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Abstract 
This paper examines the efficiency of the Horvitz-Thompson estimator from a systematic probability proportional to size (PPS) 
sample drawn from a randomly ordered list. In particular, the efficiency is compared with that of an ordinary ratio estimator. 
The theoretical results are confirmed empirically with of a simulation study using Dutch data from the Producer Price Index. 
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1. Introduction 
 
When the study variable y  in a population of N  units is 

more or less proportional to a size variable ,x  one may use 
the ratio estimator from a simple random sample of size n  
without replacement (SRS). An alternative estimator in such 
a situation is the Horvitz-Thompson (HT) estimator in 
combination with a systematic probability proportional to 
size sample from a randomly ordered list, henceforth called 
a randomized PPS sample. 

In recent years several authors investigated variance esti-
mation procedures for the HT estimator from a randomized 
PPS sample. See, among others, Brewer and Donadio 
(2003), Cumberland and Royall (1981), Deville (1999), 
Knottnerus (2003), Kott (1988 and 2005), Rosén (1997) and 
Stehman and Overton (1994). For a comparison between the 
efficiencies of the ratio estimator and the randomized PPS 
estimator, the reader is referred to Foreman and Brewer 
(1971), Cochran (1977) and the references given therein. A 
drawback of these comparisons is that finite populations 
corrections are ignored. Hartley and Rao (1962) take the 
finite population correction into account but without an 
explicit formula for the efficiency. Elaborating on the results 
of Gabler (1984), Qualité (2008) shows that the related HT 
estimator from a rejective Poisson sample of size n  is more 
efficient than the Hansen-Hurwitz estimator for a sampling 
scheme with replacement. No formula for the increased 
efficiency is given, however. 

The main aim of this paper is to derive formulas for the 
efficiency of the randomized PPS estimator relative to the 
ratio estimator. To this end, we present a simple formula for 
the change in the sample size required to maintain the same 
variance when a randomized PPS estimator is replaced by a 
ratio estimator. From the design based point of view these 
formulas are valid when ( )n o N=  as .N → ∞  This con-
dition suggests that the finite population correction can be 
neglected for this kind of sampling design. Surprisingly, as 
we will see in an example in section 4, the randomized PPS 
sampling can reduce variance by more than 30% compared 

to PPS sampling with replacement even when the sampling 
fraction /n N  is much smaller than 30%; see also Kott 
(2005, page 436). Furthermore, the formulas remain ap-
propriate from a model assisted point of view when n  and 
N  are of the same order, provided that N  is large and that 
the hypothetical model for the observations iY (i =  
1, ..., )N  satisfies mild conditions.  

The outline of the paper is as follows. Section 2 describes 
an alternative expression for the variance of the HT esti-
mator based on the sampling autocorrelation coefficient. 
The corresponding variance estimator for randomized PPS 
sampling is shown to be nonnegative with probability 1. 
Section 3 presents the formulas for the efficiency of the 
randomized PPS estimator relative to the ratio estimator for 
various data patterns often met in practice. Section 4 
features an example with data on the Producer Price Index 
in The Netherlands illustrating the substantial efficiency 
gains obtainable in practice. A counterexample shows that 
randomized PPS sampling is not always advantageous. The 
paper concludes with a summary.   

2. An alternative variance expression for 
      randomized PPS sampling   

Consider a population {1, ..., },U N=  and let s  be a 
sample of fixed size n  drawn from U  without replacement 
according to a given sampling design with first order inclu-
sion probabilities iπ  and second order inclusion proba-
bilities ( , 1, ..., ).ij i j Nπ =  The HT estimator of the popu-
lation total, ,i U iY Y∈= Σ  is defined by HT

ˆ / .i s i iY Y∈= Σ π  
Suppose there is a measure of relative size iX  (i.e., X =  

1)i U iX∈Σ =  such that all 1/ .iX n≤  In fact, it is assumed 
here that units with 1/iX n>  are put together in a separate 
certainty-stratum. When the iπ  are proportional to these 
size measures, .i inXπ =  Defining / ,i i iZ Y X=  we can 
write Y  as a weighted mean of the ,iZ  that is, zY = μ =  

