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Abstract 
Data linkage is the act of bringing together records that are believed to belong to the same unit (e.g., person or business) 
from two or more files. It is a very common way to enhance dimensions such as time and breadth or depth of detail. Data 
linkage is often not an error-free process and can lead to linking a pair of records that do not belong to the same unit. There 
is an explosion of record linkage applications, yet there has been little work on assuring the quality of analyses using such 
linked files. Naively treating such a linked file as if it were linked without errors will, in general, lead to biased estimates. 
This paper develops a maximum likelihood estimator for contingency tables and logistic regression with incorrectly linked 
records. The estimation technique is simple and is implemented using the well-known EM algorithm. A well known method 
of linking records in the present context is probabilistic data linking. The paper demonstrates the effectiveness of the 
proposed estimators in an empirical study which uses probabilistic data linkage. 
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1. Introduction 
 
Data linking, also referred to as data linkage or record 

linkage, is the act of bringing together records that are 
believed to belong to the same unit (e.g., a person or busi-
ness), from two or more files. Data linkage is an appropriate 
technique when data sets must be joined to enhance dimen-
sions such as time and breadth or depth of detail. Ideally, the 
linkage will be perfect, meaning only records belonging to 
the same unit are linked and all such links are made. How-
ever, in many situations this does not happen, especially 
when linking records using fields that may have incorrect 
values, missing values or values that are legitimately dif-
ferent for a given unit.  

Probabilistic linking is often used when the files contain 
a set of common variables or fields that constitute partial 
identifying information, but which do not constitute a 
unique unit identifier. In probabilistic linking (Fellegi and 
Sunter 1969) all possible links are given a score based on 
the probability that the records belong to the same unit. This 
score is calculated by comparing the values of linking 
variables that are common to both files. A link is then 
declared if the link score is higher than some cut-off. An 
optimisation algorithm may be used to ensure that each 
record on one file is linked to no more than one record on 
the other file. Probabilistic methods for linking files are now 
well established (see Herzog, Scheuren and Winkler 2007, 
Winkler 2001 and Winkler 2005) and there is a range of 
computer packages available to implement them.  

This is a consequence of the continued importance of 
linkage in a variety of fields, particularly relating to health 
and social policy. Recent examples of probabilistic data 

linkage from the Australian Bureau of Statistics (ABS) 
include linking records from the 2006 Australian Census of 
Population and Housing to a number of data sets including 
Australian death registrations (Australian Bureau of Statis-
tics 2008), the 2006 Census Dress Rehearsal (Solon and 
Bishop 2009), and the Australian Migrants Settlements 
Database (Wright, Bishop and Ayre 2009). In the health 
arena within Australia, probabilistic linkage methods are 
used by the Western Australian Data Linkage Unit (Holman, 
Bass, Rouse and Hobbs 1999) and by the New South Wales 
Centre for Heath Record Linkage. Internationally, prob-
abilistic methods are used by Statistics Canada (Fair 2004), 
USBC (see Winkler 2001), the U.S. National Center for 
Health Statistics (National Center for Health Statistics 2009) 
and by the Switzerland Statistical agency as part of their 
Longitudinal Study of People Living in Switzerland.  

Data linking offers opportunities for new statistical 
output and analysis. Naively treating a probabilistically-
linked file as if it was perfectly linked will, in general, lead 
to biased estimates. Lahiri and Larsen (2005) and Scheuren 
and Winkler (1993) proposed methods to calculate unbiased 
estimates of coefficients for a linear regression model under 
probabilistic record linkage. More recently, Chambers, 
Chipperfield, Davis and Kovačević (2009) and Chambers 
(2008) extended this work to a wide set of models using 
generalised estimating equations and, in the case of linking 
two files, allowing one file to be a subset of the other file.  

This paper develops a maximum likelihood (ML) ap-
proach for analysis of probabilistically-linked records. The 
estimation technique is simple and is implemented using the 
well-known EM algorithm. The approach involves replacing 
the statistics, which would be observed from perfectly linked 
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data, with their expectation conditional on the linked data. 
Assuming this expectation is correctly specified, this ap-
proach overcomes the following two limitations of the 
previous work. 

First, the previous methods assume only one linkage pass 
is made, whereas, probabilistic linkage usually involves 
multiple passes. In the latter case, records not linked in the 
first pass are eligible to be linked in the second pass, and 
only records not linked in the first two passes are eligible to 
be linked in the third pass, and so on. Each pass is designed 
to link records with a particular common set of charac-
teristics. For example, the first pass may be designed to link 
records belonging to individuals who have not changed 
address between the reference dates of the two files. The 
second pass may be designed to accommodate changes of 
address. An example of such an approach is given in Table 
1 in section 5.  

Second, the previous methods assume that either the two 
files contain records from exactly the same units or the set 
of units on one file is a subset of those on the other file. The 
approach proposed can be used when one of the files to be 
linked is not necessarily a subset of the other file. This 
situation occurs frequently in practice and occurred in all the 
ABS examples mentioned above. It is also worth men-
tioning that the files to be linked do not need to be related 
via a sampling mechanism, such as the smaller file being a 
random sub-sample of individuals from the larger file. 
Removing this restriction means that the two files may be 
administrative data sets. 

Consider linking two files denoted by X and Y. File Y 
contains the variable y on the population of individuals yU  
comprising yn  records. File X contains a vector of vari-
ables, x, on the population of individuals xU  comprising xn  
records. The target of inference is with respect to the 
population of xyn  individuals, denoted by ,xy x yU U U= ∩  
who are common to File X and File Y. Files X and Y also 
contain a vector of fields, denoted by z, which are used to 
link the files using a probabilistic linkage algorithm. Of 
course, since we are considering probabilistic linkage here, 
the variable z does not constitute a unique unit identifier.  

Linking Files X and Y allows the joint distribution of x 
and y to be analysed. There are two sources of error that 
may affect analysis of the joint distribution using the linked 
file. These errors are referred to as incorrect links and 
unlinked records.  

