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Abstract 
This paper presents a review and assessment of the use of balanced sampling by means of the cube method. After defining 
the notion of balanced sample and balanced sampling, a short history of the concept of balancing is presented. The theory of 
the cube method is briefly presented. Emphasis is placed on the practical problems posed by balanced sampling: the interest 
of the method with respect to other sampling methods and calibration, the field of application, the accuracy of balancing, the 
choice of auxiliary variables and ways to implement the method. 
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1. Introduction 
 
While the idea of balanced sampling has been around 

since the early days of survey statistic development, ap-
plying the concept has been difficult because almost all the 
proposed methods have either been enumerative or rejective 
and required considerable computation time. The algorithm 
of the cube method was proposed in 1998 by Deville and 
Tillé, and a first implementation was written by three 
students of the École Nationale de la Statistique et de l’Ana-
lyse de l’Information of Rennes in France (see Bousabaa, 
Lieber and Sirolli 1999). Finally, the method was published 
in Tillé (2001) and Deville and Tillé (2004). Since this time, 
several implementations have been proposed and several 
survey managers have used the cube method to select 
samples, the most important applications being the New 
French Census and the French Master Sample. 

Our aim is to assess 10 years of development and use of 
balanced sampling in order to better ascertain when and 
how the cube method can be used to select samples of 
householders or establishments. After discussing the con-
cept of balanced sample and balanced sampling in Section 
2, we give a list of particular cases in Section 3. In Section 
4, we briefly trace the history of this concept for both the 
model-based and design-based frameworks. Next, in 
Section 5, we provide a brief overview of the cube method, 
which is a class of algorithms that allows us to select 
randomly balanced samples with given inclusion proba-
bilities (see Deville and Tillé 2004; Tillé 2001, 2006b). We 
try to present the main principles of this algorithm without 
giving a detailed description of the technicalities of the 
method. Section 6 is devoted to the principles of variance 
estimation in balanced sampling. Finally, in Sections 7, we 
discuss the interest of balanced sampling in practice and 
compare balanced sampling with other sampling methods 
and calibration. We also give a list of recent applications. 
This Section also deals with the accuracy of balancing, the 

choice of auxiliary variables and ways to implement bal-
anced sampling. The paper ends with an exhaustive bibli-
ographical list of references on balanced sampling and their 
applications. 

 
2. Balanced sampling  

2.1 Definition of a balanced sample  
Consider a sample s  of size n  that is a subset of a finite 

population U  of size .N  A sample is said to be balanced if, 
for a vector of auxiliary variable 1= ( , , , , ) ,k k kj kpx x x x     

                                    
1 1

= ,k k
k S k Un N 
 x x  (1) 

which means that the sample means of the x-variables match 
their population means. 

Brewer (1999) drew a distinction between a balanced 
selection of samples and a random selection of samples. 
However, a balanced sample may be selected randomly. If a 
random sample S  is selected randomly, then each unit of 
the population has an inclusion probability k  of being 
selected. In this case, a random sample must satisfy the 
following balancing equations:  

                                        = .k
k

k S k Uk  x
x  (2) 

In other words, in a balanced sample, the total of the x-
variables are estimated without error. Several authors like 
Cumberland and Royall (1981) and Kott (1986) would call 
a sample that satisfies Equation (2) a ‘π-balanced sample’, 
as opposed to a ‘mean-balanced sample’ defined by 
Equation (1). Nevertheless, in this paper, we will consider 
that (1) is only a particular case of (2) that occurs when 

= /k n N  or when the sample is not selected randomly. 
We refer to both cases as a balanced sample. 
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2.2 Balanced sampling design  
Let ( )p s  denote the sampling design, i.e., the probability 

that sample s  is selected, such that ( ) = Pr( = ),p s S s  
where S  is the random sample and ( )n S  the size of the 
sample .S  According to the definition of Deville and Tillé 
(2004), a sampling design ( )p   is said to be balanced on 
auxiliary variables 1, , px x  if the Horvitz-Thompson esti-
mator satisfies Equation (2). In a balanced sampling design, 
the inclusion probabilities are decided prior to sampling. A 
balanced sampling can be viewed as a kind of calibration 
that is directly integrated into the sampling design. The 
main problem is that the balancing equations (2) can rarely 
be exactly satisfied. We refer to this difficulty as the 
‘rounding problem’.   
Example 1. If = 4, = 2, = 1/ 2,kN n   for all k U  and 

1 2 3 4= 0, = 1, = 2, = 4,x x x x  then the balancing equations 
given in (2) becomes  

1 1
= ,k k

k s k U

x x
n N 
   

which is equivalent to  

                                    = .k k
k s k U

n
x x

N 
   (3) 

Since  
2

= (0 1 2 4) = 3.5,
4k

k U

n
x

N 

    

and the left side of (3) is always an integer, then an exactly 
balanced sample does not exist.  

Indeed, sample selection is an integer problem. The cube 
method therefore aims to select a sample that exactly sat-
isfies the inclusion probabilities k  while remaining as bal-
anced as possible. 

