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Abstract 

Alternative forms of linearization variance estimators for generalized raking estimators are defined via different choices of 

the weights applied (a) to residuals and (b) to the estimated regression coefficients used in calculating the residuals. Some 

theory is presented for three forms of generalized raking estimator, the classical raking ratio estimator, the ‘maximum 

likelihood’ raking estimator and the generalized regression estimator, and for associated linearization variance estimators. A 

simulation study is undertaken, based upon a labour force survey and an income and expenditure survey. Properties of the 

estimators are assessed with respect to both sampling and nonresponse. The study displays little difference between the 

properties of the alternative raking estimators for a given sampling scheme and nonresponse model. Amongst the variance 

estimators, the approach which weights residuals by the design weight can be severely biased in the presence of 

nonresponse. The approach which weights residuals by the calibrated weight tends to display much less bias. Varying the 

choice of the weights used to construct the regression coefficients has little impact. 
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1. Introduction 
 

Survey weighting is widely used to adjust for non-

response bias. Generalized raking estimation (Deville, 

Särndal and Sautory 1993) provides a class of weighting 

methods which may be used when population totals of 

auxiliary variables are available. These methods can, in 

principle, remove (large-sample) nonresponse bias when the 

probability of nonresponse is related to the values of the 

auxiliary variables via a generalized linear model.  

This paper presents some theory for linearization variance 

estimation for such methods in the presence of nonresponse. 

It also reports a simulation study of the properties of alter-

native raking estimators and associated variance estimators 

in settings designed to mimic two European surveys con-

ducted by national statistical institutes. We consider three 

forms of raking estimator: the classical raking ratio estimator, 

the ‘maximum likelihood’ raking estimator (Brackstone and 

Rao 1979; Fuller 2002) and the generalized regression 

estimator (GREG). The first estimator has been used in 

practice in the British Labour Force Survey (LFS), the first 

survey upon which our simulation study is based. A version 

of the second estimator has been used in practice in the 

German Survey of Income and Expenditure (SIE), the 

second survey upon which our simulation study is based. 

The GREG estimator is widely used in many surveys, in 

particular in the context of nonresponse (Särndal and 

Lundström 2005).  

A number of weighting methods, which do not fall into 

the class of generalized raking methods considered here, 

have also been proposed. See Särndal and Lundström 

(2005) for a historical account and Kott (2006) and Chang 

and Kott (2008) for some recent developments where the 

auxiliary variables for which population-level information is 

available may differ from those variables which are used as 

covariates in the generalized linear model for the probability 

of nonresponse.  

The primary focus of this paper is on variance estimation 

and specifically on linearization methods, for which there 

exist a number of slightly different forms of variance 

estimator in the literature. In our simulation study we shall 

compare the properties of alternative raking estimators and 

associated variance estimators with respect to the effects of 

both sampling and nonresponse. A previous simulation 

study by Stukel, Hidiroglou and Särndal (1996) found little 

difference between two forms of linearization estimator with 

respect to sampling. However, there are reasons why non-

response may lead to greater differences. Conditions for 

unbiasedness of raking estimation methods under non-

response models vary between estimation methods (e.g., 

Kalton and Maligalig 1991; Kalton and Flores-Cervantes 

2003) and the choice of variance estimator may be more 

important in the presence of nonresponse (e.g., Fuller 2002, 

Section 8). 

The paper is structured as follows. The generalized 

raking estimators are defined in section 2 and, after intro-

ducing an asymptotic framework, the bias of these esti-

mators is considered in section 3. Linearization variance 

estimators are defined in section 4. The simulation study is 

presented in section 5, the results are discussed in section 6 

and some concluding remarks are given in section 7. 

 
2. Generalized raking estimation  

We consider the class of weighted estimators of a 

population total ,Uy iT y∑=  which may be expressed as 
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ˆ ,sy i iT w y∑=  where iy  is the value of a survey variable for 

a unit i  in a sample s  from a population U  and iw  is the 

survey weight which may depend on the sample but not on 

the choice of survey variable. We suppose here that the 

sample s  consists of the set of respondents remaining after 

sampling and possible unit nonresponse. Generalized raking 

is a form of weighted estimation which may be employed 

when auxiliary population information is available in the 

form of a vector Ux iT x∑=  of population totals of values 

ix  of a vector of auxiliary variables, where xi is known for 

all units in .s  Following Deville and Särndal (1992), the 

weights iw  are said to be calibrated if they satisfy the 

calibration equations .s i i xw x T∑ =  The vector xT  is 

referred to as the vector of calibration totals. The class of 

generalized raking weights iw  is obtained by minimising 

the objective function: 