.i U i iX Z∈Σ  Likewise, we can write the HT estimator of Y  in 
randomized PPS sampling as HT PPS

ˆ ˆ ,sY Y z= =  where sz  is 
sample mean of the .iZ  
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The variance of the randomized PPS estimator PPSŶ  is 

         PPS 2
1ˆvar( ) ( )ij i j i j

i U j U
Y Z Z

n ∈ ∈

= π − π π∑∑  (1) 

                          2
2

1 ( ) ( )
2 ij i j i j

i U j U
Z Z

n ∈ ∈

= − π − π π −∑∑  (2) 

with .ii iπ = π  The former is attributed to Horvitz and 
Thompson (1952) and the latter is due to Sen (1953) and 
Yates and Grundy (1953). The following alternative expres-
sion for the variance is more convenient for our purposes: 

            
2

PPS
ˆvar( ) var( ) {1 ( 1) } ,z

s zY z n
n
σ

= = + − ρ  (3) 

where 2 2( ) ,i Uz i i zX Z∈∑σ = − μ  and 

          .  
( 1)

ij j zi z
z

i U j U z z
j i

ZZ
n n∈ ∈

≠

π − μ⎛ ⎞⎛ ⎞− μ
ρ = ⎜ ⎟⎜ ⎟− σ σ⎝ ⎠⎝ ⎠

∑∑  (4) 

For a proof of (3), see Knottnerus (2003, page 103). Note 
that 2/z nσ  would have been the variance if the sample had 
been drawn with replacement with drawing probabili-
ties .iX  

The sampling autocorrelation coefficient zρ  in (4) is a 
generalization of the more familiar intraclass correlation 
coefficient ρ  in systematic sampling with equal probabi-
lities; see, for instance, Cochran (1977, pages 209 and 240) 
and Särndal, Swensson and Wretman (1992, page 79). Note 
that zρ  is a fixed population parameter. The phrase sam-
pling autocorrelation is used because zρ  refers to the 
autocorrelation between two randomly chosen observations, 
say 1sz  and 2,sz  from .s  Consequently, the value of zρ  
depends on the sampling design. In particular, when sam-
pling with replacement, 0,zρ =  while under SRS sam-
pling, 1 / ( 1).z Nρ = − −  

Although exact expressions for the ijπ  under randomized 
PPS sampling are available, they can be cumbersome when 
N  is large. For an exact expression, see Connor (1966) and 
for a modification Hidiroglou and Gray (1980). Here we use 
an approximation proposed by Knottnerus (2003, page 197):  

                  

(1 )
( 1)

(1 2 )(1 2 )

1 1 .
2 2 1 2

i j i j
ijK

i j

i
i U

i

X X X X
n n

X X

X
X∈

− −
π = −

γ − −

γ = +
−∑

 (5)

 

These ijKπ  have been shown to satisfy the second-order 
restrictions for the :ijπ  

, ( ) ( 1),iji j U j i n n
∈ ≠

π = −∑  

and 

( ) ( 1) .ij ij U j i n
∈ ≠

π = − π∑  

Furthermore, (5) is correct for SRS sampling for any 
,n N≤  while ijKπ  coincide with the ijBDπ  from the special 

designs proposed by Brewer (1963a) and Durbin (1967) for 
PPS samples with 2.n =  Moreover, the ijKπ  in (5) can be 
written in factorized form as proposed by Brewer and 
Donadio (2003). That is,  

                            ( ) / 2,ijK i j i jc cπ = π π +  (6) 

and 

( 1) / (1 2 ).i ic n n X= − γ −  

An implication of approximation (5) is that / ( 1) ijK n nπ −  
does not depend on .n  Hence, the corresponding approxi-
mation of zρ  does not depend on n  (recall we have 
assumed that every 1 / ).iX n<  

This nondependence on n  would also result had we used 
the approximation proposed by Hartley and Rao (1962) for 
randomized PPS sampling: 

2 2

3

( 1)

{1 2( )

