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Abstract 
In the calibration method proposed by Deville and Särndal (1992), the calibration equations take only exact estimates of 
auxiliary variable totals into account. This article examines other parameters besides totals for calibration. Parameters that 
are considered complex include the ratio, median or variance of auxiliary variables. 
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1. Introduction  
In survey statistics, two main approaches are used in the 

estimation phase: “model-assisted” estimators (such as the 
regression estimator or the ratio estimator) and calibration 
estimators (such as the raking ratio), proposed by Deville and 
Särndal (1992). The two approaches are somewhat similar, 
as shown by the regression estimator, which is the same as 
the calibration estimator with the 2χ  distance (“linear” 
calibration method). 

The purpose of this article is to expand the family of 
calibration estimators. With the current method, calibration 
can be performed on totals. The idea is to be able to take 
into account the calibration constraints of complex para-
meters or statistics such as a ratio, a median or a geometric 
mean. The reason for doing this is that auxiliary information 
may consist of a complex statistic rather than totals. For 
example, a ratio relative to the total population might be 
known, but not the total in the numerator or denominator. 

The issue of complex parameters in calibrations has been 
discussed in the literature. Särndal (2007) reviewed a 
number of them, in particular the work of Harms and 
Duchesne (2006) on the calibration estimation of quantiles, 
and the work of Krapavickaite and Plikusas (2005) on 
calibration estimators of certain functions of totals. 

The originality of the approach in this article is that it 
reduces calibration on a complex parameter to calibration on 
a total for a new ad hoc auxiliary variable. The advantage of 
this approach is that current calibration tools can be used 
and that there is no need to solve a complex optimization 
program. 

In section 2 of the article, we review how the calibration 
method works, define calibration on complex parameters 
and describe simple cases in which calibration on a complex 
parameter can be reduced to calibration on a total. In 
section 3, we focus on parameters that can be defined as a 
solution to an estimating equation (Godambe and 
Thompson 1986). We introduce the concept of calibration 

on a complex parameter defined by an estimating equation 
and show that the resulting calibration equation can be 
replaced with an equation for calibration on a total. 

 
2. A complex parameter  

       defined as a function of totals  
2.1 Review of calibration on totals  

Let U  be a finite population of size N. The statistical 
units of the population are indexed by a label k, where 

{1, , }.k N∈ …  A sample s is selected using sample plan 
( ).p s  Its size is denoted n and may be random. Let kπ  be 

the probability that k is included in sample s, and let 
1 /k kd = π  be its sampling weight. 

For any variable z that takes the values kz  for the units in 
U indexed by k, the sum k Uz kt z∈∑=  is referred to as the 
total of z over U. 

Let y(1),…, y(Q) be Q variables of interest, whose values 
are known only for sample s, and let θy be the parameter of 
interest that is a function of the totals (1) ( ), , :Qy yt t…  

(1) ( )( , , ).Qy yf t tθ =y …  

The estimator of θy is 

(1) ( ), , ,
ˆ ˆ ˆ( , , ).Qy yf t tπ π π
θ =y …  

It is simply the function ( , ..., )f ⋅ ⋅  with totals ( )qyt  
replaced by their Horvitz-Thompson estimator ( ),

ˆ qyt π
=  

( )q
k s k kd y∈∑  (Särndal, Swensson and Wretman 1992). This 

estimator can be described as a substitution estimator. 
Let x(1),…, x(P) be P auxiliary variables known on s, and 

let (1) ( ), ..., Px xt t  be the totals on U for those auxiliary 
variables, also known. For an individual k, the vector of 
values taken by the auxiliary variables on k is denoted 

(1) ( )= ( , ..., ).P
k k kx x′x  
The calibration estimator of θy is 
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(1) ( ),CAL ,CAL , CAL
ˆ ˆ ˆ( , , )Qy yf t tθ =y …  

with ( )
( )

, CAL
ˆ ,q

q
k s k kyt w y∈∑=  and a series of weights 

( ){ } ,k k sw ∈  known as calibration weights (which should be 
denoted ( ),kw s  since they depend on the sampling), 
obtained by solving the following optimization program: 

{ }( )

( , )min k k
w k sk k s

d w d
∈∈
∑  

under constraints 

(1) (1)

( ) ( )

,CAL

,CAL

ˆ =

ˆ =P P

x x

x x

t t

t t

⎧
⎪⎪
⎨
⎪
⎪⎩

…  

( , )d ⋅ ⋅  is a pseudo-distance, i.e., a function that measures the 
difference between the calibration weight and the sampling 
weight (unlike a difference, a pseudo-distance is not neces-
sarily symmetrical on its two arguments). The program is 
solved with a Lagrangian. When the distance used is the 

2χ  distance (i.e., 2( , ) (1 /2) ( ) / ),k k k k kd w d w d d= −  the 
solution is kw =  (1 )k kd ′+ λx  (where λ  is a P-vector of 
Lagrange multipliers).  
2.2 Calibration on a complex parameter xη   
Definition 1: Let (1) ( ), , Px x…  be P auxiliary variables 
known on s, and let (1) ( )= ( , ..., )Px xg t tηx  be a complex 
parameter, a function of the totals of those auxiliary 
variables, also known. 