 
3. Special cases of balanced sampling  

3.1 Unequal probability sampling and stratification  
Some well-known sampling designs are particular cases 

of balanced sampling:  
1. Sampling with a fixed sample size is a particular case 

of balanced sampling. In this case, the only balancing 
variable is .k  The balancing equations given in (2) 
become  

                      = 1 = ,k
k

k S k S k Uk  




    

 which means that the sample size must be fixed.  
2. Stratification is a particular case of balanced sam-

pling. Suppose that the population is partitioned in 
H  strata , = 1, , ,hU h H  of sizes , = 1, ,hN h   

,H  and that a sample is selected in each stratum by 

means of simple random sampling without replace-
ment with fixed sample size , = 1, , .hn h H  In this 
case, the balancing variables are the indicator vari-
ables of the strata  

                           
1 if

=
0 otherwise.

h

kh

k U 


 

 Under a stratified design, the Horvitz-Thompson 
estimators of the sizes of the strata exactly equal the 
sizes of the strata, which is a property of balancing on 
the indicator variables of the strata. Indeed, since the 
inclusion probabilities in stratum h  are =k  

/ ,h hn N ,hk U  the balancing equations become  

         = = , = 1, , ,h kh
kh h

k S k Uh

N
N h H

n 


    

 and are exactly satisfied.  

 

These two designs are well known and are commonly 
applied in official statistics in order to reduce variance. The 
more general concept of balancing allows more freedom to 
choose the most appropriate balancing variables that will 
improve the accuracy of the estimators.  
3.2 Overlapping strata  

Constructing a stratified sampling design is often a diffi-
cult exercise. Statisticians often try to stratify using several 
qualitative variables. However, in most cases, crossing all of 
the strata of all the variables will cause the cells to become 
too small for a sample to be selected in each cell. In the 
context of calibration, statisticians generally calibrate on 
marginal totals and not on all the cells contained in a 
contingency table. Since a balanced sampling can be viewed 
as a kind of calibration that is directly integrated in the 
sampling design, one would also like to balance using only 
marginal totals. Nevertheless, the usual theory of strati-
fication does not allow overlapping strata since the strati-
fication must be a partition of the population. Now, the cube 
method enables us to directly balance on totals of over-
lapping strata by simply using the indicators of the strata as 
balancing variables.  
3.3 Balancing on a constant  

Another interesting special case of balanced sampling 
occurs when a constant is used as a balancing variable. If 

= 1kx  for all ,k U  the balancing equations become  

1
= 1 = .

k S k Uk

N
    

Actually,  
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1

k S k   

is the Horvitz-Thompson estimator of .N  This means that, 
if a constant is used as a balancing variable, the estimated 
population size matches the known size ,N  which is far 
from being a given when the statistical units are selected 
with unequal inclusion probabilities.  

4. History of the concept of balancing  
      and existing methods  

The idea of balanced sampling is very old and is linked 
to the vague concept of representativeness that was already 
used by Kiaer (1896, 1899, 1903, 1905). The first paper 
dedicated to the selection of a balanced sample is due to 
Gini (1928) and Gini and Galvani (1929) who selected a 
sample of 29 from the 214 Italian districts in order to match 
several population totals. Both Neyman (1952) and Yates 
(1960) condemned the paper of Gini and Galvani essentially 
because this sample was not randomly selected (see Langel 
and Tillé 2010). The first methods for selecting a random 
balanced sample were proposed by Yates (1946) and Thionet 
(1953), but these methods were rejective in the sense that 
they involved selecting samples or changing units randomly 
in the sample until a balanced enough sample was obtained. 

In the model-based framework, Royall (1976a, b) advo-
cated the use of balanced sampling in order to reach the 
optimal strategy and to protect against mis-specification of 
the model. (see also Royall and Pfeffermann 1982; Kott 
1986; Cumberland and Royall 1988; Royall 1988; Tirari 
2006; Nedyalkova and Tillé 2009). While several methods 
for selecting a balanced sample are presented in the book of 
Valliant, Dorfman and Royall (2000), these methods do not 
necessarily specify the inclusion probabilities of the sample. 
In the model-based framework, it is important to have a 
balanced sample. However, this sample does not always 
need to be randomly selected. 

Hájek (1981) also advocated the use of balanced sam-
pling. For Hájek, a balanced sampling is a particular case of 
representative strategy, a strategy being a couple made of a 
sampling design and an estimator. A representative strategy 
is a strategy that estimates the totals of auxiliary variables 
without error. In this sense, a balanced sampling design with 
the Horvitz-Thompson estimator is a representative strategy. 
Hájek (1981) proposes a rejective procedure that consists of 
selecting a sequence of samples until a balanced one is 
obtained. Rejective procedures have two drawbacks: if 
several balancing variables are used, the procedure can be 
very slow; secondly, the inclusion probabilities of rejective 
designs are not the same as the original design. The inclu-
sion probabilities of statistical units that are close to the 
population means are increased to the detriment of the units 

that are far from the center (see for instance the simulations 
of Legg and Yu 2010). 