A link is correct when the pair of linked records belong 
to the same individual. A link is incorrect when a pair of 
linked records do not belong to the same individual. Incor-
rect links can artificially increase or decrease the correlation 
between x and y. An example of the latter is random 
linkage, where records on File X are randomly linked to 
records on File Y. 

The thi  record on File X is defined as an unlinked 
record, if xyi U∈  and record i was not linked to a record 
on File Y. Or in other words, an unlinked record is a record 
on File X that could be correctly linked but was not linked at 
all (throughout this paper we use the convention of defining 
unlinked records in terms of File X, though the definition 
could equally be in terms of records on File Y). It may not 
always be possible to link a particular record on File X with 
much confidence that the link is correct. This situation may 
arise if a record is missing fields that are useful in estab-
lishing the correct link. More generally, unlinked records 
may occur when some sub-populations are relatively 
difficult to link. For example, fields such as marital status, 
qualification, field of study, and highest level of schooling 
would generally not be as powerful when linking children as 
when linking mature adults. In this situation, the data linker 
must decide whether or not to link such records. We define 
the set of linked records by lU  of size *n  so that *

xn n≤  
and * .yn n≤  

The problem of analysis with unlinked records has clear 
parallels with the problem of unit non-response. Both lead 
to only a subset of legitimate records being available for 
analysis. The non-response mechanism in survey sampling 
is, in reality, a function of an unknown set of variables. Here 
however, we have the slight advantage in knowing that the 
probability of a record remaining unlinked can only be a 
function of z. The problem of non-response is often ad-
dressed by weighting or by some conditioning argument. 
This paper considers both approaches to address the issue of 
unlinked records. 

There is a natural trade-off between the number of 
unlinked records and incorrect links (and consequently the 
bias that they introduce). Consider the case where File X is a 
subsample of File Y so that .xy xU U=  Linking all records 
on File X will result, by definition, in no unlinked records 
but will result in the number of incorrect links being 
maximised. If instead we decide to only form links which 
we are very confident are correct, the number of incorrect 
links will decrease but the number of unlinked records will 
increase. In practice, finding the optimal balance between 
the biases due to unlinked records and incorrect links 
depends upon the analysis to be undertaken, the linkage 
methodology, and their interaction. For an in-depth practical 
discussion of this issue see Bishop (2009). 

It is worthwhile mentioning that the problem of making 
inference in the presence of incorrect record linkage is 
similar to the problem of making inference in the presence 
of misclassification of the outcome variable, which is a form 
of measurement error (see Fuller 1987). In the latter case, 
identifying assumptions separate the misclassification mech-
anism from the model mechanism and are required since no 
error-free measurement is typically available. For example, 
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Hausman, Abrevaya and Scott-Morton (1998) considers 
misclassification in the outcome variable of a logistic 
regression model. Their identifying assumption is that the 
value of the, possibly misclassified, outcome variable is a 
particular function of the model’s explanatory variables. 
Our proposed method does not require the strong identifying 
assumptions of measurement error problems essentially 
because error-free measurement is available from a clerical 
sample which identifies correct links. The assumptions we 
make in this paper are outlined in section 3. 

Section 2 summarises the ML approach to contingency 
table and regression analysis under perfect linkage. Section 
3 considers the ML approach in the presence of incorrect 
links. Section 4 considers the ML approach in the presence 
of both incorrect links and unlinked records. Section 5 
demonstrates the effectiveness of many of the proposed 
estimators in an empirical study. Section 6 summarises the 
findings.  

2. Perfect linkage  
By way of introducing notation, this section discusses the 

case where the linkage is perfect. The estimating approach 
in this section is standard since, clearly, no special adjust-
ment for incorrect linkage is required. Section 2.1 discusses 
estimating cell probabilities in a contingency table and 
section 2.2 discusses estimating regression coefficients in a 
logistic regression.   
2.1 Contingency tables  

For notation, it is convenient when considering contin-
gency table analysis to transform ix  to a single categorical 
variable x so that 1, 2, ..., , ..., .x g G=  Define y  to be a 
categorical variable on file Y, where 1, ..., , ..., .y c C=  

Consider the following factorisation of the distribution of 
x and y  

1 2( , ) ( ; ) ( ),p y x p y x p x= ⎟ Π  

where 1( ,..., ,..., ) ,g G′ ′ ′ ′=Π π π π 1| | |( ,..., ,..., ) ,g g c g C g ′= π π ππ
 

|c gπ
 
is the probability that y c=  given .x g=  We as-

sume that for every value of x there are C possible values of 
y which implies that the dimension of Π  is CG.  

We now consider maximum likelihood estimation of the 
parameter ,Π  characterising 1,p  under perfect linkage. 
Perfect linkage means that all records on file X are correctly 
linked to their corresponding record on file Y (i.e., there are 
no incorrect links and no unlinked records). Under perfect 
linkage, xy xn n=

 
and the set of linked records is denoted 

by {( , ): 1, ..., }.i i xyy x i n= =d  Under perfect linkage, the 
score function for 1| | |( , ..., , ..., )x x c x C x

′= π π ππ  character-
ised by the multinomial distribution, is  

1| | 1|

Score( ; )

(Score( ; ), ..., Score( ; ), ..., Score( ; ))

x

x c x C x−

=

′π π π

π d

d d d
 
(1)

 

where  
1 1

| | | | |

1 1
| | | |

Score( ; ) ( )

,

c x i ic x ic x iC x iC x

c x c x C x C x

d w w

n n

− −

− −

−

−

π = Σ π π

= π π
 

for 1, ..., 1,c C= −  where | | |, 1c x i ic x ic xn w w= Σ =  if iy =  
c  and ix x=  and | 0ic xw =  otherwise, and the category 
corresponding to y C=  is the arbitrarily chosen reference 
category. Solving 1Score( ; )x C−=π d 0  for ,xπ  where 1C−0  
is a 1C −  column vector of zeros, gives the maximum 
likelihood (ML) estimator  

                                     | |ˆ / ,c x c x xn nπ =  (2) 

where 

|x c i ic xn w= Σ Σ  

and 
1

| |1
ˆ ˆ1 .C

C x c xc
−

=
π = − π∑  

 
2.2 Logistic regression  

Consider the logistic regression model  

                                         ( )i iE y = υ  (3) 

                               1 / [1 exp( )].i i′υ = + β x  (4) 

For (4) the K elements of ix  are dichotomous variables 
and iy  is now a dichotomous variable available from File 
Y. If we define 1( ,..., ,..., ) ,

xyi n ′=x x x x 1( ,... ,..., )
xyi ny y y ′=y  

and 1( , ... , ..., ) ,
xyi n ′= υ υ υυ  the score matrix for β  based   

on perfectly linked data, d, is 

                             Score( ; ) = ( ).′ −β d x y υ  (5) 

Solving Score( ; ) K=β d 0  for β  gives the ML esti-
mate ˆ ,β  which can be found by applying the well-known 
Newton-Raphson method.   