In the case of calibration on the complex parameter ,ηx  
the calibration weights are obtained by solving the 
following optimization program: 

{ }( )

( , )min k k
w k sk k s

d w d
∈∈
∑  

under constraints 
(1) ( ),CAL ,CAL , CAL

ˆ ˆˆ ( , , ) .Px xg t tη = = ηx x…  

The totals ( )qxt  do not have to be known, but the complex 
parameter ηx  does. 

Consider the example of the ratio 

(1)

(2)

(1)

(2) .kx k U

kx k U

xt
R

t x
∈

∈

= = ∑
∑x  

The calibration estimator of Rx is of the form 
(1)

,CAL (2)
ˆ .k kk s

k kk s

w x
R

w x
∈

∈

= ∑
∑x  

 

The calibration equation in the case of calibration on a 
ratio is 

(1)

,CAL (2)
ˆ k kk s

k kk s

w x
R R

w x
∈

∈

= =∑
∑x x  

Rx  is known auxiliary information, as the total of the 
auxiliary variables usually is. This scenario may occur when 
we have proportions that are well known and stable over 
time, for example, but the specific totals in the numerator 
and denominator are not known. 

We described the case of calibration on a single complex 
parameter, but it is clearly a simple matter to calibrate on 
more than one complex parameter. In that case, there are as 
many constraints as calibration parameters.  
2.3 Simple cases where calibration on a complex 

parameter can be reduced to calibration on a 
total  

It is not easy to determine from the outset whether an 
equation for calibration on a complex parameter can be 
written in the form of an equation for calibration on a total. 
In other words, it is not always a trivial matter to find a 
“new” auxiliary variable z, associated with the complex 
parameter, on whose total we can calibrate. 

For example, that is quite straightforward for all 
moments of an auxiliary variable x (it is assumed that under 
the sampling plan, the population size N can be estimated 
exactly). If 1

m
m

k U kx N x−
∈∑μ =  is auxiliary information, we 

can simply take /m
k kz x N=  and calibrate on :mxμ  

/ .m
m

k s k k xw x N∈∑ = μ  
If we want to calibrate on the variance and the mean of 

variable x with xμ  and 2
xσ  as auxiliary information, we can 

use the two new auxiliary variables 
(1) k
k

x
z

N
=  

and 
2

(2) ( )
.k x

k
x

z
N
− μ

=  

On the other hand, if we do not know ,xμ  but we have 
2
xσ  in the auxiliary information and we want to calibrate on 

that variance, things become more complicated. We can see 
this if we write the substitution estimator of 2

xσ  (where the 
sampling plan allows the population size N to be estimated 
exactly): 

2

2
,CAL

1ˆ .l ll s
x k k

k s

w x
w x

N N
∈

∈

⎛ ⎞⎛ ⎞
σ = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑  

Finding a new auxiliary variable z is not straightforward, 
since the initial calibration equation is not linear relative to 
the weight vector. We will return to the variance case in 
section 3.3 below.  
Ratio example  
Proposition 1: Calibration on a ratio is equivalent to 
calibration on the total of the new auxiliary variable: kz =  

(1) (2) .k kx R x− x  
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The calibration equation is written 

,CALˆ = = 0.z zt t  

Proof: 

(1) ( 2) (1) (2)

(1)

( 2)

,CAL

(1) (2) (1) (2)

, CAL , CAL , CAL , CAL

, CAL

, CAL

ˆ =

( ) = ( )

ˆ ˆ = = 0

ˆ
=

ˆ

z z

k k k k k
k s k U

x x x x

x

x

t t

w x R x x R x

t R t t R t

t
R

t

∈ ∈

⇔ − −

⇔ − −

⇔

∑ ∑x x

x x

x

 

i.e., ,CAL
ˆ .R R=x x   

Function of a ratio of linear combinations of totals  
Let ηx  be a complex parameter that is a bijective 

function of a ratio of linear combinations of totals: 