Another method of selection consists of enumerating all 
the possible samples, and then constructing a sampling 
design only to select the samples that are adequately bal-
anced. Such a design can be constructed by using linear 
programming. This technique was applied by Ardilly (1991) 
to select the primary units of the French master sample. 
Nevertheless, this method can only be applied on small pop-
ulation sizes because of the combinatory explosion of the 
number of samples when the size of the population is large. 

Deville, Grosbras and Roth (1988) and Deville (1992) 
proposed multivariate methods for balanced sampling with 
equal inclusion probabilities. Hedayat and Majumdar (1995) 
have proposed the adaptation of an experimental design 
technique that would enable a balanced sampling design to 
be constructed. Again, this technique is restricted to equal 
inclusion probabilities. Finally, the cube method was pro-
posed by Deville and Tillé (2004). This method is general in 
the sense that the inclusion probabilities are exactly satis-
fied, that these probabilities may be equal or unequal and 
that the sample is as balanced as possible. 

Fuller (2009) studied a rejective procedure by fixing a tol-
erance interval outside of which the sample is rejected and 
proposed an estimator of variance. Even if the inclusion 
probabilities are changed with a rejective procedure, 
Fuller (2009) shows that efficient estimates are obtained 
by using the inclusion probabilities of the original design. 
Using a set of simulations, Legg and Yu (2010) com-
pared this rejective procedure to the cube method and 
showed that both methods perform equally. Finally, 
Dudoignon and Vanheuverzwyn (2006) proposed a fast 
method of balanced sampling for marginal totals, whereas 
Périé (2008) proposed a method based on permanent 
random numbers that provides a balanced sample. With 
the Périé (2008) method, the inclusion probabilities are 
only approximately satisfied.  

5. The cube method  
5.1 Main ideas  

The cube method (see Deville and Tillé 2004; Tillé 2001, 
2006a, b; Ardilly 2006) is a class of sampling algorithms 
that selects a balanced sample and exactly satisfies a set of 
given inclusion probabilities. The cube method is an 
extension of the splitting method that was developed by 
Deville and Tillé (1998). It is based on a random trans-
formation of the vector of inclusion probabilities until a 
sample is obtained such that: 

(i) the inclusion probabilities are exactly satisfied,  
(ii) the balancing equations are satisfied to the furthest 

extent possible.  
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The name of the method comes from the geometric repre-
sentation of a sampling design. Indeed, a sample may be 
represented by a vector of samples indicators:  

= ( [1 ] ... [ ] ... [ ]) ,I s I k s I N s   s  

where [ ]I k s  takes value 1 if k s  and 0  if not. A 
sample may thus be viewed as a vertex of an N-cube as 
showed in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Possible samples in a population of size = 3N   
Let us also define  

E( ) = ( ) = ,
s S

p

s s s   

where = [ ]k  is the vector of inclusion probabilities. The 
balancing equations  

= ,k
k

k S k Uk  x
x  

may also be written  

                                = ,k k k k
k U k U

s
 

 x x   (4) 

where {0, 1}ks   and = / , .k k k k U x x  Expression (4) is 
a system of equations with unknowns values ks  that define 
an affine subspace in N  of dimension N p  denoted by 

,Q  where  

= | = .N
k k k

k U k U

Q u
 

 
 

 
 u x x  

The problem of selecting a balanced sample may thus be 
reformulated. A balanced sampling design consists of 
choosing a vertex of the N-cube (a sample) that remains on 
the linear sub-space .Q  Figures 2 and 3 respectively show 
two examples: the first one is a constraint of fixed sample 
size and the second one is a constraint that generates a 
rounding problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Possible samples in a population of size = 3N  with a 

constraint of fixed sample size = 2n   
The Cube method (Deville and Tillé 2004) is divided 

into two phases: the flight phase and the landing phase. The 
flight phase is a random walk that begins at the vector of 
inclusion probabilities and remains in the intersection of the 
cube and the constraint subspace. This random walk stops at 
a vertex of the intersection of the cube and the constraint 
subspace. At the end of the flight phase, if a sample is not 
obtained, the landing phase entails in selecting a sample that 
is as close as possible to the constraint subspace. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Possible samples in a population of size = 3N  with a 

constraint and a rounding problem  
Example 2. If the constraint is the fixed sample size, the 
flight phase randomly transforms a vector of inclusion 
probabilities into a vector of 0 and 1. At each step of the 
algorithm, the vector of inclusion probabilities is trans-
formed randomly, but the sum of inclusion probabilities 
must remain equal to .n  For instance, with = (0.5, 0.5,  
0.5, 0.5)  and = 2,n  we are able to obtain the following 
sequence of vectors:  
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0.5 0.6666 1 1
0.5 0.6666 0.5 0= = .
0.5 0.6666 0.5 1
0.5 0 0 0

       
       

         
       
       

s  

The algorithm ends when all the components of the vector 
are equal to 0 or 1.   
Example 3. If the constraint is the fixed sample size, a 
rounding problem appears if the sum of inclusion proba-
bilities is not an integer. If there is a rounding problem, then 
some components cannot be set to zero. For instance, with 