( / ),i i i

s

d G w d∑  (2.1) 

subject to the weights iw  being calibrated, where (.)G  is a 

specified objective function which meets certain criteria (see 

Deville et al. 1993) and id  is an initial weight. We shall 

take this to be the design weight, i.e., 1,i id −= π  where iπ  is 

the probability that unit i  is sampled. Deville and Särndal 

(1992) show that (subject to (.)G  obeying certain condi-

tions), the solution of the above constrained optimisation 

problem may be expressed as:  

ˆ( ),i i iw d F x′= λ  (2.2) 

where 1( ) ( )F u g u−=  denotes the inverse function of 

( ) ( ) /g u dG u du=  and λ̂  is the Lagrange multiplier which 

solves the calibration equations: 

ˆ( ) .i i i x

s

d F x x T′ λ =∑  (2.3) 

Deville and Särndal (1992) discuss various choices of the 

(.)G  function and associated (.)F  function. We consider 

the following three choices:  
linear: 

2( ) (1 / 2)( 1) , ( ) 1 ;L LG u u F u u= − = +  

 

multiplicative (raking ratio): 

( ) log ( ) 1, ( ) exp( );M MG u u u u F u u= − + =  

 

maximum likelihood raking: 

1( ) 1 log ( ), ( ) (1 ) .ML MLG u u u F u u −= − − = −  

See also Deville et al. (1993) and Fuller (2009, section 2.9) 

regarding the above terminology for these functions. With 

the linear choice of (.),G  the optimisation problem has a 

closed form solution and the generalized raking estimator 

becomes ˆ ˆ ˆ ˆ( ) ,y yd x xd sT T T T B′= + −  the generalised regres-

sion estimator (GREG), where ˆ ,syd i iT d y∑= ˆ
sxd i iT d x∑=  

and 

( ) 1

ˆ .i i i
s i i i

s
s

d x xB d x y
−

′= ∑ ∑  (2.4) 

With the multiplicative choice of (.),G  the calibrated 

estimator of yT  is the classical raking ratio estimator 

(Brackstone and Rao 1979) when xT  contains the popu-

lation counts in the categories of two or more categorical 

auxiliary variables. For example, in the context of the 

Britain Labour Force Survey, ix  denotes the vector of 

indicator variables of three categorical auxiliary variables: 

1.. .. .1. . . ..1 ..( , ..., , , ..., , , ..., ) ,i i A i i B i i Cix ′= δ δ δ δ δ δ  where .. 1a iδ =  

if unit i  is in category a  of the first auxiliary variable and 0 

otherwise, . . 1b iδ =  if unit i  is in category b  of the second 

auxiliary variable and 0 otherwise and so on. The population 

total xT  of this vector thus contains the population counts in 

each of the (marginal) categories of each of the three 

auxiliary variables. The construction of the weights for 

classical raking ratio estimation has traditionally involved 

the use of iterative proportional fitting (Brackstone and Rao 

1979). Ireland and Kullback (1968) demonstrate that this 

method converges to a solution of the above optimisation 

problem.  

The function ( )MLG u  leads to an alternative ‘maximum 

likelihood’ version of raking adjustment, when ix  takes the 

same form, denoting indicator variables of categorical 

auxiliary variables. In this case, the objective function in 

(2.1) may be interpreted as a quantity which is proportional 

to minus a log likelihood in the case of simple random 

sampling with replacement (Brackstone and Rao 1979; 

Fuller 2002).  

 
3. Asymptotic framework and nonresponse bias 
 

We now consider the asymptotic properties of ˆ
yT  with 

respect to both the sampling design and the nonresponse 

mechanism. We assume that the latter is such that each unit 

in the population responds, if sampled, with probability ,iq  

where this probability is not dependent on the choice of the 

sample and different units respond independently. We con-

sider an asymptotic framework defined in terms of se-

quences of finite populations and associated probability 

sampling designs and response mechanisms (Fuller 2009, 

section 1.3), with orders of magnitude terms expressed in 

terms of ,U i in q∑= π  the expected number of responding 

units, and ,$  the population size. We assume there exist 

positive constants 1 2,K K  and 3K  such that 1

1 iK n$ d−< <  

2K  and 3 iK q<  for all .i  

We shall suppose that Horvitz-Thompson estimators of 

means are consistent for the corresponding finite population 
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means and that central limit theorems hold (as expressed 

formally in the conditions of Theorem 1.3.9 of Fuller 2009). 