= h
′⎛ ⎞α ⋅

η ⎜ ⎟′β ⋅⎝ ⎠
x

x
x

t
t

 (1) 

with 1= ( , ..., )P′α α α  and 1= ( , ..., )P′β β β  being vectors of 
real coefficients of size P, and (1) ( )( , , ).Px xt t′ =xt …   
Proposition 2: Performing a calibration on complex 
parameter ηx  defined by function (1) is equivalent to 
calibrating on the total of the new auxiliary variable: 

1= ( ( ) )kz h−′ ′α − η β ⋅x kx  

with calibration equation 

,CALˆ = = 0.z k k z
k s

t w z t
∈

=∑  

 
Proof: 

,CAL

1

1

1

ˆ
ˆ = =ˆ

ˆ
= ( )ˆ

ˆ( ( ) ) = 0

( ( ) ) = 0.k
k s

h

h

h

w h

−

−

−

∈

′⎛ ⎞α ⋅
η η ⇔ η⎜ ⎟⎜ ⎟′β ⋅⎝ ⎠

′α ⋅
⇔ η

′β ⋅

′ ′⇔ α − η β ⋅

′ ′⇔ α − η β ⋅∑

x,CAL
x x x

x,CAL

x,CAL
x

x,CAL

x x,CAL

x k

t
t

t
t

t

x

 

Consider the example of the geometric mean: 
1/

Geo, = .
N

k
k U

x
∈

⎛ ⎞
μ ⎜ ⎟

⎝ ⎠
∏x  

 

This expression can be rewritten as 

Geo,

ln( )
= exp .

1
kk U

k U

x
∈

∈

⎛ ⎞
μ ⎜ ⎟⎜ ⎟

⎝ ⎠

∑
∑x  

We denote (1) (2)= ( , ) = (ln( ),1), = (1, 0),k k k kx x x′ ′αx  ′β =  
(0,1)  and 11( ) = ( ) = ln( ).exph u u u−−  

Hence, the new auxiliary variable is 

Geo,= ln( ) ln( ) 1.k kz x − μ ⋅x  

We will see later in the article that the estimating 
equations method provides another approach to displaying 
the new auxiliary variable(s) z.  

3. Parameter defined by an estimating equation  
3.1 Estimating with an estimating equation  

Certain parameters θy are defined, or can be defined, as 
the solution to an implicit function known as the estimating 
equation on U (Godambe and Thompson 1986), i.e.: 

( , ) = 0k
k U∈

Φ θ∑ y y  

with (1) ( )= ( ,..., )Q
k k ky y′y  being the vector of values taken 

by the variables of interest for individual k. 
In this context, an estimator of θy  is defined for sample 

s, denoted , ,
ˆ ,ee πθy  which is the solution of the estimating 

equation on s (see in particular Hidiroglou, Rao and Yung 
2002): 

, ,
ˆ( , ) = 0.k ee k

k s
d π

∈

Φ θ∑ y y  

 
Table 1 
Examples of parameters defined by estimating equations on U 
 

Parameter y( ,y )Φ θ k  Estimating equation on U 

mean μ  ( )k − μy  ( ) 0kk U y∈ − μ =∑  

ratio 1 2/R = μ μ  (1) (2)( )k ky R y−  (1) (2)( ) 0k U k ky Ry∈ − =∑  

median m (1 1 / 2)
ky m≤ −  (1 1 / 2) 0

ky mk U ≤∈ − =∑   
Consider also the example of the coefficient of a logistic 

regression. Let (1)y  be a dichotomous variable that takes the 
values 0 and 1 on U, and let (2)y  be a quantitative variable. 
The value (1)

ky  taken by (1)y  for unit k is assumed to be an 
instance of the random variable (1)

kY , which has a Bernoulli 
distribution 

(2)
0

11, = .
1 exp( )k

k

p
y

⎛ ⎞
⎜ ⎟

+ −β⎝ ⎠
B  
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We have limited the number of parameters to one, but it 
would be just as simple to consider the multidimensional 
case. However, we should provide a definition of the 
estimating equations that take the case of the vector para-
meters into account. 

