 

theoretical justification is not so clear. Part of the confusion, we believe, comes from arguing 

unconditionally before the sample is taken, e.g., the Horvitz-Thompson estimator is unbiased 

averaged over all possible samples, and then conditionally after the sample is in hand, by 

adjusting the designed based weights of the observed units in the sample. In particular, an 

overemphasis on the sampling design at the second or conditional stage can needlessly 

complicated matters. After the sample has been observed, we believe a better approach is to 

formally ignore the sampling design but use all the available information, including that 
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embedded in the design, to find a sensible set of weights. In this way of thinking a weight 

assigned to a unit can still be interpreted as the number of units in the population that it represents 

but it is no longer derived as an adjustment of its selection probability. How can this be done? 

In the Bayesian approach information about the population is incorporated into a prior 

distribution. In theory, the prior can then be used to purposely select an optimal sample; however 

this is almost never done. After the sample is observed inferences are based on the posterior 

distribution of the unobserved units in the population given the values of the observed units in the 

sample. In most situations the posterior does not depend on how the sample was selected and 

hence the design plays no role at the inference stage. Bayes methods have been little used in 

practice because it is difficult to find prior distributions which reflect the common kinds of 

available prior information. 

Many of the standard estimators can be given a stepwise Bayesian interpretation (Ghosh and 

Meeden 1997). In this approach, given any sample, inference is still based on a posterior 

distribution but the collection (for all possible samples) of the posteriors does not arise from a 

single prior but from a whole family of prior distributions. In the situation where one believes 

that the observed units are roughly exchangeable with the unobserved units the appropriate 

stepwise Bayes posterior distribution is the Polya posterior. 

When prior information about population means and quantiles of auxiliary variables is 

available Lazar, Meeden and Nelson (2008) argued that the constrained Polya posterior, a 

generalization of the Polya posterior, is a sensible way to incorporate such prior information. 

Here we will show how the constrained Polya posterior can be used to define weights for the 

units in the sample. Although the resulting weights depend on the auxiliary variables they do not 

make explicit use of the sampling design. 

In Section 2 we review the Polya posterior and in Section 3, the constrained Polya posterior. 

The two main ideas of the paper are given in the next two sections. In Section 4 we show how the 

constrained Polya posterior can be used to attached a weight to each unit in the sample and in 
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such a way that these weights do not depend directly on the sampling design. In Section 5 we 

introduce the weighted Dirichlet posterior as a companion to the constrained Polya posterior. It 

allows one to use the weights defined by the constrained Polya posterior to make inferences 

about population parameters through straight forward simulation. In Section 6 we compare the 

constrained Polya posterior weights to those used in the Horvitz-Thompson estimator. In 

Section 7 we consider several examples to see how the resulting weights preform in practice and 

show how the weighted Dirichlet posterior can be use to get an estimate of variance for an 

estimator without extensive computing. Section 8 contains some concluding remarks. 

At first reading it will seem to some that the methods proposed here are very Bayesian 

because all of our inferences are based on “posterior” distributions. But as mentioned above, 

technically, our “posterior” distributions are not Bayes but stepwise Bayes. This means that 

operationally one can think of our posterior as being constructed after the sample has been 

observed. These constructed “posteriors” do not depend on subjective prior information or the 

sampling design but just use the observed sample values and objective and public information 

about the auxiliary variables. As we shall see this allows one to construct estimators of 

population parameters which are approximately unbiased under a variety of designs and have 

good frequentist properties. There are two important limitations of our work however. The first is 

that it only is applicable to single stage designs and the second is that it cannot correct for 

selection bias. 

 
2  The Polya posterior 
 

Let s  be the set of labels of a sample of size n  from a population of size .N  For convenience 

we assume the members of s  are 1, 2, , n  and we also suppose that /n N  is very small. Let 

1 2= ( , , , )Ny y y y  be the characteristic of interest and sy  be the observed sample values. 

The Polya posterior is based upon Polya sampling from an urn. Polya sampling works as 

follows: suppose that the values from n  observed or seen units are marked on n  balls and placed 
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in urn 1. The remaining unseen N n  units of the population are represented by N n  

unmarked balls placed in urn 2. One ball from each urn is drawn with equal probability, and the 

ball from urn 2 is assigned the value of the ball from urn 1. Both balls are then returned to urn 1. 

Thus at the second stage of Polya sampling, urn 1 has 1n   balls and urn 2 has 1N n   balls. 

This procedure is repeated until urn 2 is empty, at which point the N  balls in urn 1 constitute one 

complete simulated copy of the population. Any finite population quantity – means, totals, 

quantiles, regression coefficients – may now be calculated from the complete copy. For the 

population quantity of interest we may simulate K  such complete copies and in each case 

calculate its value. The mean of these simulated values is the point estimate and an approximate 

95% Bayesian credible interval is given by the 2.5% and 97.5% quantiles of the values. 

One can check that under the Polya posterior the posterior expectation of the population mean 

is just the sample mean and the posterior variance is just ( 1) / ( 1)n n   times the usual design 

based variance of the sample mean under simple random sampling without replacement. The 

Polya posterior has a decision theoretic justification based on its stepwise Bayes nature. Using 

this fact many standard estimators can be shown to be admissible. Details can be found in Ghosh 

and Meeden (1997). The Polya posterior is the Bayesian bootstrap of Rubin (1981) applied to 

finite population sampling. Lo (1988) also discusses the Bayesian bootstrap in finite population 

sampling. Some early related work can be found in Hartley and Rao (1968) and Binder (1982). 

