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1. Introduction 
 
The U.S. Census Bureau is one of the largest survey data 

collection organizations in the world, in addition to its role 
in the collection of the U.S. Decennial Census data. The two 
major statistical tools used by the Census Bureau in de-
signing its surveys are stratification and multi-stage sam-
pling. These tools have been successfully implemented 
starting in the 1940s and have continually been adapted and 
refined since then. 

While this general sampling approach has been very 
successful, there are increasing concerns about rising survey 
costs, decreasing response rates and new frame coverage 
issues (especially related to telephones). At the same time, 
advances in data collection methods, new data sources and 
computational tool offer opportunities for considering 
survey design approaches that would have been unfeasible 
before. In conjunction with the 2010 Redesign Program 
currently on-going at the Census Bureau, input was there-
fore sought from leading academic researchers in innovative 
sampling methods, as a way to initiate the exploration of 
possible new approaches to design surveys conducted by the 
Census Bureau. As a result, Profs. Steve Thompson (Simon 
Fraser University), Sharon Lohr (Arizona State University) 
and Yves Tillé (Université de Neufchâtel) were invited to 
give overview lectures on some of the designs they de-
veloped. I was invited to contribute a discussion to each of 
these lectures. 

In the three sections that follow, I will summarize my 
comments to each of these lectures. My goals in those 
comments were to highlight the most important aspects of 
the sampling methods that were presented, to discuss some 
of the main opportunities for using these designs in the 
household sampling context, and to identify possible 
challenges in implementation. 

 
2. Adaptive network and spatial sampling  

Prof. Thompson’s lecture covered a broad class of de-
signs that includes adaptive cluster sampling, network 
sampling and adaptive web sampling. Unless I am referring 
to a specific design within this class, I will refer to these 
designs as “adaptive sampling” in what follows. A major 

advantage of adaptive sampling is that it incorporates some 
of the features of “convenience” sampling approaches such 
as snowball sampling, including decreased reliance on a 
sampling frame and the ability to target sampling to portions 
of the population of particular interest. But unlike conve-
nience sampling, adaptive sampling remains firmly design-
based, in the sense of allowing randomization-based finite 
population estimation and inference. 

In adaptive sampling procedures, an initial sample 0s  is 
drawn according to a probability sampling design 0 0( ).p s  
Based on the characteristics of the elements in 0s  (e.g., 
presence/absence of features of interest or an enumeration of 
“links” to other elements in the population), a follow-up 
sample 1s  is selected from the remaining population, using 
a conditional sampling design 1 1 0( | ).p s s  This process is 
repeated with successive incremental samples 2 3, , ...s s  
until a target criterion such as overall sample size or number 
of sampling “waves” is reached, and the final sample is the 
union of each of the successive samples. The specifics on 
how the waves are drawn varies by adaptive design. Section 
2.2 of Thompson’s article in this issue and Thompson 
(2006) provide additional details for adaptive web sampling, 
a very flexible type of adaptive sampling that includes many 
of the other designs as special cases. 

Because the designs for each of the sampling waves are 
probability designs, it is possible to obtain valid design-
based estimators. A simple estimator for the finite popu-
lation mean 1= UN iN y   is constructed as follows. 
Based on the initial design 0p  with associated inclusion 
probabilities 0 ,i  an unbiased estimator for the population 
mean is given by 1

0 00
ˆ = / .s i iN y    For each of the sub-

sequent waves = 1, ..., ,k K  an unbiased estimator of N  
is given by 

1
= / ,s sk i i kik k

z y y q


   where kiq  are condi-
tional inclusion probabilities for wave k  (see Thompson 
(2006) for details on construction of the ,kiq  and Section 2.4 
of Thompson’s article in this issue for specific examples). 
Letting 1

=1ˆ = ,K
kr kK z   an unbiased estimator for N  is 

obtained as 0ˆ ˆ ˆ= (1 ) ,rw w      which is a linear com-
bination of the initial estimator and the mean of the sub-
sequent estimators. 