= (0.5, 0.5, 0.5, 0.5, 0.5)  and  

= 2.5,k
k U

  

we may observe the following sequence of vectors:  

*

0.5 0.625 0.5 1 1

0.5 0 0 0 0
= = .0.5 0.625 0.5 0.25 0.5

0.5 0.625 1 1 1

0.5 0.625 0.5 0.25 0

         
         
         

            
         
                  
         

   

In this case, the flight phase cannot end with a vector of 0 
or 1 of which the sum is equal to 2.5. In this case, the 
flight phase ends with a vector containing one non-integer 
component.   
5.2 The flight phase  

The first step of the flight phase is presented in Figure 4 
for a very specific case: the population size = 3.N  The 
only balancing constraint is the fixed sample size = 2.n  At 
the first step, a vector (0)u  must be chosen. This vector 
may be chosen freely but must be such that (0) u  
remains in the subspace of constraints. Actually, the cube 
method is a family of methods that depends on the way the 
vector (0)u  is chosen. This vector may be chosen randomly 
or not. 

If, from ,  we follow the direction given by vector 
(0),u  then we will necessarily cross a face of the cube. Let 

us consider this point denoted on Figure 4 by (0)   
*
1(0) (0). u  Now, if, from ,  we follow the opposite 

direction, i.e., the direction given by vector (0),u  we will 
also cross a face of the cube. Let us consider this point 
denoted on Figure 4 by *

2(0) (0) (0).  u  At the first step, 
vector (0) =   is modified randomly. Vector (1)  will 
be set to *

1(0) (0) (0)  u  or to *
2(0) (0) (0).  u  The 

choice is done randomly in such a way that E[ (1)] =  
(0).  At the end of the first step of the flight phase, we 

have thus jumped on a face of the cube, which means that at 
least one component of (1)  is equal to 0 or 1, i.e., the 
problem is reduced from a problem of sampling from a 
population of size = 3N  to a population of size = 2.N  
In N  steps at least, the flight phase is thus completed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Flight phase in a population of size = 3N  with a 

sample size constraint = 2n   
More generally, the flight phase is a random walk in the 

intersection of the balancing subspace and the cube. This 
random walk stops at a vertex of the intersection of the cube 
and the subspace. The flight phase is defined by the fol-
lowing class of algorithms. First initialize with (0) = .   
Next, at time = 0, ...., ,t T    

1. Generate any vector ( ) = [ ( )] 0kt u t u  such that  
 (i) ( )tu  is in the kernel of matrix 1 1= ( / , ,A x   

/ , , / ),k k N N x x  i.e., ( ) 0,t Au  
 (ii) ( ) = 0ku t  if ( )k t  is integer.   
2. Compute *

1 ( )t  and *
2 ( ),t  the largest values such 

that  

 10 ( ) ( ) ( ) 1,t t t   u  

 20 ( ) ( ) ( ) 1.t t t   u  

3. Compute  

           
*
1 1
*
2 2

( ) ( ) ( ) with probability ( )
( 1)=

( ) ( ) ( ) with probability ( ),

t t t q t
t

t t t q t

 
 



u

u





 

 where * * *
1 2 1 2( ) = ( ) /{ ( ) ( )}q t t t t     and 2 ( ) =q t  

11 ( ).q t   
The flight phase stops when it is no longer possible to find a 
vector ( ) 0.t u   
5.3 Landing phase  

If, at the end of the flight phase, the balancing equations 
are not exactly satisfied, there is a need for a landing phase. 
Let * *= [ ]k  be the vector obtained at the last step of the 
flight phase. It is possible to prove (see Deville and Tillé 
2004) that  

*card( ) ,U p  

where  
* *= { | 0 < < 1}kU k U   

and p  is the number of balancing variables. The aim of 
the landing phase is to find a sample s  such that 
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*E( | ) =s  *,  which is almost balanced. There are two 
ways of selecting such a sample:  

1. The flight phase by linear programming consists of 
considering all the possible samples of *.U  A cost is 
assigned to each sample. This cost, is, for instance, 
the distance between the sample and the subspace of 
constraints. Next, one looks for a sampling design on 

*U  that minimizes the expected cost and that 
satisfies the inclusion probabilities *.  This problem 
can be solved because the number of samples to 
consider is reasonable due to the small size of *.U   

2. The flight phase by suppression of variables may be 
used when the number of balancing variables is too 
large for the linear program to be solved by a simplex 
algorithm ( > 20)p . With this method, an auxiliary 
variable is dropped at the end of the flight phase. 
Next, we can return to the flight phase until it is no 
longer possible to ‘move’ within the constraint sub-
space. The constraints are then relaxed successively 
according to an order of preference.   