For the sample unit i  let ip  denote the proportion of units in a full, simulated copy of the 

population which have the value .iy  Ghosh and Meeden (1997) showed that under the Polya 

posterior ( ) = 1 / .iE p n  If we let  

= ( ) = /i iw NE p N n  

then iw  can be interpreted as the weight attached to unit i  since it equals the average number of 

units in the population represented by unit ,i  under the Polya posterior. Recall that under simple 

random sampling without replacement /n N  is the inclusion probability for each unit. Hence in 
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this case the usual frequentist weight, which is the reciprocal of the inclusion probability, and 

Polya posterior weight defined above agree. 

So in situations of limited prior information the Polya posterior yields weights identical to 

frequentist weights derived from the design of simple random sampling without replacement. The 

Polya posterior justification for these weights does not depend explicitly on the design and would 

be appropriate anytime the sampler believes the observed and unobserved units in the population 

are roughly exchangeable. 

We next address the issue of the relationship of the Polya posterior with usual bootstrap 

methods in finite population sampling. Both approaches are based on an assumption of 

exchangeability. Gross (1980) introduced the basic idea for the bootstrap. Assume simple random 

sampling without replacement and suppose it is the case that / =N n m  is an integer. Given a 

sample we create a good guess for the population by combining m  replicates of the sample. By 

taking repeated random samples of size n  from this created population we can study the behavior 

of an estimator of interest. Booth, Bulter and Hall (1994) studied the asymptotic properties of 

such estimators. Hu, Zhang, Cohen and Salvucci (1997) is an example where the sample was 

used to construct an artificial population and then repeated samples were drawn from the 

constructed population to construct an estimate of the variance of their estimator and to construct 

confidence intervals. 

Note this is in contrast to the Polya posterior which considers the sample fixed and repeatedly 

generates complete versions of the population. 

 
3  The constrained Polya posterior 
 

We begin by recalling a well known approximation to the Polya posterior. If /n N  is small 

then under the Polya posterior, 1= ( , , )np p p  has approximately a Dirichlet distribution with 

a parameter vector of all ones, i.e., it is uniform on the 1n   dimensional simplex, where 
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=1
= 1.

n

jj
p  It is usually more efficient to generate complete copies of the population using this 

approximation than the urn model described in the previous section. In addition this 

approximation will be useful when we consider the constrained Polya posterior, a generalization 

of the Polya posterior which arises when prior information about auxiliary variables are available 

to the sampler. 

In many problems, in addition to the variable of interest, ,y  the sampler has in hand auxiliary 

variables for which prior information is available. A very common case is when the population 

mean of an auxiliary variable is known. More generally, we will assume that prior information 

about the population can be expressed by a set of linear equality and inequality constraints on a 

collection of auxiliary variables. 

We assume that in addition to the characteristic of interest y  there is a set of auxiliary 

variables 1 2, , , .mx x x  For unit i  let  
1 2( , ) = ( , , , , )m

i i i i i iy x y x x x  

be the vector of values for y  and the auxiliary variables. We suppose that for any unit in the 

sample this vector of values is observed. We assume the prior information about the population 

can be expressed through a set of linear equality and inequality constraints on the population 

values of the auxiliary variables. For the set of possible values for a given auxiliary variable the 

coefficients defining a constraint will correspond to the proportions of units in the population 

taking on these values. We now illustrate this more precisely by explaining how we translate this 

prior information about the population to the observed sample values. Given a sample this will 

allow us to construct simulated copies of the population consistent with the prior information. 

Given a sample ,s  for = 1, 2, , ,i n  let ( , )i iy x  be the observed values which, for 

simplicity, we assume are distinct. Let ip  be the proportion of units which are assigned the value 

( , )i iy x  in a simulated complete copy of the population. Any linear constraint on the population 

value of an auxiliary variable translates in an obvious way to a linear constraint on these observed 

values. For example, if the population mean of 1x  is known to be less than or equal to some 
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value, say 1 ,b  then for the simulated population this translates to the constraint  

1
1

=1

.
n

i i
i

p x b  

If the population median of 2x  is known to be equal to 2b  then for the simulated population this 

becomes the constraint  

=1

= 0.5
n

i i
i

p u  

where = 1iu  if 2
2ix b  and it is zero otherwise. Hence, given a collection of population 

constraints based on prior information and a sample we will be able to represent the 

corresponding constraints on a simulated value of p  by two systems of equations  

                                                                      1, 1=sA p b  (3.1) 

                                                                      2, 2sA p b  (3.2) 

where 1, sA  and 2, sA  are 1m n  and 2m n  matrices and 1b  and 2b  are vectors of the 

appropriate dimensions. 