The estimator ̂  is design unbiased but it depends on the 
order of the waves in which the sample was obtained. A 
more precise estimator can be obtained by averaging over 
all the different orders in which the same sample could have 
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been obtained. For small sample sizes, an explicit expres-
sion is available for this more efficient estimator, but in 
general it needs to be approximated by repeated sampling 
from an appropriately defined Markov chain, and taking the 
mean of the samples. The exact methods for setting up the 
chain and drawing the samples are described in Thompson 
(2006), which also discusses variance estimation for the 
resulting estimator. 

One of the primary advantages of adaptive sampling 
designs is that they allow the survey organization to focus 
the sample in portions of interest in the population. This is 
particularly useful in situations where some of the elements 
of interest are relatively rare and where they cannot be 
identified a priori in a sampling frame. Examples of such 
situations are surveys of hunting and fishing behavior, 
recent immigrants, home-schoolers, or owners of family-
owned businesses. In each of these cases, the elements are 
quite “diffuse” in the population and no comprehensive 
frame is generally available. However, it is likely that 
individuals who are part of this population will be able to 
provide information on other individuals, so that links can 
be identified and sampled across different adaptive sampling 
waves. Note that adaptive sampling can also be used when 
these types of rare elements are part of a subpopulation of 
interest within a survey of a larger and non-rare population. 
For instance, a survey of school children might want to 
include a stratum of home-schooled children. 

Finding relatively rare (sub)populations is a common 
challenge in surveys, and a number of methods are regularly 
deployed to deal with this issue. Perhaps the most common 
sampling design in the context of household surveys is 
stratified multi-stage sampling. To the extent that relevant 
PSU-level auxiliary information is available, the survey 
organization can oversample PSU expected to contain a 
larger fraction of the groups of interest. An example of such 
a situation is a survey of African-American males at risk of 
Parkinson’s disease, in which Census tracts with higher 
African-American population fraction could be oversam-
pled. Another sampling design that can be useful in this 
context is multi-phase sampling. In this case, the first phase 
of sampling is used either as a screening sample or as a way 
to collect relevant auxiliary information, while subsequent 
phases focus on obtaining the survey data of interest. The 
Agricultural Resource Management Survey (ARMS) con-
ducted by the USDA follows this design. A sample of all 
farms is selected in phase 1, in which farm characteristics 
for the survey year are collected. In later phases, targeted 
sampled based on the commodities of interest (e.g., dairy, 
wheat, etc) are selected. A third sampling approach that is 
sometimes useful for obtaining samples of rare (sub)popu-
lations is multi-frame sampling. The principle underlying 
multi-frame sampling is to combine several frames with 

different coverage characteristics, for instance a “good” 
frame containing a large proportion of elements of interest 
but potentially incomplete and a “bad” frame that is compre-
hensive but contains a low proportion of elements of inter-
est. For instance, a survey of companies in a particular 
industry might be able to use an industry group membership 
list as the “good” frame and a general company list as the 
“bad” frame. For a more in-depth look at multi-frame sam-
pling, see Section 3 below. 

Compared to these three designs, adaptive sampling is 
more flexible and allows finer control over the number and 
characteristics of elements that are included in the sample, 
which will often result in improved efficiency and/or lower 
cost. A drawback of adaptive sampling is that information 
needs to be collected on the linkages between elements, 
which can increase respondent burden and data collection 
cost, and potentially raises confidentiality issues. 

Because adaptive sampling frequently relies on “links” 
between elements in order to define the conditional selec-
tion probabilities in the sampling waves, it is also parti-
cularly well-suited for surveys that are interested in studying 
connections between elements in a population. Examples of 
such situations might be surveys involving transactions or 
relationships between businesses, surveys of barter/trading 
behavior of households, and surveys of family network 
relationships or characteristics. 