3. Analysis with incorrect links  
This section considers the situation where the linked file 

contains incorrect links but does not contain unlinked 
records. This occurs when all the records on File X are 
linked to a record on File Y (so ).x yn n≤  Define the linked 
file of records by * * *{ ( , ): 1, ..., },i i i xy i n= = =d d x  where 

*
iy  is the value of y that is linked to record i on file X. To 

clarify, iy  is the true value of y for record i on file X, so 
that *

i iy y=  if record i is correctly linked. 
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The estimator given by (2), together with the assumption 
that *

i iy y=  for 1, ..., ,xi n=  is naive since it treats the 
probabilistically linked file as if it were perfectly linked. In 
general the naive estimator will be biased. This section 
derives ML estimators which account for the fact that the 
data have been linked probabilistically or linked imperfectly 
in some way. 

It is common practice to select a subsample of the linked 
file, denoted by ,cs  which is then reviewed clerically. The 
clerical review classifies a link, ,id  as either correct or 
incorrect. Let i 1δ =  if record i on File X is correctly linked 
and i 0δ =  otherwise.  

Designing the clerical subsample is an important prob-
lem, especially since clerical review is often a costly exer-
cise. Possible uses of a clerical sample include estimating 
the proportion of correctly linked and unlinked records, to 
assist in deciding which records should be linked and which 
should remain unlinked, to ensure correct inference using 

*d  (i.e., the purpose of this paper), and to identify improve-
ments to the way in which records are linked (in the ABS 
applications mentioned above, clerical samples were de-
signed to ensure that each link had at least a specific 
probability of being correct). For the purpose of making 
correct inference using *d  selecting the clerical sample by 
simple random sampling is a reasonable approach. A more 
efficient clerical subsample could possibly be devised but 
there is no obvious way to do so. This is because the para-
meters that we need to estimate to implement the ML 
method described in this paper depend upon the specific 
analysis (e.g., choice of y and x). Designing a clerical 
sample for all possible analyses would be difficult.  

We factorise the joint distribution ( , , )i i ip y δx  by  

                      ( | ; ) ( ) ( | ),i i i i ip y p p δx θ x x  (6) 

where =θ β  in the regression case, =θ Π  in the contin-
gency table case. Factorisation (6) means that the links are 
incorrect at random (IAR) or, in other words, that the distri-
butions |i iy x  and |i iδ x  are independent. Under this as-
sumption it is only necessary to maximise the likelihood 
associated with the factor ( | ; ).i ip y x θ  Throughout this 
section we assume (6). It is important to point out that (6), 
and the development that follows, makes no assumption 
requiring File X to be a subset of File Y (e.g., when units on 
File X are a subsample of the units on File Y) or that the 
linkage process involves a single pass. We also assume that 
the correctness of linkage, ,iδ  is independent from record to 
record. 

As mentioned in the introduction, each linked record is 
assigned a score based on the probability that the records 
belong to the same unit. Denote the score by .ir  A referee 
suggested using ir  to more accurately parameterise the 
distribution of .iδ  Technically this suggestion would 

involve replacing ( | )i ip δ x  with ( | , )i i ip rδ x  in (6) and 
would likely reduce the variability of the ML estimators 
discussed in section 3. This would be a useful avenue of 
further research.  
3.1 Contingency tables  

Define *
| 1ic xw =  if *

iy c=  and ,ix x=  and *
| 0ic xw =  

otherwise. The expectation of |ic xw  given *
id  is 

*

* *

* *
||

*
| |

*
|

|

( | , )

(1 ) if

if and 1

if and 0

ic x i id d

ic x c x cxy xy

ic x c i

c x c i

E w x x y y

w p p i s

w i s

i s

= = =

+ π ∉

= ∈ δ =

= π ∈ δ =

−
 

and *xyp  is the probability that the thi  link is correct given 
ix x=  and * *.iy y=  The ML estimator of |c xπ  using the 

probabilistically linked data, *,id  is then 

                                ( ) 1
| | |c x c x c xcn n

−
π = ∑  (7) 

where 
                                        | | ,c x i ic xn w= Σ  (8) 

* *
*

| | |

*
|

|

ˆ ˆ(1 ) if

if

if and 0

ic x ic x c x cxy xy

ic x c

c x c i

w w p p i s

w i s

i s

= + π ∉

= ∈

= π ∈ =

−

δ

 (9) 

and 

                    ( ) ( )*

1
* *

| |ˆ .
c c

ic x i ic xxy i s i sp w w
−

∈ ∈
= δ∑ ∑  (10) 

The estimation procedure involves iterating between (7), 
(8) and (9) until convergence. Specifically the algorithm is:  

1. Calculate *ˆ
xyp  from (10).  

2. Initialise (0)
|c xπ  and then calculate (0)

|c xw  from (9) and 
then (0)

|c xn  from (8).  
3. Calculate ( )

|
t

c xπ  from (7) using ( 1)
| .t

c xn −   
4. Calculate ( )

|
t

c xw  from (9) using ( )
|
t

c xπ  and then calculate 
( )
|
t

c xn  from (8) using ( )
| .t

c xw   
5. Iterate between 3 and 4 until convergence.  
The initialised value (0)

|c xπ  could be set to the naive esti-
mate of | ,c xπ  which was described in section 3 above. How-
ever, our experience was that the choice of initial value was 
not important.  
3.2 Logistic regression  