Let P  denote the subset of the n  dimensional simplex which is defined by equations (3.1) 

and (3.2). We assume the sample is such that P  is non-empty and hence it is a non-full 

dimensional polytope. In this case the appropriate approximate version of the Polya posterior 

should just be the uniform distribution over .P  We call this distribution the constrained Polya 

posterior (CPP). If one could generate independent observations from the CPP then one could 

find approximately the posterior expectation of population parameters of interest and find 

approximate 0.95 stepwise Bayes credible intervals. Unfortunately we do not know how to do 

this. Instead, one can use Markov chain Monte Carlo (MCMC) methods to find such estimates 

approximately. This can done in R (R Development Core Team 2005) and using the R package 

polypost which is available in CRAN. More details on the CPP and simulating from it are 

available in Lazar et al. (2008). 
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4  Constrained Polya posterior weights 
 

A possible criticism of the Polya posterior and the CPP is that any simulated full copy of the 

population will only contain values of the characteristic that appeared in the sample. But it is 

exactly this property that will allow us to attach weights to the members of the sample. 

We assume that we have a fixed sample for which the subset of the simplex defined by 

equations (3.1) and (3.2) is nonempty. For = 1, ,j n  let  

                                                           = ( ) =j j jw NE p N  (4.1) 

where the expectation is taken with respect to the CPP. Note that the sum of the elements of 

1= ( , , )nw w w  is the population size N  and jw  can be thought of as the weight associated 

with the thj  member of the sample. These weights depend only on the observed values of the 

auxiliary variables and the known population constraints. Hence this is a stepwise Bayes method 

of attaching weights to the units in the sample which incorporates the prior information present in 

the auxiliary variables and does not depend explicitly on the sampling design. 

We are assuming here that the population size N  is know which may not always be the case. 

In such situations one could replace N  in the above equation by an estimate. If the estimate is a 

good one then the resulting inferences for a population total should be satisfactory. When 

estimating a population mean the results would be much less sensitive to how close the estimate 

is to the true population size. 

Much survey data which are used by social science researchers comes with weights attached 

to individual units. In such cases the CPP weights could be attached in the same way and the user 

would not need to use MCMC methods to calculate the weights. We will use the weights to 

define the Weighted Dirichlet posterior that can be used to find point and interval estimates of 

population quantities of interest at a relative modest computational cost. In the rest of the paper 

we will give examples to show that these weights can be used to generate inferential procedures 

with good frequentist properties. 



Survey Methodology, June 2013 9 
 

 
Statistics Canada, Catalogue No. 12-001-X 

But before proceeding we make a simple observation. Suppose we have in hand the sample 

along with a set of weights. If N  is large, then we can construct a population where the 

proportion of units in the population of type ( , )i iy x  is /iw N  for = 1, , .i n  Given the 

sample and the set of weights, we can think of this constructed population as the best guess for 

the unknown population. Then  

                                         
=1

=
n

i
bw i

i

w
y y

N
  and 2 2

=1

= ( )
n

i
bw i bw

i

w
y y

N
   (4.2) 

are the mean and variance of this constructed population. 

 
5  The weighted Dirichlet posterior 
 

It is often the case that weights are attached to data in public use files. These weights are then 

used by researchers to make point and interval estimates of population parameters. We shall see 

that the stepwise Bayes weights introduced here can often be used in standard frequentist 

formulas to estimate parameters of interest just as the usual weights are. We will use our weights 

to define the Weighted Dirichlet posterior (WDP) and show that it gives an alternative way to 

compute point and interval estimates for a variety of population quantities. 

Let the ’sjw  be a set of weights defined by equation (4.1) with = / .j jw N  Consider the 

Dirichlet distribution over the simplex defined by the vector 1= ( , , )nn n n    as an 

alternative posterior distribution for 1= ( , , )np p p  when using the observed sample to 

generate complete simulated copies of the population. We will call this posterior the weighted 

Dirichlet posterior (WDP). Note the WDP is a looser version of the CPP. Under the CPP every 

complete copy of the population will satisfy the constraints; however, under the WDP, only the 

average of all the simulated populations will satisfy the constraints. It is easy to see that under the 

WDP  

                                                    
=1 =1

= =
n n

i i i i bw
i i

E p y y y
 

 
 
   (5.1) 

and  
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2

=1 =1 <

2

2 2
=1 <

2

=1 <

2

=1 =1 =1

2

= ( ) Cov( , )

( )
= 2

( 1) ( 1)

1
= (1 ) 2

1

1
=

1

1
=

1

n n

i i i i i j i j
i i i j

n
i j i ji i i

i i j

n

i i i i j i j
i i j

n n n

i i i j i j
i i i

bw

V p y y V p y y p p

n n y yn n n y

n n n n

y n y y
n

y y y
n

n

 
 

 
   


 

 
        

 
      




  

 

 

 

 (5.2) 

where bwy  and 2
bw  were defined in equation (4.2). 

From this we see that when estimating the population mean, simulating from the WDP is 

equivalent to using the sample and their weights to construct the best guess for the population. In 

particular, when the weights are all equal the WDP is just the Polya posterior. 

There are two main reasons for introducing the WDP. The first is that as the number of 

constraints used increases the approximate 0.95 credible intervals based on the CPP become too 

short and contain the true parameter value less than 95% of the time. This happens because with a 

large number of constraints the CPP does not allow enough variability in the simulated complete 

copies of the population which it generates. The second reason is that simulating from the WDP 

is much easier that simulating from the CPP. Now it would be possible to simulated from the 

constrained WDP in such a way that all the constraints would be satisfied but this involves as 

much effort as simulating from the CPP. Moreover, we believe that this would yield approximate 

0.95 credible intervals which have poor frequentist coverage properties because they are too 

short. 