3 ( 2 )},

ijHR i j

i j x i j i j

x i j x i U i

n n X X

X X X X X X

X X X∈

π = −

+ + − μ + + +

− μ + − μ − Σ  (7)

 

where 2
Ux i iX∈μ Σ=  (recall ).z i U i iX Z∈μ = Σ  Obviously, 

/ ( 1)ijHR n nπ −  does not depend on .n  At the time Hartley 
and Rao assumed that (1)n O=  as .N → ∞  In addition, 
referring to a private conversation with J.N.K. Rao, 
Thompson and Wu (2008) state that approximation (7) is 
valid when ( )n o N=  as .N → ∞  For an example that (5) 
and (7) can not be used for any n  and ,N  see Appendix A. 

Since both (5) and (7) lead to approximations for zρ  in 
randomized PPS sampling that are {1 (1)}z oρ +  as N → ∞  
with ( ),n o N=  (5) can be used for calculating zρ  in prac-
tice when n N<<  and N  is large. For ease of the exposi-
tion, it is assumed here that there is a positive constant c  
such that / .z c Nρ < −  See also Kott (2005, page 436) who 
discusses estimating the variance under PPS sampling when 

2/3( ).n O N=  
Suppose 21 (1/ )x O Nγ = + μ +  and (1/ )x O Nμ =  

(which follow from the conditions of Theorem 1 below). It 
is not hard to see that, after dropping (1/ )O nN  terms, ic  in 
(6) is identical with ( 1) /{ (1 2 )}.iHR x ic n n X= − + μ −  The 
latter expression is equation (11) of Brewer and Donadio, 
which is based on ijHRπ  in (7). 

The approach proposed here is somewhat different from 
Knottnerus (2003). First, rewrite (5) as 

          1/ 2 1/ 2( 1) .
1 2 1 2

i j
ijK

i j

X X
n n

X X
⎛ ⎞

π = − +⎜ ⎟⎜ ⎟γ − −⎝ ⎠
 (8) 
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Substituting (8) into (4), we obtain a new, simple approxi-
mation for :zρ  

( )

22

1/2 1/2 
1 2 1 2

1
1 2

0 .
1 2

i j ji
z

i U j U i j z z
j i

i j ji

i U j U i z z
j i

i i

i U i z

X X Z YZ Y
X X

X X Z YZ Y
X

X Z Y
X

∈ ∈
≠

∈ ∈
≠

∈

⎛ ⎞ −⎛ ⎞⎛ ⎞−
ρ = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟γ − − σ σ⎝ ⎠⎝ ⎠⎝ ⎠

−⎛ ⎞ ⎛ ⎞⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟γ − σ σ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞−
= − ⎜ ⎟γ − σ⎝ ⎠

∑∑

∑∑

∑ (9)

 

In the second line, we used the equality ,i j ij im v∑ =  
,i j ij jm v∑  when .ij jim m=  In the last line, we used 

( ) 0.j U j jX Z Y∈∑ − =  
Next, let X  denote the population mean of 1, ..., NX X  

and define 2
xσ  and 2

xV  by 
2 2( ) ,x i i xi U X X

∈
σ = − μ∑  

and 
2 2( ) / ,x ii UV X X N

∈
= −∑  

respectively. In the following theorem (9) is further 
simplified.   
Theorem 1. Suppose that ( ) / (1)i zZ Y O− σ =  as N → ∞  
and that there are positive constants c  and C  such that 

/ ,xV X c< /x x cσ μ <  and 0 1/2.iX C< < <  Then, for 
large N and n << N,  

2 2

2 2

( ) 1 11 .
( )

i ii U
z

i ii U

X Z Y
O O

NX Z Y N
∈

∈

− ⎧ ⎫⎛ ⎞ ⎛ ⎞ρ = − + +⎨ ⎬⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎩ ⎭

∑
∑

 (10) 

 
Proof. Because 1/ ,X N=  it follows from the above 
assumptions that the weighted mean 2 2[ (x i xX N Vμ =Σ = +  