Below we describe two ML methods (Methods 1 and 2) 
for estimating β  using the probabilistically linked data, *.d  
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Both methods give unbiased estimates under the IAR as-
sumption. The difference between the methods is the level 
of aggregation at which the probabilities of correct linkage 
are estimated. Method 1 requires these probabilities at a fine 
level of aggregation, which may mean its estimates are more 
variable than those of Method 2.   
3.2.1 Method 1  

The expectation of y  conditional on the linked data is  

*

* *

* *
d|d

*

*

( | , )

(1 ) if

if and 1

if and 0

i i i

i i cy y

i c i

i c i

E y y y

y p p i s

y i s

i s

= = =

+ υ ∉

= ∈ δ =

= υ ∈ δ

−

=

x x

x x

 

and *xyp  is the probability that the thi  link is correct given 
ix x=  and * *.iy y=  

The ML estimator is then obtained by iterating between 
finding the solution, denoted by ,β  for β  in (5) with iy  
replaced by ,iy  where  

* *
*

*

ˆ ˆ(1 ) if

if and 1

if and 0,

i i i cy y

i c i

i c i

y y p p i s

y i s

i s

= + υ ∉

= ∈ δ =

= υ ∈ δ

−

=

x x

 (11) 

iυ  has the same form as iυ  except that β  is replaced with 
β  and *ˆ

ypx  is the estimated proportion of correct links       
in the clerical sample for each combination of x  and *.y   
3.2.2 Method 2  

Let ′x y  in (5) have thk  element 

,
n n

k k i ik ik
i i

r y x r′= = =∑ ∑x y  

where .ik i ikr y x=  The expectation of ikr  conditional on 
*d  is 

*

* *

*
d|d

*

*

( | , )

[ (1 ) ] if

if and 1

if and 0

ik i i i

i i ik cky ky

i ik c i

i ik c i

E r y y

y p p x i s

y x i s

x i s

= =

−

=

+ υ ∉

= ∈ δ =

= υ ∈ δ =

x x

 (12) 

and *kyp  is the probability that a link with 1ikx =  is correct 
given * *.iy y=  The ML estimator is then obtained by 
iterating between finding the solution, denoted by ,β  for β  
in (5) with ikr  replaced by ,ikr  where  

* *
*

*

ˆ ˆ[ (1 ) ] if

if and 1

if and 0,

ik i i ik cky ky

i ik c i

i ik c i

r y p p x i s

y x i s

x i s

= + υ ∉

= ∈ δ =

= δ

−

υ ∈ =

(13) 

iυ  has the same form as iυ  except that β  is replaced with 
β  and *ˆ

kyp  is the estimated proportion of correct links in 
the clerical sample for each combination of x  and *.y  
Namely, if * 1,iy =  

*

1
* *

c c

n n

i ik i i ikky
i s i s

p y x y x
−

∈ ∈

⎛ ⎞⎛ ⎞
= δ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑  

and if * 0,y =  

*

1
* *(1 ) (1 ) .

c c

n n

i ik i i ikky
i s i s

p y x y x
−

∈ ∈

⎛ ⎞⎛ ⎞
= − δ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑  

This approach requires only 2K probabilities to be 
calculated from the clerical sample and, on this basis, may 
be preferable to the approach in section 3.2.1 which requires 
more probabilities to be calculated.  
3.3 Estimating the variance using the bootstrap  

In this section we describe how to calculate the variance 
of the ML estimates of section 3. Denote the parameter of 
interest by ,θ  introduced earlier, and its ML estimate by .θ  
The Bootstrap (Rubin and Little 2003) estimate of the 
variance of ,θ  denoted by bootˆ ( ),v θ  is obtained by  

1. Taking a replicate sample of size xn  from the linked 
file, *,d  by simple random sampling with replace-
ment. Denote the thr  replicate sample by * ( ).rd  The 

thr  replicate clerical sample is *( ) ( ).c cs r s r= ∩ d  
2. Calculating ( )rθ  which has the same form as θ  

except that * ( )rd  is used instead of *d  and ( )cs r  
is used instead of .cs  

3. Repeating steps 1 and 2 R times, where R is the 
number of replicates. 

4. Calculating 

                    boot 1

1ˆ ( ) ( ( ) ) ( ( ) ) .R
bv b b

R =
′= − −∑θ θ θ θ θ  

 
4. Analysis with incorrect links and  

      unlinked records  
This section discusses two ways of analysing linked data 

in the presence of incorrect links and unlinked records. As 
mentioned in the introduction, the problem of analysis when 
there are unlinked records has clear parallels with the 
problem of unit non-response. Unlinked records may result 
in some characteristics on the linked file being over- or 
under-represented, thus leading to biased analysis. As 
discussed in more detail below, we use the fact that the 
mechanism giving rise to unlinked records can only be a 
function of z.  
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This section considers two methods of making inference 
in the presence of incorrect links and unlinked records, 
where linked records are indexed by *1, ..., .i n=  (Re-
member that the thi  record on File X is an unlinked record 
if xyi U∈  and record i was not linked to any record on File 
Y.) The methods involve independently modelling the 
processes that determine which records are incorrectly 
linked and which are unlinked (see section 5 for an illustra-
tion). These models require a subsample, denoted by ,xcs  of 
all records on File X to be subjected to clerical review. 
Records in the subsample will be either linked to records on 
File Y or not linked. Linked records in the subsample must 
be identified as either correctly or incorrectly linked by the 
clerical review process. A subsample record which is not 
linked must be identified as either unlinked, or otherwise. 
Unlinked means the corresponding record was found on File 
Y but not linked to it, whereas otherwise indicates the 
corresponding record was not found on File Y and therefore 
assumed not to exist. The latter identification is potentially 
much more difficult and time-consuming than the former 
because it assumes some other error-free process is available 
for checking whether links, which were not made, are in fact 
correct. Unlinked records, by their nature, have limited 
information that can be used to identify the correct link, 
even during clerical review. Such a process may not exist, in 
which case adjusting for unlinked records would seem to be 
impossible. However, such a process may involve a clerical 
review of names appearing on the two files to be linked. For 
example, a clerical reviewer may realise that the names 
John O. Smith and Joh O. Smith on two different records 
may in fact be the same name (with an “n” missing in the 
latter case, perhaps due to errors in scanning), whereas the 
automated linking process may treat the two names as 
completely different. The clerical reviewer may then decide 
that the above two records correspond to the same 
individual and so therefore should be linked. (Bishop (2009) 
and Wright (2009) discuss the benefits of clerical review).  