Now suppose our set of weights is the reciprocals of the inclusion probabilities from the 

sampling design. Let 
=1

= .
n

ii
W w  For most samples this value will not be equal to N  but 

often is is quite close. Again we can construct our best guess for the population based on the 

weights. The mean and variance of this population will be  
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=1

=
n

i
dw i

i

w
y y

W
  and 2 2

=1

= ( ) .
n

i
dw i dw

i

w
y y

W
   (5.3) 

If we use dwy  as an estimate of the unknown population mean then an unbiased estimate of its 

variance depends on the joint inclusion probabilities of the units in the sample. Since these are 

often difficult to obtain, what has been recommended in practice (Särndal, Swensson and 

Wretman 1992) is to assume the sampling was done with replacement even when that is not the 

case. Then the resulting approximate estimate of variance for dwy  is  

                                          

2

=1

2

1ˆ ( ) =
( 1)

=
1

n
i

d dw i dw
i

dw dw

w
V y n y y

n n W

n

 
   

  



 (5.4) 

where the second line follows from some simple algebra and where  

                                                    2

=1

= 1 .
n

i i
dw i

i

w w
y n

W W

 
  

 
  (5.5) 

Note that when the design is simple random sampling with or without replacement and 

=N nk  then = 0.dw  In this case, the estimate of variance in (5.4) is essentially equivalent to 

the variance in equation (5.2). 

In situations where the Horvitz-Thompson estimator makes sense, calculations have shown 

that dw  tends to be negative. This suggests that in such situations intervals based on the WDP 

will tend to be conservative. However calculations also show that dw  term tends to be positive 

in situations where the Horvitz-Thompson estimator is not appropriate. We will see in such cases 

that the usual approximation can work poorly and intervals based on the WDP can have better 

frequentist properties. 

 
6  Weights and Horvitz-Thompson 
 

The usual definition of the weight assigned to a unit in the sample is the inverse of its 

inclusion probability. One is encouraged to think of a unit’s weight as being the number of units 
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in the population which it represents. The resulting estimator of the population total is the 

Horvitz-Thompson (HT) estimator and is design unbiased. As we have already noted the 

unbiased estimate of its variance depends on the joint selection probabilities of the all the pairs of 

units appearing in the sample. Since in practice this can be impossible to compute the 

approximation in equation (5.4) is often used. 

The HT estimator works best when iy  is approximately proportional to its selection 

probability. To compare its behavior to the WDP method we conducted a small simulation 

experiment. We constructed the variable x  by drawing a random sample of 2,000 from a gamma 

distribution with shape parameter 5 and scale parameter 1 and adding 20 to each value. To 

generate y  we let the conditional distribution of iy  given ix  be a normal distribution with mean 

5 ix  and standard deviation 20. The correlation of the resulting population was 0.49. We denoted 

this population by A. We created a second population, B, by using the same vector of x  values 

but adding 400 to each iy  value. Our sampling plan used x  to do sampling proportional to size, 

i.e., pps( ).x  We used the R package sampling so that the inclusion probabilities were exact. 

Under this design we expect that the HT estimator would work well for population A but perform 

less well for population B. We also considered a third estimator, NHT, which is just the weights 

of the HT estimator rescaled so that they sum to the population size. We generated 500 samples 

of size 50. The results are giving in Table 6.1. 
 
 
Table 6.1 
Results for populations A and B based on 500 samples of size 50. The NHT estimator is the HT 
estimator renormalized so that the weights sum to the population size, N  2,000. The nominal 
coverage for each method is 0.95. 
 

Population Method Ave.
abs err 

Ave. 
len 

Freq of
coverage 

A  HT 4,628 21,898 0.940 
B  HT 8,965 43,914 0.960 

A & B  WDP 4,706 24,381 0.960 
A  NHT 5,051 21,897 0.896 
B  NHT 5,051 43,919 0.998 
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Although not shown in the table both the HT and WDP estimators are unbiased for both 

populations. As expected the HT estimator is the best for population A although its performance 

falls off dramatically for population B. On the other hand the WDP performance for both 

populations is exactly the same. As a point estimator the NHT does much better than the HT 

estimator for population B but not as well for population A. Overall the WDP is clearly performs 

the best. What is an explanation for these differences? 

In population A, i iy x  and calculations show that dw  is almost always negative and its 

absolute value is small compared to dw . In other words, when the HT estimator is appropriate it 

is essentially using the variance of the constructed population based on its weights to get its 

estimate of variance. 

The only difference between populations A and B is that a constant has been added to the y  

value of each unit. Now if the sample weights allow us to make a good guess for the population 

in the first case what goes wrong in the in the second case to cause the HT estimator to preform 

so poorly? To see the problem consider the following. 

In the HT estimate the sum of the weights in the sample almost never equal ,N  the population 

size. Given a sample in population B the HT estimate is  
50 50 50

=1 =1 =1

= 400i i i i i
i i i

w y w y w     

where iy  denotes the unit’s corresponding value in population A and iy  its value in population 

B. Note the second term in the above equation is adding additional variablity to the HT estimator. 

In population B calculations show that the term dw  in equation (5.5) is positive and can be quite 

large. It is accounting for the extra variablity in the HT estimator in population B which results 

from that fact that here 400i iy x   and not .ix  

We note that Zheng and Little (2003) argued that when estimating a finite population total and 

when using a probability-proportional to size sampling design that a penalized spline, 

nonparametric, model based estimator generally outperformed the Horvitz-Thompson estimator. 
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Zheng and Little (2005) developed methods to estimate the variance of their estimator. Some 

related work can be found in Zheng and Little (2004). 