For a survey organization contemplating adoption of 
adaptive sampling, a number of issues related to estimation 
and data dissemination need to be considered. In many 
cases, the survey data are released in the form of a weighted 
dataset, and variance estimates are provided in the form of a 
simplified design description (e.g., strata and PSUs), repli-
cate weights or generalized variance functions. It is also 
very common for the weights to be calibrated and/or 
adjusted for non-response. Estimators for adaptive designs 
are indeed expressible as weighted sample sums, so that a 
weighted dataset could readily be created even for the 
Markov chain version of the estimators mentioned above. 
The choice of how to best provide variance estimates with 
the dataset is something that still needs to be investigated 
and might depend on the specifics of the survey. Similarly, 
how to incorporate calibration and nonresponse adjustments 
in adaptive sampling estimation is an area where additional 
research is needed. 

 
3. Sampling with multiple overlapping frames  
Prof. Lohr gave a comprehensive overview of general 

sampling designs and estimation methods when sampling 
uses multiple frames. Traditional approaches for conducting 
surveys are increasingly called into question today, because 
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of increasing costs, decreasing response levels for traditional 
modes, and increasing concerns for undercoverage of ex-
isting sampling frames (e.g., landline telephone numbers 
reached by RDD). By drawing samples from several frames 
instead of from a single frame, it is possible to reduce 
survey costs, improve the coverage of the overall sample, 
and potentially even increase response rates depending on 
the specific survey being conducted (for instance, because 
of improved respondent identifier information in one of the 
frames). 

Multiple frame sampling is a pure randomization-based 
approach to draw samples, and sampling within the indi-
vidual frames follows the same methodology as “classical” 
single-frame sampling. Fully design-based estimation meth-
ods for multiple-frame sampling are available, several of 
which can readily be deployed in the large-scale survey 
context in which a weighted dataset is the primary output 
(see below). The key feature of all estimation methods is the 
estimation of the frame overlap, which is typically unknown 
but needs to be accounted for. This is done by, for each 
frame, constructing design-based estimators for the sub-
population(s) of elements that also fall in the other frame(s). 
The estimators for the characteristics of the frame inter-
section(s) then need to be combined across frames. Existing 
methods differ in how they combine these estimators, with 
the simplest methods using sample-size weighted averages 
and more complex estimators weighting by estimates of the 
precision of the individual estimators. 

Sampling from multiple frames is particularly applicable 
in cases where no single frame is available that covers the 
whole population. Typical examples of such situations are 
RDD sampling, where an increasing fraction of the popu-
lation is not reachable through a landline telephone number, 
surveys of professionals or businesses with partial listings 
available from vendors or professional organizations. Other 
situations in which multiple frame sampling might be appli-
cable are surveys of rare subpopulations that exist within a 
larger population. An overall frame for the population 
exists, but screening respondents for whether they belong 
the the subpopulation is time-consuming and expensive. An 
alternate frame containing a much higher proportion of 
elements from the subpopulation of interest is sometimes 
available, but if the coverage of that frame is incomplete, the 
survey organization might not be willing to rely on it for 
fear of not obtaining a valid sample. Combining the 
alternate but incomplete subpopulation frame with the 
complete but inefficient population frame might be both 
cost-effective and statistically defensible. Examples of 
surveys of such subpopulations are surveys of hunting and 
fishing, where a license frame often exists but it might be 
incomplete or out of date. This multiple frame approach 
might also be useful for a survey of the general population, 

as a way to increase the sample size within certain sub-
populations of particular interest. For instance, in a general 
survey of farms, it might be of interest to produce estimates 
for organic farms, which only represent a small fraction of 
farms but with many of those listed in organic business 
directories. Section 1 of Lohr’s article in this issue gives 
several additional examples of the wide applicability of 
multiple frame surveys. 

As noted above, estimation methods involve the con-
struction of estimators for the frame intersection subpopu-
lation, which requires selection of a weighting method for 
the estimators obtained from the different frames. Weighting 
methods that rely on estimating the precision of these esti-
mators might be preferred from an efficiency perspective. 
However, they are somewhat problematic to implement in 
practice, because the resulting weights can vary for different 
variables in the survey. More practical approaches will 
forego some efficiency in order to be able to have single 
weights for all survey variables, a key feature emphasized 
repeatedly in Lohr’s article in this issue. The pseudo-
maximum likelihood (PML) method of Skinner and Rao 
(1996) produces a single set of weights and is recommended 
by Lohr as the method of choice for single surveys, while a 
simpler fixed-weight approach is preferable for longitudinal 
surveys. 