The parameter of interest to us is the estimator of 0,β  
denoted ,β  calculated on the finite population by the 
maximum likelihood method. The estimating equation of β  
on U will be the maximum likelihood equation. The log-
likelihood in the case of Bernoulli variables is 

(1) (1)( ) = ln( ) (1 ) ln(1 ).k k k k
k U k U

y p y p
∈ ∈

β + − −∑ ∑L  

It is easy to derive the estimating equation of β  on U: 

(2) (1)
(2)

1 = 0.
1 exp( )k k

k U k

y y
y∈

⎛ ⎞
−⎜ ⎟

+ −β⎝ ⎠
∑  

The estimating equation on s which defines the estimator 
,

ˆ
ee πβ  on the basis of the sampling weights is 

(2) (1)
(2)

,

1 = 0.ˆ1 exp( )k k k
k s ee k

d y y
y∈ π

⎛ ⎞
−⎜ ⎟⎜ ⎟+ −β⎝ ⎠

∑  

The estimating equation is not linear in the parameter; 
,

ˆ
ee πβ  cannot be expressed as a simple function of the 

observations. 
The logistic regression example is very interesting 

because it shows that we do not need to know ,
ˆ

ee πβ  to 
perform the calibration. We will see in the next subsection 
that we only need to know the generic term of the esti-
mating equation on 

(2) (1)
(2)

1, ( , ) = ,
1 exp( )k k k

k

U y y
y

⎛ ⎞
Φ β −⎜ ⎟

+ −β⎝ ⎠
y  

for all .k s∈   
3.2 Calibration in the case of parameters defined by 

estimating equations  
Let x′k = (x(1), …, x(P)) be the vector of  P  known auxiliary 

variables on s, and let ηx  be a complex parameter, also 
known, defined by the estimating equation 

( , ) = 0.k
k U∈

Ψ η∑ x x  

Definition 2: In the case of calibration on the complex 
parameter ,ηx  the calibration weights are obtained by 
solving the following optimization program: 

{ }( )

( , )min k k
w k sk k s

d w d
∈∈
∑  

under constraints 
( , ) = 0.k k

k s
w

∈

Ψ η∑ x x  

Proposition 3: Calibration on a complex parameter ,ηx  
defined by an estimating equation, is equivalent to a 
calibration on the total of the new auxiliary variable: kz =  

( , ),kΨ ηx x  with the calibration constraint 0.k s k kw z∈∑ =   
Definition 3: A calibration estimator of the parameter of 
interest ,θy  denoted , ,CAL

ˆ ,eeθy  is a solution to the 
estimating equation on s weighted by the calibration 
weights ( ){ } :k k sw ∈  

, ,CAL
ˆ( , ) = 0.k ee k

k s
w

∈

Φ θ∑ y y  

In most cases, the solution to the estimating equation is 
unique. The median is an example of a parameter for which 
there may be more than one solution. In this case, the 
infimum is often used as an estimator.  
Proposition 4: If there is only one solution to the equation 

, ,CALˆ( , ) 0,k s k ee kw∈∑ Ψ η =x x  then 

, ,CALˆ = .eeη ηx x  

Proof: ηx  is a solution to the estimating equation that 
defines , ,CALˆ .eeηx  Since there is a unique solution, we have 

, ,CALˆ .eeη = ηx x   
3.3 Calibration on a variance  

In this section, we examine calibration on variance 2,xσ  
which is a more complicated complex parameter than those 
discussed above. We will show that when the variance is the 
only auxiliary information we have, we can perform an 
approximate calibration that produces calibration weights 
that have better properties than the sampling weights. 

Back to the variance case. The mean xμ  and the variance 
2
xσ  on U of auxiliary variable x can be defined by two 

estimating equations on U: 

2 2

( ) 0 (2)

(( ) ) 0. (3)

k x
k U

k x x
k U

x

x

∈

∈

⎧ − μ =
⎪⎪
⎨
⎪ − μ − σ =
⎪⎩

∑

∑
 

If we know the two parameters, calibrating on them is 
easy, since we merely have to calibrate on the totals of the 
two new auxiliary variables (1)

xz x= − μ  and (2)z =  
2 2( ) .x xx − μ − σ  

On the other hand, if we consider the textbook case 
where the mean xμ  is not known, the parameter 2

xσ  cannot 
be defined by a unique estimating equation. If we replace 

xμ  with its explicit definition 

=
1
ll U

x
j U

x
∈

∈

μ ∑
∑
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in equation (3), we obtain the equation 

2

2 = 0,
1
ll U

k x
k U j U

x
x ∈

∈ ∈

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟− − σ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑ ∑
 

which cannot be written in the form of an estimating 
equation: 2( , ) 0.k U x kx∈∑ Ψ σ =  

xμ  thus becomes a nuisance parameter (Binder 1991). 
To overcome this difficulty, we can replace it in equation 
(3) with its substitution estimator: , ,

ˆˆˆ / ,x xt Nπ π πμ =  with 
ˆ 1k s kN d∈π ∑=  being the Horvitz-Thompson estimator of 

the size of population U. This leads to the “approximate” 
calibration equation 

 
2

, 2
ˆ

= 0.ˆ
x

k k x
k s

t
w x

N
π

∈ π

⎛ ⎞⎛ ⎞⎜ ⎟− − σ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  (4) 