The WDP weights only use the constraint that simulated complete copies of the population 

should have the correct population mean for .x  This is a more robust assumption than the one 

which underlies the HT estimator. But to be fair to the HT estimator it should be remembered (as 

was pointed out by a referee) that it was developed with the limited goal of obtaining linear 

unbiased estimators of the population total. Today however its simplicity no longer seems so 

important when more complicated and efficient estimators are much easier to compute. The 

superior performance of the stepwise Bayes method here suggests that if one believes that they 

have a set of weights for the sampled units which sums to the population size and which yields a 

good guess for the population, then they should use the variance of their good guess for the 

population to construct an estimate of the variance of their estimate of the population mean rather 

than equation (5.4). This is particularly true for large surveys containing several y  characteristics 

of interest. It would be very surprising if all of them satisfied the assumptions necessary to make 

equation (5.4) a good estimate of variance of a sample mean. Analogous to the observation in 

Royall and Cumberland (1981) and Royall and Cumberland (1985) that good balanced samples 

(the sample mean is close to the population mean) can lead to improved performance one should 

base their inference on simulated complete copies of the population which incorporate the 

available prior information contained in the auxiliary variables. 

 
7  Examples 
 

We believe that standard design based theory over emphasizes the role that the selection 

probabilities should play in making inferences after the sample has been observed. In this section 

we consider examples that show how the WDP can make use of objective prior information after 

the sample has been selected. 
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7.1  A simulation study 
 

To further understand how using the stepwise Bayes weights in the WDP can work we did a 

simulation study. We constructed a population with 2,000 units and a single auxiliary variable, 

.x  This variable was a random sample from a gamma distribution with shape parameter 5 and 

scale parameter 1. The conditional distribution of iy  given ix  was normal with mean 

2100 ( 8)ix   and standard deviation 20. The correlation for the resulting population was 

-0.38. We denote this population by quad. Clearly this is a toy example and the particular form of 

the relationship between x  and y  is not important to the WDP methods beyond the fact that x  

does contain some information about .y  In what follows we will compare WDP estimators to 

two standard methods under four different sampling plans. 

To construct the CPP we assumed that the x  values for the population are known and we use 

them to construct three strata after the sample has been observed. These strata will not be 

constructed in the usual way. We did this to underplay the usual role of the design and to 

emphasize the robustness of our approach against the choice of design. We will have a sample 

size of = 60n  and we will construct three post-strata. Let [1] [2] [60]< < <x x x  be the order 

statistic of the x  values in the sample. Let 20q  and 40q  be the population quantiles of [20]x  and 

[40]x  respectively. Then the CPP assumes that the total probability assigned to the units in the 

sample with the 20 smallest x  values must be 20q  and the total probability assigned to the next 

20 smallest must be 40 20 .q q  In other words we break the sample into three equal groups and 

use the information in the x  values to get the appropriate population size of the corresponding 

strata. In addition the CPP assumes that the probabilities assigned to the sample must satisfy the 

population mean constraint for .x  

The resulting WDP will be compared to two standard frequentist methods. The first is the 

post-stratified estimator which makes use of the same strata information as the CPP. The second 

is the usual regression estimator which assumes that the population mean of x  is known. 

Although the regression estimator is not really appropriate for population quad it is included as a 
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comparison. When computing 95% confidence intervals for the population total both frequentist 

methods will assume simple random sampling even when different sampling designs were used. 

We will denote these two estimators by STR and REG respectively. 

The first sampling design was simple random sampling without replacement. For the second 

we generated a set of sampling weights by taking a random sample of 2,000 from a gamma 

distribution with shape parameter 5 and scale parameter 1. We then added 5 to each value to get 

the vector, v  say. Note the values of v  and y  are completely independent. We then used 

approximate pps( )v  where at each step the probability that a unit is selected is proportional to its 

v  value and depends only the unselected units remaining in the population. We call this the 

Random Weights design. For the third design we used approximated pps( ).x  For the fourth we 

found the linear function, say ,l  which maps the range of y  onto the the interval [1, 2].  We then 

used approximate pps( ( ))l y  as the sampling design. We call this the y  Dependent design. In 

this design the selection probabilities depend weakly on the y  values and units with large y  

values are more likely to be selected than those with small values of .y  In particular the unit with 

the largest y  value is twice as likely to be selected as the unit with the smallest y  value. Clearly 

the Random Weights design and the y  Dependent design are not standard designs and would 

never be used in practice. They were included to emphasize our belief that in many cases given a 

sample a good estimate does not depend on how the sample was selected. 

For each design we took 500 samples of size 60 and computed the point estimate, its absolute 

error, the length of its interval estimate and whether or not it contained the true parameter value. 

The results are given in Table 7.1. 

Remember that in this example the WDP is using information from both the post-stratification 

and knowing the population mean of x  while STR just uses the first and REG just uses the 

second. Under SRS and the Random Weights design all four methods preform about the same. 

For the other two designs WDP does the best. Over all four designs its frequency of coverage is 

closest to the nominal level of 0.95. Using the constraint involving the population mean of x  
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allows it to correct for some of the bias introduced by the sampling plans that STR cannot do. 