2 )]X  is of order 1/N  and hence, (1/ ).x O Nσ =  Because 
1 2(1 2 ) 1 2 ( )i i iX X O X−− = + +  for 0 1/2,iX C< < < zρ  

from (9) can be written for N → ∞  as 

22
31 ,i i

z i
i U i Uz

X Z Y
O X

∈ ∈

⎛ ⎞− ⎛ ⎞
ρ = − +⎜ ⎟ ⎜ ⎟γ σ γ ⎝ ⎠⎝ ⎠

∑ ∑  

where 3 2 2 2( ),i U i x xX O N −
∈∑ = σ + μ =  and 

2

2

1 1 {1 2 ( )}
2 2

1 11 1 ,

i i i
i U

x

X X O X

O O
NN

∈

γ = + + +

⎛ ⎞ ⎛ ⎞= + μ + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
 

from which (10) follows. This concludes the proof.  

Substituting (10) into (3), we get  

            

2
2 2

PPS

2

1ˆvar( ) ( )  

1 {1 ( 1) }( ) ,

z
i i

i U

i i i
i U

nY X Z Y
n n

X n X Z Y
n

∈

∈

σ −
= − −

= − − −

∑

∑  (11)

 

which is also given by Hartley and Rao (1962). It is note-
worthy that approximation (10) also follows directly from 
substituting the simple approximation ( 1)ijAP n nπ = −  

i jX X  into (4). Likewise, use of ijHRπ  leads to an expres-
sion almost similar to (9) and hence to (10). In addition, 
direct use of ijAPπ  in (1) or (2) for the SRS case with 

1/i jX X N= =  may lead to errors of more than 100% for 
populations with 2 ;yY V=  see Knottnerus (2003, pages 
274-6). Hence, (1) and (2) are more sensitive to small errors 
in the ijπ  than (3) and (4). Furthermore, note that when n  is 
so small that 1,zn⎟ ρ ⎟ <<  we may set 0zρ =  yielding the 
with-replacement variance formula of Hansen and Hurwitz 
(1943).  

In order to estimate (3) using ,zρ  denote, as before, a 
randomly chosen observation from s by 1.sz  Then we have 

2
1 1 1

2

var( ) var{ ( )} {var( )}

1var( ) ,

z s s s

s z

z E z s E z s

nz E s
n

σ = = ⎟ + ⎟

−⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

where  

2 21 ( ) .
1z i si ss Z z

n ∈
= −

− ∑  

Now from (3), it is seen that 2 / (1 )z zs − ρ  is an unbiased 
estimator for 2.zσ  When zρ  is very small, the term (1 )z− ρ  
can be neglected. When n  is sufficiently large, the ratio zρ  
from (9) can be estimated by  

( )2

9 2

ˆ( ) / 1 2
ˆ ,

( )
i i s ii s

z
i si s

X Z z X
Z z

∈

∈

− γ −
ρ = −

−
∑

∑
 

where  

1 1 1ˆ .
2 2 1 2i s

in X∈
γ = +

−∑  

Because ˆ 1 γ ≥  and 1/ ,iX n≤  we have 9ˆ 1/ ( 2).z nρ ≥ − −  
For the bias of an estimated ratio when n  is small, see 
Cochran (1977, page 160).  

In a similar manner zρ  from (10) can be estimated by  
2

10 2

( ) 1 1ˆ .
1( )

i i si s
z

i si s

X Z z
n nZ z

∈

∈

− − −
ρ = − ≥ >

−−
∑
∑

 

Hence, replacing 2
zσ  and zρ  in (3) by 2

10ˆ/ (1 )z zs − ρ  and 
10ˆ ,zρ  respectively, leads to a nonnegative variance estimator 
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with probability 1. This also holds for 9ˆ zρ  when all iX ≤  
1 / ( 1).n +  The estimator for PPS

ˆvar( )Y  thus obtained be-
comes 

2
9

PPS
9

ˆ{1 ( 1) }ˆˆvar ( ) .    
ˆ(1 )

z z

z

n s
Y

nρ
+ − ρ

=
− ρ

 

Moreover, for moderate values of ,N  estimator 9ˆ zρ  has 
probably better properties than 10ˆ zρ  because the ijKπ  under-
lying (9) satisfy exactly the second-order restrictions irre-
spective of the values of n  and .N   