The first method involves conditioning analysis on a 
variable ( ).i i i=ζ ζ z  The variable ζ  is defined so that in-
ference, in the presence of unlinked records, is unbiased 
conditional on .ζ  The term ζ  is introduced since, in many 
cases, it would be impractical or unnecessary to condition 
on all the information in z. It is possible to give iζ  a non-
missing value even when iz  contains missing values. The 
exact form of the function ( )ζ z  would need to be justified 
after analysis of the subsample, .xcs  For example, if persons 
under 20 years of age are under-represented in the linked 
file, ζ  would indicate whether a person is under 20 years of 
age. One approach to analysis is to include ζ  as a covariate 
in the regression model. The method in section 3 would then 
apply directly. However, analysts may like to integrate over 
ζ  so that it does not appear in the logistic model or 

contingency table. Section 4.2 discusses how to do this for 
contingency tables. Section 4.3 discusses a pseudo-likeli-
hood approach which assigns weights to the linked records 
that attempt to account for any under- or over-representation 
of certain subpopulations in the linked data. Again, the 
choice of weight would need to be justified after analysis of 
the subsample, ,xcs  which identifies unlinked records. This 
is discussed further in the context of the empirical study.  
4.1 Can we ignore unlinked records?  

Define the variable 1iγ =  if record i on File X is un-
linked and 0iγ =  otherwise. Also let iζ  be a variable so 
that 1, 2, ..., , ... ,i h H=ζ  where H is the number of cate-
gories for .ζ  We can ignore the fact that there are unlinked 
records if we are prepared to assume that, conditional on ,ix  
the distributions of ,iy iγ  and iδ  are independent. Techni-
cally this assumption leads to the factorisation, 

( , , , , )

( | ; ) ( | ) ( | ) ( )

i i i i i

i i i i i i i

p y

p y p p p

δ γ ∝

δ γ

x ζ

x θ x x ζ
 

where again =θ β  or .Π  It is worthwhile checking wheth-
er this assumption is valid from the clerical subsample. If 
the assumption is reasonable, then there is no need to apply 
the methods in section 4.2 and 4.3 and the methods in 
section 3 will suffice.  

We may not be prepared to make the assumption 
mentioned above. We may however be prepared to assume, 
conditional on x and ,ζ  the distributions of ,iy iγ  and iδ  
are independent. In this case, we say unlinked records are 
not ignorable. Technically this assumption leads to the 
factorisation,  

( , , , , )

( | , ; ) ( | ; ) ( | , ) ( )

i i i i i

i i i i i i i i i

p y

p y p p p

δ γ ∝

δ γ

x ζ

x ζ Λ x τ x ζ ζ
 

where Λ  is the parameter for the distribution of | , .i i iy x ζ  
If we are interested in ( | ; )i ip y x θ  but not ( | , ; ),i i ip y x ζ Λ  
one approach is to integrate out (i.e., average over) iζ  from 
the latter.   
4.2 Conditional Maximum Likelihood (CML) for 

contingency tables  
First. parameterise the joint distribution of ,iy ix  and iζ  

by the multinomial distribution with parameter, .Λ  Define 
1( ,... ,..., ) ,h H

′′ ′ ′=Λ Π Π Π  where 1( , ..., ,..., ) ,h h gh Gh
′′ ′ ′=Π π π π  

1| | |( , ..., , ..., )gh gh c gh C gh
′π = π π π  and |c ghπ  is the probability 

that ,iy c= ix g=  and .i h=ζ  The ML estimator of =Π  
|( )c xπ  from section 2.1 when linkage errors are not 

ignorable is |( ),c x= πΠ  where  

                                | | |
1

ˆ ,
H

c x c xh h x
h=

π = π π∑  (14) 
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where 

                            ( ) 1
| | |n n ,c xh c xh c xhc

−
π = ∑  (15) 

| |n ,
l lc xh i U ic xh i Uw∈ ∈= Σ Σ  is the sum over the *n  linked rec-

ords and |ˆ h xπ  for 1, ...,h H=  is the standard estimate of 
the marginal distribution of ζ  given x on File X. Further, if 

ci s∉  

                * *
*

| | |ˆ ˆ(1 ) ,ic xh ic xh c xhxy h xy hw w p p= + − π  (16) 

*ˆ
xy hp  is the probability that the thi  link is correct given 

,ix x= i hζ =  and * *,iy y= *
| 1ic xhw =  if ,ix x= iζ = h  

and * *,iy y=  and *
| 0ic xhw =  otherwise. If ,ci s∈  then 

*
| | |ic xh ic xh ic xhw w w= =  if the link is determined to be cor-

rect and | |ic xh c xhw = π  if it is determined to be incorrect. 
The ML estimator |c xπ  is obtained by iterating between 

(14), (15) and (16) until convergence.   
4.3 Pseudo-Maximum Likelihood (PML)  

This section discusses an alternative to the CML, dis-
cussed in section 4.2, which is referred to as Pseudo-Maxi-
mum Likelihood (see Chambers and Skinner 2003). It is 
essentially a weighting approach, which may be easier to 
implement than CML, and relies on the factorisation given 
in section 4.2. It involves solving weighted versions of the 
score functions, 1Score( ; ) =x C−π d 0  and Score( ; ) =β d  

K0  for xπ  and β  respectively, where a record’s weight 
equals the inverse of the probability that the record will 
remain unlinked. We denote the probability that record i 
will not remain unlinked by ( )i it E= γ  so that the unit 
weights are given by 1,i iq t−=  where here *1, ..., .i n=  
Consequently the PML estimator for |c xπ  is  

                            ( ) 1PML
| | | ,c x c x c xcn n

−
π = ∑  (17) 

where | | .
lc xy i U i ic xn q w∈= Σ  The estimate of PML

|c xπ  is obtained 
by iterating between updating | ,ic xw  given by (7), and (17) 
until convergence. The PML estimator for β  is the same as 
the ML estimator but where the estimating equation (5) now 
has unit weights of .iq  One possible approach to estimating 
the accuracy of the PML estimates under perfect linkage is 
to use the Bootstrap method as described earlier, but where 
now the weight iq  is introduced.  