6. Variance and variance estimation  
6.1 A residual technique  

The variance of the Horvitz-Thompson estimator can be 
estimated by using a residual technique developed in 
Deville and Tillé (2005). The residual technique is compa-
rable to the technique used to estimate the variance of the 
calibration estimator and has been validated by a set of sim-
ulations. The estimated variance of the Horvitz-Thompson 
estimator is thus very similar to the estimated variance of a 
generalized regression (GREG) estimator. Nevertheless, the 
variance of the GREG estimator is generally underestimated 
because it does not take into account the randomness of the 
weights. Indeed, if the usual variance of the GREG esti-
mator is computed for the special case of poststratification, 
we obtain the variance of a stratified design with propor-
tional allocation. The variance of the poststratified estimator 
is nevertheless larger than the variance in a stratified design 
with proportional allocation.  
6.2 Approximation of variance  

If the balanced sampling design has a large entropy, 
Hájek (1981) and Deville and Tillé (2005, method 4) have 
proposed the following approximation of the design 
variance given by:  

             
2

2

( )
var ( ) var ( ) = ,k k

p app k
k U k

y
Y Y d 






 x b
 (5) 

where the subscript p  denotes the sampling design,  
1

2 2
= ,k k k k

k k
k U k Uk k

y
d d



 

 
 

  
 x x x

b  

and the kd  are the solution of the nonlinear system  
1

2
(1 ) = , .k k k k

k k k
Uk k

d d
d d k U





  
     

  
x xx x 


 

 (6) 

The entropy of the sampling design depends on the way 
vectors ( )tu  are chosen during the flight phase. In order to 
increase the entropy, vector ( )tu  can be chosen randomly 
or the population can be randomly sorted before selecting 
the sample. 

Expression (5), which only uses the first-order inclusion 
probabilities, was validated by Deville and Tillé (2005) 
under a variety of balanced samples regardless of how the y-
values were generated. An approximation very close to 
Expression (5) was obtained by Fuller (2009) and Legg and 
Yu (2010) for a balanced sampling design obtained by a 
rejective procedure in the case of an initial design that uses 
Poisson sampling. These approximations do not take the 
rounding problem into account.  
6.3 Estimation of variance  

Deville and Tillé (2005) proposed a family of variance 
estimators for balanced sampling, of the form  

                           2

2

( )
var( ) = ,k k

k
k S k

y
Y c




 x b

 (7) 

where  


1

2 2
=

S S
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and the kc  are the solutions of the nonlinear system  

                

1

2
1 = ,k k k k

k k
Sk k

c c
c c





  
      

x xx x 

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 (8) 

which can be solved by a fixed point algorithm. 
In Deville and Tillé (2005), simpler variants of kc  were 

also proposed. For instance, one can use the alternative 
values,  

(1 ),k k

n
c

n p
  


  

that are very close to .kc  The estimator  var( )Y   is 
approximately design-unbiased because it is an estimator by 
substitution of the approximation given in expression (5), 
(for more information regarding estimators obtained by 
substitution, see Deville 1999), which is a reasonable 
approximation of the variance under the sampling design. 

It is not easy to use bootstrap method to estimate the 
variance in the context of balanced sampling. Balanced 
samples with replacement should be selected from the 
original sample. A generalization of the cube method for 
balanced sampling with replacement has not yet been 
described. A solution, proposed by Chauvet (2007), consists 
of reconstructing an artificial population from the sample. 
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Next, bootstrap samples are selected by using balanced 
sampling. Another solution was proposed by Fuller (2010) 
for balanced rejective sampling. Breidt and Chauvet (2010a) 
have proposed an alternative method where a martingale 
difference representation of the cube method is used in order 
to approximate second-order inclusion probabilities, which 
enables us to construct a nearly unbiased variance estimator.  

7. Balanced sampling in practice  
7.1 Interest of balanced sampling  

In the model-assisted and the model-based frameworks, a 
balancing sampling design with the Horvitz-Thompson 
estimator is often the optimal strategy (see Nedyalkova and 
Tillé 2009). Indeed, when the sample is balanced, the vari-
ances of the Horvitz-Thompson estimators of the auxiliary 
variables are equal to zero. Under a linear model, the vari-
ance of the Horvitz-Thompson estimator of the interest 
variable will only depend on the residuals of the model. 

The advantages of balanced sampling are as follows:  
(i) Balanced sampling increases the accuracy of the 

Horvitz-Thompson estimator. This point has been 
developed in Section 6. Indeed, the variance of the 
Horvitz-Thompson estimator only depends on the 
residuals of the regression of the interest variable by 
the balancing variables.  

(ii) Balanced sampling protects against large sampling 
errors. Indeed, the most unfavourable samples have 
a null probability of being selected.  

(iii) If the variable of interest is well explained by the 
auxiliary information, in model-based inference, 
balanced sampling protects against a mis-speci-
fication of the model. This point is largely de-
veloped by Royall (1976b, a) and Valliant et al. 
(2000). A recent discussion of this important ques-
tion is given in Nedyalkova and Tillé (2009, 2010).  

(iv) Balanced sampling can ensure that the sample sizes 
in planned domains are not too small or - much 
worse - equal to zero. Indeed, if an indicator vari-
able of the domain is added in the list of auxiliary 
variables, the size of the domain is then fixed in the 
sample.  