3. Efficiency of P̂PSY  for large n and N  
3.1 Efficiency formulas   

Because 1,X =  the ratio estimator for Y  becomes 

ˆ .i is i s
R

s ii s

X Zy
Y

x X
∈

∈

= = ∑
∑

 

For sufficiently large n  the commonly used approximation 
for its variance is 

                 2 2( )ˆvar( ) ( ) .
( 1)R i i

i U

N N nY X Z Y
n N ∈

−
= −

− ∑  (12) 

From (3) and (12) it can be seen that the efficiency of PPSŶ  
relative to R̂Y  can be written as  

2 2

/ 2
PPS

ˆ ( ) ( )var( ) ,ˆ {1 ( 1) }var( )
i ii UR

P R
z z

N n X Z YYEff
nY
∈

− −
= =

+ − ρ σ
∑  (13) 

assuming / ( 1) 1.N N − ≈  Combining (10) and (13) gives 

                               /
( ) .

1 ( 1)
z

P R
z

N nEff
n

− − ρ
=

+ − ρ
 (14) 

Now suppose that the observations iY  satisfy the model: 

                                       ,i i iY X= μ + ε  (15) 

with ( ) 0,iE ε = 2 2( ) ,i iE X δε =σ  and ( ) 0i jE ε ε = ( ).i j≠  
Consequently, for the iZ  we have i iZ u= μ+  with 

( ) 0,iE u = 2 2 2( ) ,i iE u X δ−= σ  and ( ) 0i jE u u = ( ).i j≠  
According to Kott (1988), δ  often lies between 1 and 2. See 
also Brewer (1963b). Brewer and Donadio (2003) showed 
that by assuming a model like (15), (7) and hence (10) and 
(14) hold when n  and N  are of the same order as 

.N → ∞  Furthermore, for sufficiently large N  we can 
replace Y  as well as the numerator and denominator in (10) 
by their model expectations. This yields  

                               1 .i U i
z

i U i

X
X

δ
∈

δ−
∈

Σ
ρ = −

Σ
 (16) 

In the next subsections we look more closely at the 
relationship between δ  and the efficiency of PPS

ˆ .Y    
3.2 Efficiency of P̂PSY  when 2δ =   

For 2,δ =  (16) gives 2 ,z i U i xX∈ρ = −Σ = −μ  which 
can also be written as 

                             21 (1 ),z xCV
N

ρ = − +  (17) 

because  

2 2 2 2 21 (1 ),i x x
i U

X V X X CV
N ∈

= + = +∑  

where 1/X N=  and /x xCV V X=  is the coefficient of 
variation of the .iX  Substituting (17) into (14) gives  

2

/ 2

( ) (1 )
.

( 1) (1 )
x

P R
x

N n CV
Eff

N n CV
− +

=
− − +

 

Hence, for 2,δ =  the efficiency of the randomized PPS 
sample is high when the variability among the iX  is high. 
When 0,xCV =  randomized  PPS sampling amounts to 
SRS sampling and obviously, / 1P REff =  assuming 
( 1) ( );N n N n− + ≈ −  note that this assumption holds 
when N  is sufficiently large and 0/ 1.n N f< <  

Observe that substituting 2
PPS (1 )xn n CV= +  into (12) 

leads to about the same outcome as (3) and (10) with PPSn  
instead of .n  Hence, when xCV = 1.5, randomized PPS 
sampling with sample size PPSn = 100 is as efficient as the 
ratio estimator from an SRS sample of size SRSn = 325. 
More generally, assuming that ( 1) / 1,n n− ≈  it is seen 
from (3), (10), and (12) that a ratio estimator from an SRS 
sample of size SRSn  is as efficient as a PPS sample of size 

PPSn  when 

                                    SRS PPS .zn n N= − ρ  (18) 

 
3.3 Efficiency of P̂PSY  for 1δ <  vs 1δ ≥   

Another special case is 1.δ =  From (16), 1 /z Nρ = −  
when 1.δ =  Subsequently, it follows from (14) that under 
model (15) 1