To illustrate when unlinked records are not ignorable, 
consider linking a data base with personal employment 
status to another data base with education level. Also as-
sume that age and sex variables, which are correlated with 
employment and education, are available on one of the data 
bases. After conducting a clerical review, we may find that 

records for young males are 50% more likely to remain 
unlinked than records for females. This could be because 
males are less likely to provide their personal information, 
which is useful in linkage. Clearly, records for males on the 
linked file need to be given a weight double that for females 
in order for joint analysis of employment status and 
educational level to be unbiased. 

 
5. Empirical study  

A quality study conducted by the Australian Bureau of 
Statistics involved linking the 2006 Census of Population 
and Housing to its Dress Rehearsal. The Census Dress 
Rehearsal collected information from 78,349 persons and 
was conducted one year before the Census. The 2006 Cen-
sus collected information from more than 19 million people.  

Within a short window, during which the 2006 Census 
data were being processed, name and address were available 
for both the Census and the Census Dress Rehearsal. During 
this time, the two files of person level records were linked 
using two different standards of information:  

• Gold Standard (GS) used name, address, mesh block 
and selected Census data items. Mesh block is a geo-
graphic area typically containing 50 dwellings. All 
names and addresses were destroyed at the end of the 
Census processing period. 

• Bronze Standard (BS) used mesh block and selected 
Census data items (i.e., did not use name and address). 
This is a method proposed to be used for future linking 
work by the ABS.   

Full details of the quality study and the linkage metho-
dology are given in Solon and Bishop (2009). The role of 
GS in the quality study is critical. It provides a benchmark 
against which the reliability of BS can be compared. The 
usefulness of the GS as a benchmark is due to the fact that 
name and address are powerful variables for the purpose of 
identifying common individuals on the Census and CDR 
and that it was subjected to thorough clerical review. As a 
result, GS is assumed to correspond to perfect linkage. 
Accordingly, differences between estimates based on GS 
and BS are interpreted as error. In other words, interest 
focuses on the reliability of BS relative to GS.  
5.1 Linking methodology  
5.1.1 Blocking and linking variables and the 1 – 1 

assignment algorithm  
This subsection provides an overview of the CDR-to-

Census linkage methodology for BS. The linking method 
consisted of a sequence of passes, where each pass is 
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defined by a set of blocking and linking variables and a 1 - 1 
assignment algorithm. In the case of multiple passes, only 
records not linked in the first pass are eligible to be linked in 
the second pass, and only records not linked in the second 
pass are eligible to be linked in the third pass, and so on. 

Table 1 gives the blocking variables, denoted by “B” for 
the BS. For example, during Pass 1, a Census record and a 
CDR record are only considered as a possible link if they 
have the same value for mesh block.  

Linking variables are used to measure the degree of 
agreement between a record pair. A high level of agreement 
suggests that the likelihood of the record pair constituting a 
correct link is high. Table 1 gives the linking variables, 
denoted by “L”, for BS. For example, during Pass 1 of BS, a 
range of variables such as day, month and year of birth, 
country of birth and highest level of qualifications are used 
as linking variables.  
Table 1 
An example of blocking (B) and linking (L) variables used when 
linking 2006 Census data with the Census Dress Rehearsal. 
Different blocking variables were used on each of the two passes 
 

Variable Pass 1 Pass 2 
Day of birth L B 
Month of birth L B 
Year of birth L B 
Sex L B 
Indigenous status L L 
Country of birth L L 
Language spoken L L 
Year of arrival L L 
Marital status L L 
Religious affiliation L L 
Field of study of highest qualification L L 
Level of highest qualification  L L 
Highest level of schooling L L 
Mesh block B L  

An output from each pass is a score for all record pairs. 
The score is a measure of the level of agreement between 
the pair of records. We defer the formal definition of score 
(for details see (3.6), Conn and Bishop 2006) but illustrate 
how it can be interpreted below. Consider BS in Pass 2 
where record pairs have the same full date of birth and sex; 
a record pair would be assigned a score of 23.5 if there is 
agreement on mesh block (+17) and year of arrival (+8) and 
disagreement on religion (–1.5) (in this example agreement 
status for other linking variables would contribute to the 
score but for illustration purposes we ignore them). The 
contribution to the score for agreement on mesh block (+17) 
is greater than that for agreement on year of arrival (+8) 
because the former is less likely to occur by chance alone. 

To formalise the aim of the linkage algorithm, denote the 
score for record i on the CDR and record j on the Census 

during pass  p  of BS by .pijr  The set of all record pair 
scores pijr  and the cut-off pf  were used by the linking 
package Febrl (see Christen and Churches 2005) to 
determine the optimal set of links in pass  p. The term pf  is 
the minimum value for the score in order for a record pair to 
be assigned as a link during pass  p. The Febrl algorithm 
seeks to maximise ,i pijr∑  subject to .pij pr f>  Clearly, the 
number of links depends upon .pf  

In what follows, we evaluate BS with two different sets 
of cut-offs, where a set of cut-offs is defined by the pass 1 
and 2 cut-offs. The first is referred to as the Very Low (VL) 
cut-off and is considered to be optimal cut-off since, for a 
range of cut-offs, its naive estimates were “closest” to the 
corresponding GS estimates (see Bishop 2009). The second 
cut-off is referred to as Ultra-Low (UL) and effectively 
seeks to maximise the number of linked CDR records. 
Below we refer to the two BS linked files by their cut-offs, 
VL and UL.  
5.1.2 Linking results  

GS linked 70,274 of the 78,349 CDR records. Under the 
assumption that GS corresponds to perfect linkage, there 
were 8,075 individuals with CDR records but no Census 
records. In reality the GS is not perfect. For a discussion on 
this see Bishop 2009. 