(v) Balanced sampling allows us to avoid random 
weights. With balanced sampling, the Horvitz-
Thompson weights can be used. If the sampling 
design does not contain any balancing constraints 
(for instance with Poisson sampling) the weighting 
system obtained by a calibration procedure be-
comes very random, which increases the variance 
of the estimators. If the sample is balanced, the 
weights will be less random even if a calibration 
procedure is used after balancing.  

The availability of easy to use packages contributed to 
the large use of the cube method in several important 
statistical processes. The first main application of the cube 
method is selection of the rotation groups for the French 
census. (See Desplanques 2000; Dumais, Bertrand and 
Kauffmann 2000; Durr and Dumais 2001, 2002; Dumais 
and Isnard 2000; Bertrand, Christian, Chauvet and 
Grosbras 2004; da Silva, da Silva Borges, Aires Leme 
and Moura Reis Miceli 2006). For the municipalities with 
fewer than 10,000 inhabitants, five non-overlapping rotation 
groups of municipalities are selected using a balanced 
sampling design with equal inclusion probabilities (1/5). 
Each year, a fifth of the municipalities are surveyed. So after 
5 years, all the small municipalities are selected. For the 
municipalities with more than 10,000 inhabitants, in each 
municipality, five non-overlapping balanced samples of 
addresses are selected with inclusion probabilities 8%. So, 
after 5 years, 40% of the addresses are visited. The bal-
ancing variables are socio-demographic variables taken 
from the last census. 

In the French master sample, the primary units are 
geographical areas that are selected using a balanced sam-
pling design (see Wilms 2000; Christine and Wilms 2003; 
Christine 2006). The master sample is a self-weighted 
multi-stage sampling. So the primary units are selected with 
unequal probabilities that are proportional to their sizes. The 
balancing variables are socio-demographic variables taken 
from the last census. Bardaji (2001) and Even (2002) have 
also used balanced sampling to select a sample of benefi-
ciaries of subsidized jobs. Seven populations are surveyed, a 
balanced sample of beneficiaries is selected in each of the 
populations by using between two and five balancing 
variables according to the populations. 

In the company Électricité de France (EDF), new 
electricity meters allow electricity consumption for each 
household to be measured on a continuous basis. The 
amount of information collected is so large that it is 
impossible to archive all the data. Dessertaine (2006, 2007) 
used balanced sampling to select the time series of 
consumption that must be archived in order to ensure that 
they represent the consumption of the entire French popu-
lation as accurately as possible. Biggeri and Falorsi (2006) 
used balanced sampling to improve the quality of the 
consumer price index in Italy. Gismondi (2007) tested 
balanced sampling to estimate the number of tourist nights 
spent in Italy. D’Alò, Di Consiglio, Falorsi and Solari 
(2006) and Falorsi and Righi (2008) also proposed using a 
balanced sampling design to estimate totals in small 
domains. Simulations were run by Marí, Barbará, Mitas and 
Passamonti (2007b, a) in Argentina and Chipperfield (2009) 
in Australia to assess the interest of balanced sampling for 
the master sample. 
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At Statistics Canada, Fecteau and Jocelyn (2006) and 
Jocelyn (2006) tested balanced sampling to select a sample 
of businesses. Canadian unincorporated businesses com-
plete their income tax returns either on paper or elec-
tronically. More than half of the returns are submitted elec-
tronically. Balanced sampling was used to select a sample 
from businesses that responded electronically so that, for 
some key variables that are known for the whole population, 
the sample means matched the known population means. 

Balanced sampling can also be used to impute a missing 
value in case of item nonresponse. Indeed, using a model to 
predict an imputation allocates central values, which will 
lead to a biased inference on quantiles. In contrast, a random 
imputation generally increases the variances of the esti-
mators. In order to solve this dilemma, Deville (1998, 2005, 
2006) and Chauvet, Deville and Haziza (2010c, b) have 
proposed using imputation by prediction and to add a 
residual that is chosen amongst the residuals of the re-
spondent according to a balanced sampling design. This is 
done to avoid adding a term of variance to the total of the 
imputed variable.  
7.2 Balanced sampling versus other sampling 

techniques  
Unequal probability sampling is a particular case of the 

cube method. Indeed, when the only auxiliary variable is the 
inclusion probability, the sample has a fixed sample size. 
The cube method is a generalization of the splitting method 
(see Deville and Tillé 1998), which includes several sam-
pling algorithms with unequal probabilities (Brewer’s 
method, pivotal method, corrected Sunter method, see 
Brewer 1975; Sunter 1977; Deville and Tillé 1998; Tillé 
2006b). Stratification is also a particular case of balanced 
sampling. With the cube method, one can balance on 
overlapping strata and use qualitative and quantitative 
variables together. Systematic sampling can even be seen as 
a balanced sampling design on the order statistic related to 
the variable on which the population is ordered. 