Proposition 5: With estimating equation (4), calibration on 
the variance is not perfect, and we have 

 
2

, ,CAL2 2
, ,CAL

CAL

ˆ ˆ
ˆ = .ˆ ˆ

x x
x ee x

t t
N N

π

π

⎛ ⎞
σ σ − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 

Proof: 
 

• The “approximate” calibration equation is equation (4).  
• The definition of the parameters’ calibration estimators: 

, ,CAL

2 2
, ,CAL , ,CAL

ˆ( ) = 0

ˆ ˆ(( ) ) = 0.

k k x ee
k s

k k x ee x ee
k s

w x

w x

∈

∈

⎧ − μ
⎪⎪
⎨
⎪ − μ − σ
⎪⎩

∑

∑
 

This can be rewritten 

,CAL
, ,CAL

CAL

2
, 2

, ,CAL
CAL

ˆ
ˆ = = ˆ

ˆ
ˆ = 0.ˆ

k k xk s
x ee

kk s

x CAL
k k x ee

k s

w x t
w N

t
w x

N

∈

∈

∈

⎧
μ⎪
⎪⎪
⎨ ⎛ ⎞⎛ ⎞⎪ ⎜ ⎟− − σ⎜ ⎟⎪ ⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩

∑
∑

∑
 

• If we subtract the second estimating equation from the 
approximate calibration equation, we get 

22
, ,CAL 2 2

, ,CAL
CAL

ˆ ˆ
ˆ = 0.ˆ ˆ

x x
k k k x x ee

k s

t t
w x x

N N
π

∈

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟− − − − σ + σ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑  

Using the identity 2 2 ( )( ),a b a b a b− = − +  we have 

,CAL , , ,CAL

CAL CAL

2 2
CAL , ,CAL

,CAL , , ,CAL

CAL CAL

2 2
CAL , ,CAL

,CA

ˆ ˆ ˆ ˆ
2ˆ ˆ ˆ ˆ

ˆ ˆ( ) = 0

ˆ ˆ ˆ ˆ
2ˆ ˆ ˆ ˆ

ˆ ˆ( ) = 0

ˆ

x x x x
k k

k s

x x ee

x x x x
k k

k s

x x ee

x

t t t t
w x

N N N N

N

t t t t
w x

N N N N

N

t

π π

∈ π π

π π

∈π π

⎛ ⎞⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

− σ − σ

⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− σ − σ

∑

∑

L , ,
,CAL CAL ,CAL

CAL

2 2
CAL , ,CAL

2
,CAL , 2 2

CAL CAL , ,CAL
CAL

ˆ ˆ ˆˆ ˆ2ˆ ˆ ˆ

ˆ ˆ( ) = 0

ˆ ˆˆ ˆ ˆ( ) = 0.ˆ ˆ

x x
x x

x x ee

x x
x x ee

t t
t N t

N N N

N

t t
N N

N N

π π

π π

π

π

⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

− σ − σ

⎛ ⎞
− − σ − σ⎜ ⎟⎜ ⎟

⎝ ⎠

 

This is the same as the expression for 2
, ,CALˆ x eeσ  in 

equation (5). 
 
This result is interesting because, without an exact 

calibration, we have a calibration estimator of 2
xσ  that is 

asymptotically more precise than the substitution estimator 
2

,ˆ .x πσ  That is, if we resort to the asymptotic framework 
typically used in surveys and employ linearization of 
complex estimators (Deville 1999), we have 

2 2
,

1ˆ =x x pO
nπ

⎛ ⎞σ − σ ⎜ ⎟
⎝ ⎠

 

and 

, ,CAL2 2 1/2
, ,CAL

CAL

ˆ ˆ 1ˆ( ) = = .ˆ ˆ
x x

x ee x p
t t

O
nN N

π

π

⎛ ⎞ ⎛ ⎞σ − σ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

This yields 

2 2
, ,CAL

1ˆ = .x ee x pO
n

⎛ ⎞σ − σ ⎜ ⎟
⎝ ⎠

 

 
4. Conclusion  

In this article, we presented a simple method of 
performing a calibration in cases where the auxiliary 
information takes the form of a complex parameter. That 
method is based on the concept of the estimating equation. 
Its major advantage is that it can be used with current 
calibration software. 
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In future research, it would be interesting to determine 
the practical cases in which the use of complex parameters 
in the calibration improves the precision of the parameters 
of interest.  
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