VL linked 57,790 CDR records. Of the 70,274 CDR 
records that were linked by GS, 13,784 remained unlinked 
by VL, 700 were linked incorrectly by VL and 55,790 were 
linked correctly by VL. Also, 1,300 CDR records were 
linked by VL but were not linked by GS- these are also 
incorrect links. So in total there were 2,000 (= 700 + 1,300) 
incorrect links. 

UL linked 74,350 CDR records. Of the 70,274 CDR 
records that were linked by GS, 2,811 remained unlinked by 
UL, 9,793 were linked incorrectly by UL and 57,670 were 
linked correctly by UL. Also, 6,887 CDR records were 
linked by UL but were not linked by GS. 

In summary, 97% of the VL links are correct and 20% 
(= 13,784/70,274) of the GS’ CDR records remain unlinked. 
The corresponding figures for UL are 78% and 4% 
(= 2,811/70,274).   
5.1.3 Modelling the probability of a link being 

correct  
All UL and VL links were known to be correct or 

incorrect (e.g., if a UL link is also made by GS then the UL 
link is correct. Otherwise the UL link is incorrect). As a 
result, *xyp  in section 3.1 was known from GS. However, to 
simulate reality, *xyp  was estimated from a clerical sample 
of size 1,000 that was selected from the linked files by 
simple random sampling.  
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5.1.4 Modelling the probability of a record 
remaining unlinked  

Each CDR record linked by the GS was assigned a vari-
able which indicated whether the record was unlinked by BS. 
Namely, if the record remained unlinked by BS then the indi-
cator variable was assigned a ‘1’ otherwise a ‘0’. A logistic 
model was fitted using GS, where the response variable was 
the above indicator variable and the explanatory variables 
were obtained from the CDR. The more than 20 explanatory 
variables that are in the model were selected by standard 
forward-backward model selection. The explanatory vari-
ables included educational level, language, born overseas, 
Indigenous status, and indicators of missing key variables 
such as meshblock. The resulting prediction resulted in it  
and was used below to implement the Pseudo-ML method 
for both contingency tables and logistic regression.  
5.2 Results of tabular analysis  

Table 2 gives the results of cross-tabulating employment 
status of indigenous people as reported on the CDR and 
Census. Table 2a shows that the GS estimate of the propor-
tion of indigenous people employed in the Census, given 
they were employed in CDR, is 78.3%. The corresponding 
naive estimate for VL, which assumes the data are perfectly 
linked, is 86.7%. Even after replacing each of the 700 
incorrect VL links by their corresponding correct link and 
discarding the 1,300 linked records for which no correct link 
exists, the naive estimate is largely unchanged at 86.0% 
(referred to as Gold Links in Table 2a). This shows that the 
difference between the VL and GS estimates is not so much 
due to incorrect links but is mainly due to unlinked records. 
This explains in part why the ML estimate (86.4%) for VL 
(see section 3.1), which only corrects for incorrect links, did 
not lead to much improvement. Conditional ML (CML) (see 

section 4) was considered in an attempt to reduce the error 
due to unlinked records that may have led to a misrepresent-
tation, with respect to age and sex characteristics, in the 
linked file. The CML employment estimate was 86.6%. 
Unfortunately, CML did not make much of an improve-
ment, indicating that the underlying mechanism generating 
unlinked records did not depend upon age and sex. PML 
estimates (see section 4) also did not make much of an 
improvement, indicating that the logistic model described in 
section 5.1.4 did not explain the mechanism generating 
unlinked records. Interestingly, the ML estimate using UL 
was 81.8%- by far the closest estimate to the GS estimate of 
78.3%. The UL’s main source of error is due to incorrect 
links, the type of linkage error which the ML estimator 
addresses. This indicates that correcting for errors due to 
incorrect links was much more successful than correcting 
for errors due to unlinked records. 

Standard errors of the GS, naive and ML estimates are 
shown in parentheses in Table 2a. For VL and UL, ML 
standard errors are respectively about 25% and 75% larger 
than the corresponding naive standard errors. Also, the ML 
standard errors for UL are slightly smaller than for VL 
indicating that the extra links made by UL were worthwhile. 
Clearly, naive inference with UL over-states the level of 
confidence in estimates. For VL, naive and ML standard 
errors and estimates are very close. 

Irrespective of the cut-off, the ML estimates in Table 2 
a, b and c are always closer to the GS estimates than the 
corresponding naive estimate. For example in Table 2b the 
ML estimates for VL is 36.9%, noticeably closer to the GS 
estimate of 37.9% than the naive estimate of 33.3%. Based 
on the estimates in Table 2 it could be argued that the choice 
of whether to use VL or UL is not so important, as along as 
the ML estimator is used.  

 
Table 2 
Percentages of Indigenous persons in various employment categories in 2006 given their employment category in 2005. For each linked 
data set, Very Low and Ultra Low, the estimation methods can be compared with the Gold 
 

                                                                                             Estimates for different methods and linked data set
a: Indigenous persons employed in 2005 
Status in 2006 Gold Very Low Cut-off Ultra Low Cut-off
  Naive Gold links ML PML CML Naive ML
Employed 78.3 

(1.7) 
86.7 
(2.4) 

86.0 
 

86.4 
(3.0)

86.6 86.1 71.9 
(1.7) 

81.8 
(2.9)

Unemployed 3.7 
(0.84) 

4.2 
(1.2) 

4.3 4.1 
(2.5)

4.1 4.2 6.3 
(0.82) 

3.3 
(2.1)

Not in the labour force 
17.8 
(1.6) 

9.0 
(2.4) 

9.6 9.3 
(3.1) 

9.1 9.6 21.6 
(1.6) 

14.7 
(2.8) 

b: Indigenous persons unemployed in 2005 
Status in 2006 Gold Very Low Ultra Low 
  Naive ML Naive ML
Employed 27.5 27.7 27.2 35.2 23.8
Unemployed 34.4 38.9 36.4 32.3 38.0
Not in the labour force 37.9 33.3 36.3 32.3 38.0 
c: Indigenous persons not-in-the-labour force in 2005 
Employed 13.7 10.8 10.7 24.3 10.5
Unemployed 5.8 7.6 7.4 6.3 5.8
Not in the labour force 80.4 81.5 81.8 69.2 83.5 
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Table 3 is the same as Table 2 except that it describes 
analyses of linked records from all persons 15 and over 
rather than only Indigenous persons. Again the ML always 
makes an improvement for the UL, though this is not the 
case for VL. Table 4 gives the student status in 2006 for 
persons who were students in 2005. Again the ML generally 
makes the estimates closer to the corresponding Gold 
estimate, especially for UL. 