While the basic methodology for constructing design-
based estimators for multiple frame sampling is in place 
today, there is still a need for further research in approaches 
for applying calibration and nonresponse adjustment in this 
context. Because it is possible to apply those adjustments at 
the individual frame level, the population level, or both 
levels (depending on the available auxiliary information), an 
investigation of the properties of the estimators under these 
different scenarios would be very useful, and should be used 
to develop guidelines for survey practitioners. Section 3 of 
Lohr’s article in this issue discusses some initial results in 
this area. 

Variance estimation methods for multiple-frame esti-
mators have been developed and are reviewed in Section 4.2 
of Lohh’s article, and include both linearization and repli-
cation approaches. An important practical issue in the use of 
the linearization approach is that it requires access to the 
frame identification for all the elements in the sample, 
because it involves separate estimation of the variance in 
each frame. This might be undesirable for the survey organi-
zation producing the data, for reasons of data confiden-
tiality. In the case of replication methods such as jackknife 
and bootstrap, it is possible for the survey organization to 
create sets of replicate weights that do not require disclosure 
of the frame identity of individual sample elements to the 
data users. Lohr (2007) recommends the combined boot-
strap approach for inference for multiple frame sampling. 
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As an alternative, the grouped jackknife of Kott (2001) 
could also be considered. 

Implementing multiple frame sampling surveys can be 
more challenging than single-frame surveys. There needs to 
be awareness for the increased potential for nonsampling 
errors, as discussed in Section 5 of Lohr’s article, especially 
if the data collection modes or protocols vary across frames. 
For instance, sampled elements in one frame get an advance 
letter, while those in another frame receive a “cold call” 
because of lack of address information. It is also possible 
that the nonresponse characteristics differ across frame, so 
that separate adjustments are required. Finally, in many 
cases the elements present in the different frames might 
have different characteristics (e.g., organic farms belonging 
to a national organic business association vs. those that do 
not). In all those cases, attention to frame-specific effects 
and careful weight construction are required in order to 
obtain valid survey estimators. On the other hand, the 
presence of multiple frames provides opportunities for 
measuring nonsampling errors, because they entail multiple 
samples from the same population. For instance, it might be 
useful to perform “cold calls” for a portion of the selected 
elements in the frame with addresses to evaluate mode 
effects. 

 
4. Balanced sampling with the cube method  

The presentation by Prof. Tillé covered the fundamentals 
of balanced sampling and described the cube method, which 
he developed as a practical algorithm implementing the 
drawing of balanced samples. The goals of balanced sam-
pling designs are to maintain the representation of the 
population structure in the sample (hence the term “bal-
ance”), and to improve the efficiency of survey estimators. 
Today, most survey statisticians apply stratification as the 
primary tool to achieve these two goals. Stratification 
achieves balance by forcing the sample composition to 
match the stratum allocation, and improves the efficiency of 
estimators by removing the component of variance due to 
between-stratum differences. Systematic sampling is also 
used to achieve these goals, most commonly in natural re-
source surveys. In this case, the sample composition 
matches the population composition exactly along the 
sorting variable, and approximately for any variable corre-
lated with the sorting variable. Efficiency is gained because 
sample moments of the variables of interest (approximately) 
match population moments. While both approaches are 
widely used and work well, they are relatively inflexible. 
Stratification often involves dividing the population into 
“cells” defined by the intersection of stratification variables, 
which might lead to a proliferation of many small cells with 

corresponding small sample sizes. Systematic sampling is a 
highly constrained form of sampling with limited amount of 
flexibility in sample construction, and with the additional 
issue of the lack of a design-based variance estimator. 