/ 1 ( ),P REff O N −= +  provided that /n N <  
0 1f <  as N → ∞  irrespective of the value of .xCV  

Furthermore, it can be shown that /P REff  is an increasing 
function of .δ  This is proven below in  Lemma 1. Hence, 
for 1δ <  the randomized PPS estimator is less efficient 
than the ratio estimator, while for 1δ >  the randomized 
PPS estimator is more efficient than the ratio estimator.    
Lemma 1. Let /P REff  and zρ  be defined by (14) and (16), 
respectively. If 2 0,xV >  then /P REff  is a monotonically 
increasing function of .δ   
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Proof. Write zρ  from (16) as a weighted mean of the 
(negative) iX   

( ) ,z i i
i U

u w X
∈

ρ = − δ = −∑  

where 
1

1 [Note that (2)].i
i x

ii U

X
w u

X

δ−

δ−
∈

= μ =
∑

 

Let i jX X> ( ),i j≠  and define ( ) as /i jh w wδ =  
1( / ) .i jX X δ−  Since ( )h δ  is increasing in ,δ  the weight of 

the larger iX  is increasing compared to that of jX  when δ  
is increasing. Hence, ( )u δ  is increasing and zρ  is de-
creasing in .δ  It suffices therefore to show that /P REff  is 
decreasing in .zρ  Writing (14) as  

/ 1
( ) ,

( 1)P R
z

N nEff
n−

− −
=
ρ + −

 

it is seen that /P REff  is decreasing in zρ  indeed. This 
concludes the proof.   
3.4 An alternative structure among the disturbances  

Finally, suppose the variance of the disturbances in (15) 
is of the form:  

2
1 2 1 2var( ) (0 , 1).i i ic X c X c cε = + < ≤  

See Kott (1988). For this case we obtain in analogy 
with (16) 

,z i i
i U

X
∈

ρ = − ω∑  

where 

2 1
1

,   and  /
(1 )

i
i

ii U

X
c c

X
∈

+ φ
ω = φ =

+ φ∑
 

when 0, 1/ .z Nϕ = ρ = −  Hence, when 2 0,c =  PPS 
sampling is only as efficient as the ordinary ratio estimator 
from SRS sampling. Along the same lines as the proof of 
Lemma 1, it can be shown that zρ  is decreasing in ϕ  while 

/P REff  is increasing in ϕ  Hence, for this case the ran-
domized PPS estimator is always more efficient than the 
ratio estimator when c2  is positive.   

4. An application to the Producer Price Index   
The Producer Price Index (PPI) in The Netherlands is 

based on about 2,500 commodity price indexes organized 
by type of product. The price index for a specific commod-
ity can be written as 

,i ii UY X Z
∈

= ∑  

where iZ  is the price change for that commodity of 
establishment i relative to the basic period while iX  is the 
relative sales of that commodity by establishment i  in the 
basic period (recall 1).iXΣ =   

In the example given here, we examine the price changes 
of 70 establishments for the commodity Basic Metal in 
December of 2005 relative to December of 2004; see Table 
1. We compare the variance of the ratio estimator from an 
SRS sample with the variance of the HT estimator from a 
randomized PPS sample when 9.n =  Applying (12) to 
these data gives ˆvar( ) 101.RY =  If the sample had been 
drawn with replacement the variance would have been 116. 
Applying (3) and (9) for a randomized PPS sample gives 

PPS,
ˆvar( )Y γ = 29.9. This outcome takes γ  into account and 

lies close to the result ( )
PPS

simV = 29.2 from a simulation 
experiment consisting of 80,000 randomized PPS samples 
of size 9n =  from the set of 70 establishments. Hence, 

/P REff = 3.5. Because formula (12) for ˆvar( )RY  is only 
asymptotically unbiased, we also carried out simulations 
evaluating the mean square error (MSE) and the bias of R̂Y  
resulting in ( )MSE sim

R = 108 and a relatively small bias of 
0.7. This confirms the conjecture that (12) gives an 
underestimation of the true variance; see Cochran (1977). 
Hence, for moderate samples the true value of /P REff  might 
be somewhat higher than (14) suggests. 