 
Table 3 
Percentages of all persons aged over 15 in various employment 
categories in 2006 given their employment category in 2005. For 
each linked data set, Very Low and Ultra Low, the estimation 
methods can be compared with the Gold 
 

 Estimates for different  
methods and linked data set 

Status in 2006 Gold Very Low Ultra Low 
  Naive  ML Naive ML 

a: Persons employed in 2005 

Employed 91.8 92.2 92.6 89.7 92.4 
Unemployed 1.8 1.7 1.6 1.9 1.6 
Not in the labour force 6.2 6.1 5.6 8.3 5.8 

b: Persons unemployed in 2005 

Employed 44.5 44.3 44.0 49.4 43.8 
Unemployed 26.8 26.6 27.5 22.8 27.6 
Not in the labour force 28.6 28.7 28.4 27.6 28.5 

c: Persons not-in-the-labour force in 2005 

Employed 12.1 12.3 11.1 16.8 11.0 
Unemployed 3.1 3.1 3.0 3.0 3.0 
Not in the labour force 84.7 84.5 85.7 80.1 85.9 

 
Table 4 
Student outcomes in 2006 for high school students in 2005 
 

Student Status in 2006 Gold Very Low Ultra Low 
  Naive  ML Naive ML 

High School Student 79.3 79.3 79.6 77.4 79.6 
Completed High School 14.0 14.3 13.7 14.7 14.1 
Did not Complete High School 6.6 6.3 6.6 7.8 6.2 

 
5.3 Simulation  

The following simulation study illustrates the problems 
with naive analysis and the benefit of using the method 
outlined in this paper. Files X and Y in the simulation, each 
containing 2,000 records, are independently generated 400 
times, where each generated file is denoted by X(r) and 
Y(r), and 1, ..., 400.r =  Specifically, on X(r) ix  is ran-
domly generated from the Bernoulli distribution with para-
meter 0.5. On Y(r), iy  is randomly generated from the 

Bernoulli distribution with parameter ,iυ  where iυ =  
0 1 0 1 01 / [1 exp( )], ( , ) ,ix ′+ β + β = β β β = −β 0.5, 1β = 1.5. 

The thr  set of imperfectly linked data, *( ),rd  is generated 
by correctly linking each record on File Y(r) to one record 
on File X(r) with probability p =  0.8, 0.90, 0.95 and 1. For 
each thr  set of linked data a clerical sample of 300 links is 
selected. Each link in the clerical sample is assigned as 
being correct or incorrect. We summarise the performance 
of the ML estimator from section 3.2.2 and the naive 
method, which assumes there is no linkage error, by their 
95% coverage rates and their Mean Squared Error (MSE). 
The coverage rates are based on the standard errors calcu-
lated from the Bootstrap described in section 3.3 with R =  
40 replicates. The MSE of β  is calculated by 

400
1

1MSE( ) ( ) ( )
400 r rr=

′= − −∑β β β β β  

where rβ  is the ML estimate of β  from *( ).rd  
Table 5 shows that the naive approach has poor coverage 

rates, due to its significant bias in the presence of linkage 
error, and consequently a relatively high MSE. The cover-
age rates for ML-Method 1 are very close to their nominal 
levels. The results show that, as the percentage of correct 
links reduces from 100% to 80%, the MSE of ML increases 
by a factor of about 3 for 0β  and 1.β  (The coverage rates 
and MSE of ML Method 1and 2 were very similar so only 
the former are reported).  
Table 5 
Mean squared error and coverage rates for linked simulated 
data, where correct linkage occurs with probability, p 
 

  
Mean Squared Error 

95% Coverage 
Rates 

 0.8 0.9 0.95 1 0.8 0.9 0.95
Naive  0β  0.024 0.010 0.0056 0.0043* 0.35 0.80 0.93 
 1β  0.11 0.038 0.016 0.011* 0.05 0.62 0.88 
ML-Method 1 0β  0.013 0.0078 0.0055 0.0043* 93.0 94.25 93.5 
 1β  0.031 0.018 0.013 0.011* 96.0 94.5 96.25 
* when p = 1 the naive and ML estimators are the same by 

definition.  
6. Discussion  

Data linkage is an appropriate technique when data sets 
must be joined to enhance dimensions such as time and 
breadth or depth of detail. Data linkage is increasingly being 
used by statistical organisations around the world. It is well-
known that errors can arise when linking files, for example 
when applying probabilistic linking methods. However, 
there has been little work reported in the literature about 
how to make valid inferences in the presence of such errors. 
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This paper provides methodological and practical advice to 
support analysts in this area. 

In general, naively treating a linked file as if it were 
perfectly linked will lead to biased estimates. The analyst 
should only use the naive approach when both the number 
of unlinked records, defined as records that could be cor-
rectly linked but were not linked at all, and the number of 
incorrect links are negligible. This paper has presented a 
maximum likelihood approach to making valid inferences in 
the presence of both sources of error. The approach uses the 
well-known EM algorithm and is easy to apply in practice. 
The method can be applied when one of the files is not 
necessarily a subset of the other and when the linkage 
involves multiple passes. These situations often arise in 
practice, including many recent examples in the Australian 
Bureau of Statistics. The empirical study shows that the ML 
approach makes significant and meaningful improvements 
to the estimates from the linked data.  

In the special case where File X is obtained by taking a 
random sample from File Y, the estimation procedure 
described is not ‘full’ maximum likelihood. This is because 
it does not use the fact that population totals for File Y are 
known. While inference using the method described here 
are still valid in this case, it could perhaps be made more 
efficient (see Scott and Wild 1997). 
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