However this constraint can only do so much. If in the y  dependent design the range of l  was 

[1, 4]  then WDP’s average absolute error is 4.5% better then that of STR and the frequency of 

coverage on the 0.95 nominal intervals were 0.86 and 0.80 respectively. There is just not enough 

information in x  to correct for this much selection bias. 
 
 
 
 
Table 7.1 
Simulation results for population quad discussed in Section 7.1 for 500 random samples of size 60 
for four different sampling plans. The true population total was 227,923.0. The nominal coverage 
for each method is 0.95. 
 

Method  Ave.  
value 

Ave.
err 

Ave.
len 

Freq of
coverage 

SRS 
STR  227,856.1 4,165.0 21,332.1 0.950 
REG  227,602.1 4,302.7 21,300.3 0.944 
WDP  227,546.9 4,190.6 23,029.7 0.958 

Ave. min and max of WDP parameters were 0.658 and 1.580. 

Random Weights 
STR  227,976.5 4,371.2 21,254.1 0.938 
REG  227,715.5 4,462.2 21,305.9 0.934 
WDP  227,721.2 4,420.6 22,901.4 0.950 

Ave. min and max of WDP parameters were 0.651 and 1.583. 
pps( )x

STR  225,295.8 5,228.9 23,008.4 0.916 
REG  224,207.2 5,611.2 21,780.3 0.878 
WDP  227,471.1 4,919.2 22,706.6 0.936 

Ave. min and max of WDP parameters were 0.374 and 3.024. 

y  Dependent 

STR  231,590.0 5,229.0 21,170.8 0.892 
REG  231,424.4 5,143.4 21,127.9 0.902 
WDP  231,139.1 4,967.6 22,867.0 0.938 

Ave. min and max of WDP parameters were 0.660 and 1.643. 

 
 
 
 

For each design we have included the average of the smallest and largest values of the 

parameter values defining the WDP which in this case must sum to 60. We see the range is 

largest for pps( ).x  
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In the simulations we also used the WDP to construct 0.95 credible intervals for the 

population median of .y  For the four designs its respective frequency of coverage was 0.956, 

0.950, 0.952 and 0.930. 

We did another simulation study where x  was generated in the same way but now the 

conditional distribution of iy  given ix  was normal with 60 ix  and standard deviation 2 .ix  

The correlation between x  and y  was 0.46. Under all four designs the performances of the point 

estimators were very similar. The WDP intervals tended to be a bit longer than the rest but over 

the four designs its average frequency of coverage for the population total was 0.949. Under the 

y  Dependent design its frequency of coverage for the population total was 0.934 while for STR 

and REG the corresponding coverages were 0.896 and 0.886. Its average frequency of coverage 

for the population median of y  was 0.942. 

A frequentist could argue that this is an unfair example since the regression estimator does not 

make much sense for this population and of course they would be right. If for this problem you 

assumed a quadratic relationship between y  and x  and if you assumed that the first two 

population moments of x  were known then the resulting regression estimator would out perform 

the WDP. In Lazar et al. (2008) there is such an example. Moreover, they show that including a 

constraint for the second moment of the CPP will hardly change the behavior of the resulting 

estimates. Hence, when there is good prior information about the model relating x  and y  this 

should be used in the analysis. When such prior information is not available we believe the WDP 

does have certain advantages even though it may not yield dramatic improvements over standard 

methods. It uses only objective prior information and makes no model assumptions about how 

the characteristics of interest and the auxiliary variables are related. It can correct for a slight 

dependency of the selection probabilities on the characteristic of interest. Although the sampling 

design plays no explicit role in its calculation, information which is often incorporated in the 

design can be reformulated as a constraint and be used when defining the CPP. Given a sample, 

inferences based on the WDP use many simulated complete copies of the population which on 
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the average are consistent with the prior information. This makes makes it straightforward to 

estimate parameters other than a population mean or total. 

 
7.2  Stratification and estimating the median 
 

In many applications only a few observations, sometimes only two, are taken from each 

stratum. For such problems finding a good confidence interval when estimating the population 

median can be difficult. Next we will compare the standard method, see for example Section 5.11 

of Särndal et al. (1992), with the WDP. We will assume simple random sampling without 

replacement within strata. 

For definiteness, assume we have L  strata and stratum j  contains jN  units. Let 

=1
=

L

jj
N N  be the total size of the population. Assume that two observations are taken from 

each stratum. Then the weight assigned to each sampled unit is one-half of the stratum size from 

which it was selected. The standard method uses these weights to find its confidence interval. 

For this scenario the usual Polya posterior is applied within each stratum, independently 

across strata. Alternatively, this can be thought of as a CPP where the amount of probability 

assigned to the two sampled units in stratum j  must sum to / .jN N  If ,1 ,2= ( , )j j jp p p  

represents the probability assigned to the two sampled units from stratum j  then under the CPP 

( ) = ( / (2 ), / (2 ))j j jE p N N N N . Recalling the notation from Section 5 we see that under the 