Furthermore, it is noteworthy that the simpler formula 
(10) for zρ  in combination with (3) gives almost the same 
result PPS

ˆvar( )Y = 30.7 even though 70N =  is not very 
large. The with replacement PPS variance would have been 
43.8. Hence, the variance reduction for randomized PPS 
sampling is more than 30% even though the sampling 
fraction /n N  is much smaller. According to (18), formula 
(12) with SRSn = 26 gives about the same outcome as (3) 
with PPSn = 9; note: 0.042.zρ = −  Hence, the sample sizes 
differ by a factor 2.9, which is more or less in line with the 
factor 2(1 ) 3.1xCV+ =  from subsection 3.2. This should 
not be surprising because the price changes and their 
variability hardly depend on the sizes of the company. 
Fitting a double log regression  

                      2ln ( ) lni i iZ Y X v− = α + β +  (19) 

results in the estimate β̂ = 0.07 for the data in Table 1; units 
with iZ Y=  should be omitted in the regression. The 
estimate β̂ = 0.07 corresponds with δ̂ = 2.07 for the 
disturbances in (15) which explains the superiority of 
randomized PPS sampling for this type of data. Also for 
other commodities δ̂  often was about 2; see Enthoven 
(2007). 
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Table 1 
Price changes ( )iZ  and sizes ( )iX  of 70 establishments  
 

i price change size i price change size
1 -18.4% 0.0608 36 34.8% 0.0427
2 -16.0% 0.0784 37 13.1% 0.0121
3 3.3% 0.0762 38 31.7% 0.0351
4 12.5% 0.0100 39 -24.8% 0.0074
5 0.0% 0.0029 40 55.3% 0.0009
6 8.3% 0.0006 41 40.5% 0.0066
7 -39.0% 0.0182 42 34.6% 0.0022
8 -25.1% 0.0020 43 1.7% 0.0001
9 1.1% 0.0040 44 0.0% 0.0039

10 4.4% 0.0066 45 3.9% 0.0304
11 -4.9% 0.0039 46 25.4% 0.0209
12 -8.9% 0.0070 47 25.6% 0.0062
13 -7.0% 0.0148 48 0.0% 0.0033
14 -15.0% 0.0108 49 -0.3% 0.0019
15 -10.7% 0.0087 50 66.6% 0.0346
16 -9.0% 0.1079 51 0.0% 0.0039
17 -11.3% 0.0247 52 -2.9% 0.0007
18 10.6% 0.0024 53 15.8% 0.0011
19 -23.2% 0.0001 54 0.0% 0.0026
20 -25.4% 0.0001 55 0.0% 0.0018
21 -80.7% 0.0002 56 11.6% 0.0057
22 13.4% 0.0005 57 0.0% 0.0042
23 -42.5% 0.0010 58 0.0% 0.0236
24 -34.8% 0.0014 59 -1.5% 0.0015
25 -30.0% 0.0126 60 0.0% 0.0003
26 8.0% 0.0530 61 11.7% 0.0067
27 0.0% 0.0208 62 0.0% 0.0012
28 2.1% 0.0119 63 0.8% 0.0040
29 11.3% 0.0208 64 2.0% 0.0009
30 0.7% 0.0322 65 2.3% 0.0018
31 9.5% 0.0447 66 4.7% 0.0026
32 11.5% 0.0018 67 0.9% 0.0064
33 5.8% 0.0174 68 -1.0% 0.0309
34 -6.9% 0.0197 69 -0.5% 0.0005
35 0.0% 0.0124 70 0.0% 0.0006

 
 

We conclude this section with a small example showing 
that randomized PPS is not always better than the ratio 
estimator. Although the data in Table 2 for a population of 
five units are artificial, a data pattern like this may occur in 
financial branches where very small financial companies 
may grow very fast with respect to certain financial vari-
ables. This high variability among growth rates of small 
companies results in a low value for .δ  For an SRS sample 
with 2n =  from the five units in Table 2 the variance of 
the ratio estimator is 211 according to (12); simulations give 

( )MSE sim
R = 323. This is much less than the variance of 557 

found in a simulation consisting of 80,000 randomized PPS 
samples of size 2.n =  Formula (3) in combination with (9) 
gives the same outcome: 557. This would also be the correct 
variance had sample been drawn according to Brewer 

(1963a) or Durbin (1967). Formula (11), based on (10), 
gives a slightly different value, 556.  