Balanced sampling can be viewed as a generalization of 
stratification. Under this interpretation, stratified samples are 
drawn with given probabilities of inclusion for all the popu-
lation elements, but subject to constraints on the sample size 
in each stratum. In balanced sampling, the stratification 
constraints are replaced by constraints of the form 

/ = ,s Ui i i x x  where ix  is a vector of balancing 
variables. When the ix  are stratum indicators, balanced 
sampling is the same as stratification, but any categorical or 
continuous variables (or combination thereof) can be used, 
which provides a high degree of flexibility in sample 
construction. 

As noted above, the cube method is an algorithm that 
draws balanced samples given a set of inclusion probabili-
ties and constraints. If exactly balanced samples exist in the 
population, the algorithm will try to select one of them. If no 
sample can be found that has the postulated inclusion 
probabilities and satisfies the balancing constraints exactly, 
it will attempt to come as close as possible to satisfying the 
constraints. The cube method requires that the balancing 
variables ix  be known for all elements in the population. 
Depending on the survey context, this requirement might 
represent a key limitation on the applicability of balanced 
sampling. 

Despite the fact that balancing on population-level 
auxiliary variables is done at the design stage, it seems 
likely that in practice, calibration and other weight adjust-
ments such as for nonresponse will still often be required. In 
fact, Tillé recommends the combination of balancing and 
calibration as the most efficient strategy (see Section 7.4 of 
Tillé’s article in this issue). The theoretical properties of 
estimators that are both balanced and calibrated still needs to 
be fully worked out, however. 

While balanced sampling maintains the inclusion proba-
bilities of the elements in the population, it is clear that the 
presence of the balancing constraints affects their joint 
inclusion probabilities and hence the variance of the esti-
mators. This topic is addressed in Section 6 of Tillé’s article. 
Deville and Tillé (2005) showed that, under certain condi-
tions, the variance of balanced sampling estimators can be 
approximated by a linearization-type variance, which de-
pends on the residuals of a linear regression of the survey 
variables on the balancing variables. While this is an 
important and useful result, it does not lead to a variance 
estimation approach that is applicable to all survey ap-
plications. One issue is that variance estimation based on 
this method requires access to the balancing variables for all 
the survey respondents, and these might not be made 
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publicly available as part of the survey dataset. In this 
context, a replication-based method might be particularly 
attractive, because it would not require releasing these 
variables. However, no such method is currently available. 

Balanced sampling has close connections with rejective 
sampling, which aims to achieve the same goals. In rejective 
sampling, a sample is drawn with prespecified inclusion 
probabilities and the sample is accepted or rejected based on 
whether it is within a given tolerance level of a balancing 
constraint. If the sample is rejected, the procedure is 
repeated until a sample is found that falls within the 
tolerance level. While rejective sampling has a long history, 
Fuller (2009) described some asymptotic theory that showed 
that asymptotically, his version of rejective sampling was 
approximately equivalent to balanced sampling. 

 
5. Closing remarks  

The methods covered in the three lectures are remarkably 
complementary. Adaptive designs make it possible to obtain 
randomization-based, statistically valid samples for popu-
lations that have traditionally been difficult to sample 
efficiently. Very little frame information is required to draw 
such a sample, but a significant amount of effort has to be 
expended during the data collection in order to identify and 
follow the “links” among the elements, and draw the 
successive samples. In contrast, balanced sampling is useful 
when very detailed frame information is available, and in 
that situation, it allows for highly customized and efficient 
sample designs. Once a balanced sample is drawn, the data 
collection can proceed in the same manner as for traditional 

surveys. Multiple frame sampling covers an intermediate 
case, in the sense that no single good frame exists but 
several partial frames are used to “offset” each other’s 
weaknesses. Separate samples are drawn from each frame, 
and data collection proceeds as usual, except for that fact 
that it is necessary to determine which frame(s) each 
sampled respondent belong to. 

Combined with the existing approaches already in use, 
these three new sampling methods have the potential to 
greatly increase the flexibility with which samples can be 
customized for specific applications, to reduce survey costs 
and to increase the precision of survey estimators. 
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