WDP the weight assigned to each of the two sampled units in stratum j  is ( ) / .jLN N  Recall 

that simulating complete copies of the population using the WDP means that individual simulated 

copies will almost certainly not satisfy the constraints however the constraints will be satisfied 

when we average over all simulated copies. At first glance this might seem like a bad idea but we 

will see that when estimating the population median interval estimates based on the WDP behave 

better than the standard intervals which are too short. We shall see that the extra variability 

present in the WDP yields longer intervals with better frequentist properties. 
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The stratified populations we considered were constructed as follows. The strata sizes were a 

random sample from a Poisson distribution with parameter = 100.  The strata means were a 

random sample from a normal population with the mean = 150  and with either a standard 

deviation of = 10  or = 20.  The strata standard deviations were a random sample from a 

gamma distribution with scale parameter one and shape parameter   with either = 0.10  or 

= 0.25.  We constructed two versions of each of the four types, one with 20 strata and the 

other with 40 strata. For each of the eight populations we took 500 samples where each sample 

consisted of two observations selected at random without replacement from each stratum. For 

each sample we compared the standard approach with estimates based on the WDP. The results 

can be found in Table 7.2. We only present the results for the 20 strata populations because the 

results for the 40 strata population are similar. Both methods are approximately unbiased and the 

point estimate based on the WDP seems to do just a bit better. But the confidence intervals 

produced by WDP are clearly superior. Even though in one case the WDP intervals are clearly 

too long its overall performance is much better than the standard intervals. 
 
 
Table 7.2 
Simulation results from 500 stratified random samples of size two within each strata from 
populations with 20 strata. The nominal coverage for each method is 0.95. 
 

Method  Ave.  
value 

Ave.
err 

Ave.
len 

Freq of
coverage 

= 10  and = 0.10  
Stand  148.40 2.37 8.30 0.808 
WDD  148.39 2.22 12.20 0.95 

= 10  and = 0.25  
Stand  144.28 5.70 20.59 0.834 
WDD  144.18 5.41 28.38 0.950 

= 20  and = 0.10  
Stand  152.75 3.02 10.52 0.828 
WDD  152.61 2.78 22.88 0.996 

= 20  and = 0.25  
Stand  155.94 6.72 23.17 0.826 
WDD  155.89 6.35 34.96 0.962 
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What causes the poor performance of the WDP intervals in the one case? Additional 

simulations indicate that when the strata means vary widely and the strata variances tend to be 

relatively small then the WDP intervals will tend to be too long. In our simulations the case with 

= 20  and = 0.10  leads to a population with such strata. When the sample size was 

increased to four units per stratum the difference between the two methods is not so dramatic but 

the story remains much the same. The standard intervals tend to be to short and under cover while 

the WDP intervals are longer and tend to over cover. 

Clearly the choice of a good method for constructing a confidence interval depends not only 

on the size of the intervals it produces and but on the probability with which those intervals fail to 

include the true but unknown parameter value. Cohen and Strawderman (1973) and Meeden and 

Vardeman (1985), among others, have explored the question of admissibility for confidence 

intervals. Although the results given there are not directly applicable to our case the second paper 

shows that in some situations certain Bayes procedures can yield almost admissible procedures. 

These type of arguments along with the fact that the standard interval is way too short gives some 

circumstantial evidence, we believe, that the WDP intervals in this example are not outrageously 

too long. To sum up, we believe that in the important special case when the sample sizes are two 

and the strata are not dramatically different the WDP intervals seem to be a serious competitor 

for the standard intervals. 

 
7.3  Integrated public use microdata series 
 

The Minnesota Population Center (MPC) is an interdepartmental demography research group 

at the University of Minnesota. A major goal of the MPC is to create databases and statistical 

tools which can be utilized in the study of economic and social behavior. One database of interest 

is the Integrated Public Use Microdata Series (IPUMS), which is a consolidation of U.S. censuses 

and other national surveys from 1850-present (Ruggles, Sobek, Alexander, Fitch, Goeken, Hall, 

King and Ronnander 2004). The word microdata is applied in this context because each row of 
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an IPUMS dataset corresponds to one individual or one household; such low-level of detail may 

be contrasted with a typical Census Bureau publication or online summary table, in which a 

preset geographic specific tabulation (geography can be the entire country, states, counties, 

census tracts etc.) of the microdata is given to the data user. 

One dataset which offers a rich array of numerical variables is the 2005 American Community 

Survey (ACS). This Census Bureau product is a large sample survey, and the Census Bureau 

does not know the true population means for the variables. To conduct simulations with the 2005 

ACS, the sample played the role of the population. More specifically, the full population was 

assumed to be a set of 3,579 Minneapolis residents who are of working age (between 25 and 75), 

and who earn a yearly wage between $20,000 and $120,000. For our purposes the two variables 

of interest were: 
 

 .inctot  Total pre-tax income from 2004. 

 .sei  The Duncan Socioeconomic Index. Created in the 1950’s, this is a numerical 

variable which attempts to rate the prestige associated with an individual’s occupation. 

The range of this variable is [1,100]. 
 

For our simulations we set = log( )y inctot  and = .x sei  The correlation between y  and x  

is 0.398 and we assume that the mean of x  is known. For estimating the population mean of y  

we considered the estimator based on the WDP and the regression estimator. We used two 

different designs: simple random sampling and approximate pps( ).x  In each case we took 300 

samples of size 30. The results are given in Table 7.3. We see that although the two methods are 

comparable the WDP clearly gives the better intervals. 
 
 

Table 7.3 
Simulation results from 300 random samples of size 30 from the IPUMS population. The nominal 
coverage for each method is 0.95. 
 