Almost all the other sampling techniques are particular 
cases of balanced sampling (except multistage sampling). In 
fact, balanced sampling is simply more general, in the sense 
that all the other methods of sampling can be implemented 
with the cube method. The cube method allows us to use any 
variable for balancing with a reasonable computation time. 
With the more general concept of balancing, strata can 
overlap, quantitative and qualitative variables can be used 
together, and the inclusion probabilities can be chosen freely. 

It is well known that the ratio estimator and the post-
stratified estimator are particular cases of the regression 
estimator. The regression estimator is also a particular case 
of the calibration estimator (which includes a non-linear 
adjustment). In the same way, balanced sampling is a more 

general method of sampling that includes almost all the 
other methods. The algorithm of the cube method may seem 
complicated but, once implemented, it enables us to run a 
function with two arguments: the vector of inclusion proba-
bilities and the matrix of balancing variables.  
7.3 Choice of the balancing strategy  

The main recommendation is to choose balancing vari-
ables that are closely correlated to the interest variables. As 
with any regression problem, the balancing variables must 
be chosen parsimoniously: one must not choose too many 
balancing variables because, accuracy no longer improves 
with a large number of variables and the instability of the 
variance estimator increases with each additional variable. 
Practically, the aim is not to estimate one variable but a set 
of interest variables. Thus, the set of auxiliary variables 
must be correlated to all the interest variables. Moreover, 
the auxiliary variables should not be too correlated amongst 
themselves. 

Lesage (2008) has proposed a method to balance a 
sample on complex statistics rather than simply using popu-
lation totals. The main idea consists in balancing on the 
linearized value (or influence function) of the parameter of 
interest. Breidt and Chauvet (2010b) have proposed using 
penalized balanced sampling in order to possibly relax some 
balancing constraints, which can be useful for instance in 
small domain estimation. 

In many cases, the balancing variables contain measure-
ment errors. For example, in most registers, one can suspect 
errors in the data. Missing values can obviously occur and 
auxiliary variables are often corrected by a method of 
imputation. As for calibration, the fact of having errors in 
the auxiliary variables is not very important as long as the 
calibration is done on the total of the auxiliary variables of 
the register. Indeed, with balanced sampling, the Horvitz-
Thompson estimator is used and is unbiased even if the 
auxiliary variables are false. The gain in efficiency only 
depends on the correlation between the balancing variables 
and the interest variables. This correlation is rarely affected 
by errors in the balancing variables. 

Several variables can be used to improve small domain 
estimates. To ensure that a domain D  is not empty, one can 
simply add the auxiliary variable:  

 if=
0 otherwise,

k
k

k Dx    

which implies that the number of sampled units that belong 
to D  is equal to  

= = ,D k k
k U k D

n x
 

   

if Dn  is integer, or one of the closest two integers to Dn  if 

Dn  is not an integer. 
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In some cases, it is interesting to balance on auxiliary 
variables in subgroups, domains or strata. An interesting 
procedure described in Chauvet (2009) consists of sepa-
rately running the flight phase in each stratum. A rounding 
problem will then occur in each stratum. These rounding 
problems can then be merged and a flight phase can be run 
again on the whole population. Finally, the landing phase is 
applied only to the whole population. This procedure 
enables us to roughly satisfy the balancing equations in each 
strata without cumulating the rounding problems. 

The inclusion probabilities must be computed prior to 
sampling. When a linear model is assumed, these proba-
bilities should in principle be proportional to the errors of 
the model in order to minimize variance (see Tillé and Favre 
2005; Chauvet, Bonnery and Deville 2010a; Nedyalkova 
and Tillé 2009, 2010). This choice generalizes Neyman’s 
allocation for stratified sampling (Neyman 1934). However, 
the inclusion probabilities often need to be chosen on others 
constraints. For instance, in order to construct the rotation 
groups of the French census, the inclusion probabilities must 
all be equal to a fifth.  
7.4 Balancing versus calibration  

Stratification is a particular case of balancing, while post-
stratification is a particular case of calibration. In stratifi-
cation and balancing, the weights do not become random. It 
is thus generally a better strategy. Nevertheless, more auxil-
iary information is needed for balancing. Indeed, for bal-
anced sampling, the auxiliary variables must be known for 
all the units of the population, whereas, for calibration, only 
the population totals are needed. Balancing is a very 
interesting method for small population sizes. It is thus a 
very good method for selecting primary units in a multi-
stage sampling design. 

Both techniques can be used together. They are not 
contradictory. The best strategy consists of using balanced 
sampling and calibration together. Indeed calibration can 
resolve the small rounding problem that may remain after 
balancing. At the estimation stage, more auxiliary variables 
are often available because, in order to balance a sample, the 
auxiliary information must be known at the individual level 
while, in order to calibrate the sample, only the population 
totals are necessary. 

Generally, it is recommended to re-calibrate on the 
balancing variables at the estimation stage even if more 
calibration variables are available. If only new variables are 
used in calibration, the effect of balancing can be lost. There 
is, however, one case where calibration can be used without 
re-calibrating on the balancing variables: when, condi-
tionally on the calibration variables, we can reasonably as-
sume that the balancing variables are no longer correlated to 
the variables of interest. This can occur when the balancing 

and the calibration variables are the same variables 
measured at different moments, and the calibration variables 
are more recent. 