Regression (19) with the data from Table 2 yields 
ˆ 3.0,β = −  and hence ˆ 1.0.δ = −  In line with the findings 
of subsection 3.3 this low value ˆ 1.0δ = −  explains why 

PPSŶ  is less efficient than R̂Y  in this example. Moreover, the 
ordinary direct estimator sN y  from an SRS sample has a 
variance of 356, which is even smaller here than the 
variance in randomized PPS sampling; sy  being the sample 
mean of the .iY  Hence, for this type of data, the ratio 
estimator is the best option. Recall that the ratio estimator 
has a smaller variance than sN y when /2b Y X>  where 
b  is the slope of a regression from iY  on iX  and a constant 
( 1, ..., );i N=  see Knottnerus (2003, page 117). So the data 

( )i i iY X Z=  in Table 2 certainly do not exhibit a flat trend. 
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Table 2 
Growth rates of assets ( )iZ  and sizes ( )iX  of 5 establishments  
 

i growth rate size 
1 200% 0.0455 
2 33% 0.1364 
3 75% 0.1818 
4 33% 0.2727 
5 62% 0.3636  

5. Summary  
This paper compares the variance of the HT estimator 

PPSŶ  from a randomized PPS sample with the variance of 
the classical ratio estimator R̂Y  from an SRS sample of the 
same size. In this comparison the sampling autocorrelation 
coefficient zρ  plays an important role.  

When the data pattern of the variables x and ( / )z y x=  
is such that 1 / ( 1),z Nρ < − −  it can be shown under mild 
conditions that PPSŶ  is more efficient than R̂Y  for suffi-
ciently large n  and ,N  provided that iX  and iZ  are uncor-
related. Under model (15) with 2 2( )i iE X δε = σ  it holds that 

1/ ( 1)z Nρ < − −  when 1.δ >  Hence, for this type of data 
PPSŶ  is to be preferred. Moreover, it emerges from (14) and 

(16) that for 2δ =  the relative efficiency of PPS sampling 
compared to that of the ratio estimator is increasing when 

xCV  is increasing. In addition, R̂Y  is to be preferred when 
the data correspond to a model with 1.δ <  These findings 
are confirmed empirically with a simulation study using two 
different data sets. When model (15) is not applicable, the 
relative efficiency of PPSŶ  is given by (14) provided n  is 
large and N  is relatively larger. In practice the unknown 

zρ  in (14) is replaced by 9ˆ .zρ  The fact that n N<<  does 
not necessarily mean that the factor ( 1) zn − ρ  in (3) is 
always negligible.   
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Appendix A 
 

A counterexample   
Equations (5) and (7) cannot always be used for 

randomized PPS sampling when n  and N  are of the same 

order while iX  and iZ  are correlated. To see that, consider 
a population U  consisting of two groups 1U  and 2U  with 
means 1Y  and 2,Y  respectively. Both stratum sizes are 

/2.N  Let s  be a randomized PPS sample of size n =  
3 /4N  from the whole population .U  Let the iX  be such 
that  

1

2

1 if

0.5 if .i i

i U
nX

i U

∈⎧⎪π = = ⎨
∈⎪⎩

 

Obviously, group 1 does not contribute to the variance. The 
selected units in s  from 2U  constitute an ordinary SRS 
sample of size /4.N  Hence, for randomized PPS sampling 
the correct variance formula in this example is  

2 22
2 2

PPS
1ˆvar( ) 1 ,

2 2 / 4 2
y yS NSNY

N
⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and 

2

2 2
2 2 2

2 ( ) .
2y ii US Y Y

N ∈
= −

− ∑  

However, approximation (11) gives an entirely different, 
larger outcome unless 1 22 .Y Y=   
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