Design Method Ave.
err 

Ave.
len/2 

Freq of
coverage 

SRS  Reg  0.052 0.128 0.943 
 WDP  0.052 0.138 0.947 

pps( )x   Reg  0.062 0.132 0.897 
 WDP  0.066 0.133 0.937 
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8  Final remarks 
 

The construction of weights in survey sampling is often more of an art than a science. This is 

one possible conclusion that can be drawn from the recent paper of Gelman (2007) and the 

accompanying discussion. He argues for a Bayesian approach to constructing weights using 

regression models which relate the characteristic of interest to auxiliary variables. Here we 

argued for a stepwise Bayes approach which will make use of the information present in the 

auxiliary variables without assuming a model relating the characteristic of interest to the auxiliary 

variables. The resulting weight for a unit in the sample can be given the usual interpretation as 

the number of units in the population which it represents. 

A frequentist weight, say ,iw  is the inverse of an inclusion probability, and this number 

represents the number of units in the population represented by a particular unit in the sample. So 

1iw   for all i  and .ii s
w N


  In Section 6 we saw that for the Horvitz-Thompson 

estimator the sum of the weights of the units usually fails to equal the population size which can 

result in a poor estimator except in very special circumstances. Another problem with frequentist 

weights is that they are often adjusted – after the sample is collected – to ensure that the 

frequentist estimates are in agreement with prior information about the population (Kostanich and 

Dippo 2002). After making adjustments, the weights may be rescaled so that they sum to a 

population total. However, the adjusted frequentist weights no longer depend just on the 

sampling design and they no longer represent inverses of inclusion probabilities. The intuition 

behind frequentist weights is therefore somewhat confusing. Before adjustments, frequentist 

weights are functions of the design; but after adjustments, they are now functions of the design 

and other prior information, which may or may not be related to the design. 

Bayesians think of estimation in survey sampling as a prediction problem. Their predictions 

are based on an assumed model which can lead to weights being assigned to the units in the 

sample. See for example the aforementioned Gelman (2007) and Little (2004). As noted by a 

number of authors (Pfeffermann 1993) performing a weighted analysis for a model using inverses 
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of the inclusion probabilities can protect the sampler from model misspecification. Moreover in 

certain situations the two approaches may lead to similar results. 

Recently, Rao and Wu (2010) have developed methods which use a pseudo empirical 

likelihood approach and base their inferences on Dirichlet posterior distributions. The resulting 

procedures, although formally somewhat similar to some discussed here, use prior information in 

a different way. For them much of the prior information must be filtered through the design while 

we believe that prior information which is often included in the design can be used directly to 

generate good posteriors. For better or worse we are closer to the classical Bayesian scenario 

where the posterior distribution does not depend on the sampling design. 

Here we have focused on using the CPP to generated a set weights based on the sample and 

prior information and then making our inferences using the WDP based on these weights. Strief 

(2007) considered examples where the weights generated by the CPP were instead used in the 

appropriated frequentist formulas to get an estimate of variance and noted that their performance 

was similar to standard methods. Alternately one could imagine basing their inferences on the 

WDP but using frequentist weights, say generated by calibration methods (Särndal and 

Lundström 2005), instead. Although this deserves further study it is our expectation that such 

approaches should lead to inferential procedures with good frequentist properties. 

In the design based approach consistency is an important property for an estimator to possess. 

For an important special case when the design is SRS the CPP estimators are consistent. This is 

demonstrated in Geyer and Meeden (2013). 

Just as the CPP does, the WDP also has a stepwise Bayes justification. (For more details see 

Strief (2007).) The weights used in the WDP have a consistent formulation and interpretation. 

They are always a posterior expectation and always sum to the population size. They represent 

the average number of times that each unit in the sample appears in a simulated, completed copy 

of the population under the CPP. This average is with respect to the uniform distribution over all 

possible copies of the population which just contain the units in the sample and which satisfy the 
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given constraints. These weights depend only on the same kinds of objective prior information 

about the population which are often used to define and adjust frequentist weights. This allows 

them to incorporate prior information without explictly specifying a prior distribution. 

In most cases the weight assigned to a unit in the sample will depend on the other units in the 

sample. We have argued that after the sample has been selected one should argue conditionally. 

That is, given the sample the weights should depend on all the available prior information about 

the population but not on how it was selected. (We are assuming that the person selecting the 

sample and the analyst are one in the same.) Any procedure constructed in this manner should 

preform well for a variety of sampling designs. For any procedure, be it either frequentist, 

Bayesian or stepwise Bayes this is the litmus test: it should be evaluated by how it behaves under 

repeated sampling from the design of interest. 

To implement the methods discussed here one first needs to use the CPP to computed the 

weights for the observed sample. Then one needs to use the weights in the WDP to simulate 

complete copies of the population. The first step is the more difficult although the software 

package polyapost makes it relatively straightforward for anyone familiar with R. Once the 

weights are known it is easy to simulate from the WDP in many computer packages. This makes 

our approach more practical for survey datasets (like IPUMS) which are presented with the 

weights attached and are used by multiple researchers. A more serious limitation is that we have 

only considered simple single stage sampling designs. More work needs to be done to extend 

these methods to more complicated multi-stage designs. If the underlying constraints are selected 

wisely the resulting procedures can have good frequentist properties for a variety of sampling 

designs. These stepwise Bayes weights can be thought as our best guess for the unknown 

population given the sampled units and our prior information. 
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