When the determination coefficient between the interest 
variable and the auxiliary variables is equal to or close to 
one, then calibration is more efficient because of the 
rounding problem of balanced sampling. Anyway the most 
efficient strategy always consists of using balanced sam-
pling and calibration together (see the simulation in Deville 
and Tillé 2004).  
7.5 Accuracy of the balancing equations  

It is possible to prove, under realistic assumptions (see 
Deville and Tillé 2004), that with the cube method  


< ( / ),

j j

j

X X
O p n

X


 

where p  is the number of variables, and ( ) /O x x  is a quan-
tity that remains bounded when x  tends to infinity. With 
simple random sampling  


= ( 1/ ),

j j
p

j

X X
O n

X


 

where ( ) /pO x x  is a quantity that remains bounded in 
probability when x  tends to infinity. 

The gains in accuracy are therefore considerable. The 
small rounding problem can be fixed by a small calibration. 
The rounding problem comes from the fact that selecting a 
sample is an integer problem. It also occurs in stratification, 
which is a particular case of balancing. In stratification with 
proportional allocation, the sums of the inclusion proba-
bilities in the strata are generally not integers. So, the sample 
sizes in the strata are obtained by rounding the sum of 
inclusion probabilities in the strata. The cube method does 
this rounding automatically and randomly in such a way as 
to ensure that the inclusion probabilities are exactly satisfied. 

 
7.6 Balanced sampling in repeated surveys  

An important difficulty occurs in repeated sampling. The 
problem comes from the fact that, when a balanced sample is 
selected with unequal inclusion probabilities, the comple-
mentary sample is not necessarily balanced. Indeed, the 
equality  

=k
k

k S k Uk  x
x  

does not imply that  

\

= .
1

k
k

k U S k Uk   x
x  

This problem occurred in the French master sample. In this 
sampling design, the primary units, which are geographical 
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areas, are selected with unequal probabilities that are 
proportional to the size. After selecting the sample, some 
regions asked for complementary samples of areas that were 
not already selected. This question is intricate, because the 
complementary sample of a balanced sample is no longer 
balanced, and the aim is thus to select a balanced sample 
from a part of the population that is no longer balanced. 
Tillé and Favre (2004) gave a few methods to co-ordinate 
balanced samples, which were selected with unequal inclu-
sion probabilities. More generally, the coordination (in the 
sense of managing overlap) of balanced samples can be 
difficult when the sampling design is balanced. 

While challenging, it is possible to organize rotations if 
all the samples are selected together and the samples are 
selected with equal inclusion probabilities. Indeed, in this 
case the complementary = \S U S  of the samples S  is 
also a balanced sample. A second balanced sample can be 
directly selected from S  and so on. This method was used 
to create five rotation groups in the French master sample. 
The five groups are five balanced samples of municipalities. 

If the samples are selected with unequal inclusion 
probabilities, some solutions are described in Tillé and Favre 
(2004). An interesting particular case can easily be solved: 
when two non-overlapping samples must be selected with 
the same unequal inclusion probabilities < 0.5k  from the 
same population. First, a sample AS  balanced on kx  must 
be selected with inclusion probabilities = 2kA k   such that  

= .
2

k
k

k S k UkA  x
x  

Next, a sample 1S  can be selected from .AS  This sample 
must be selected with inclusion probability = 0.5kB  and 
must be balanced on /2 ,k kx  which gives the following 
balancing equations:  

2

/(2 )
= = .

1/2 2
k k k

k
k S k S k UkA  


  x x

x  

The sample 2 1= \AS S S  is also balanced. 
If the population changes over times (deaths and births), 

the organization of a rotation becomes much more difficult. 
This difficulty already occurs with stratified samples. Never-
theless, for stratification, several reasonable solutions exist 
(see, amongst others, De Ree 1999; Hesse 1998; Rivière 
1999; Nedyalkova, Péa and Tillé 2006).  
7.7 Main implementations of balanced sampling  

An SAS/IML® implementation was first programmed by 
three students of the École nationale de la statistique et de 
l’analyse de l’information (Ensai) (Bousabaa et al. 1999). 
An official version of the Institut National de la Statistique 
et des Études Économiques done by Tardieu (2001) and 
Rousseau and Tardieu (2004) is now available on the Insee 
Web site. Another SAS/IML® version done by Chauvet and 

Tillé (2005b, a, 2006) is also available on the University of 
Neuchâtel Web site. In R language, the sampling package 
(Tillé and Matei 2007) allows us to use the cube method. 
These software programs are free, available over the 
Internet and are easy to use. 

The available programs written using R language or 
SAS/IML® have no limit as far as population size is con-
cerned. An application with 40 balanced variables is possible. 
In order to select the sample, the computation times increase 
with 2 ,N p  where N  is the population size and p  the 
number of balancing variables. It is thus possible to select a 
sample in a population of several million statistical units.  
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