In particular, we assume that the sequences and the function 

(.)F  are such that there is a unique solution λ  of 

( ) ,i i i x

U

q F x x T′ λ =∑  (3.1) 

with 
0.5ˆ ( ),pO n−λ = λ +  (3.2) 

and that  
0.5ˆ ( ) ( ).y i i i p

U

T q F x y O $n−′= λ +∑  (3.3) 

Deville and Särndal (1992) show that λ = 0  under certain 

assumptions (their Result 2). However, their assumptions 

apply just to the distribution induced by the sampling design 

and include the requirement that 1 ˆ( ) 0xd x$ T T− − →  in 

probability. In the case of nonreponse, however, this require-

ment will often be implausible (c.f. Fuller 2002, page 15) and 

we do not require that λ  be the zero vector.  

A key assumption which we shall make is: 

Condition C: there exists a vector α  such that 1( ) = .i iF x q−′α  

If condition C holds then α  solves (3.1) and so .λ = α  It 

follows from (3.3) that ˆ
yT  is consistent for yT  for any 

choice of variable y  if this condition holds. Thus, we may 

view condition C as a sufficient condition for the absence of 

(asymptotic) nonresponse bias. This property of Condition 

C has been discussed by Fuller, Loughlin and Baker (1994), 

Fuller (2009, page 284) and Särndal and Lundström (2005, 

Proposition 9.2) for the case when F  is linear. Fuller (2002, 

page 15), Kott (2006) and Chang and Kott (2008) also 

consider estimating response probabilities using general 

models of the form 1 ( ).i iq F x− ′= α  

To illustrate what might happen if condition C does not 

hold, suppose that ix  is just a scalar with 1.ix ≡  Then the 

unique solution of (3.1) is ( / )U ig $ q∑λ =  and ˆlim( )yp T =  

( ) /( ).U Ui i i$ q y q∑ ∑  Hence, the asymptotic nonresponse 

bias will only disappear for those survey variables which are 

‘uncorrelated’ with the response probabilities .iq  

 
4. Linearization variance estimation  

 
We now proceed to consider the asymptotic variance of 

ˆ
yT  and its estimation. As in the previous section, the 

variance is defined with respect to the joint distribution 

induced by both sampling and nonresponse. 

Note first that in general (and in particular for (.)MG  and 

(.)),MLG  iteration is needed to solve the calibration equa-

tions. There does exist a literature (see Deville et al. 1993) 

which seeks to estimate the variance of ˆ
yT  after a finite 

number of iterations. We follow instead the approach of 

Deville et al. (1993) and, for example, Binder and Théberge 

(1988) by approximating the variance of ˆ
yT  by the variance 

of the ‘converged’ estimator, i.e., the hypothetical estimator 

arising from an infinite number of iterations, represented by 

var( ),s i iw y∑  where the iw  are the ‘converged’ weights 

which solve the constrained optimisation problem in 

section 2.  

A linearization variance estimator is obtained by 

approximating var( )s i iw y∑  by var( )s i id z∑  for a 

‘linearized variable’ iz  (Deville 1999). We now seek to 

construct this variable using a large sample argument. We 

first obtain an expression for ˆ.λ  A Taylor expansion of the 

left side of the calibration equations in (2.3) gives 

*

ˆ( ' )

ˆ( ' ) '( ),

i i i i i i
s s

i i i i
s

d F x x d F x

d f x x x

λ =

+ λ λ − λ

∑ ∑

∑
 

where ( ),i iF F x′= λ *λ  is between λ̂  and λ  and ( )f u =  

( ) /dF u du  is assumed to exist. Assuming also continuity of 

(.),f  the existence of 1lim U$ i i i i$ q f x x−
→∞ ∑ ′  and using 

(3.2), we have  

1

1 1 0.5

ˆ( )

ˆ( ) ( ),

i i i
s

i i i i i i i p
s s

$ d F x x

$ d F x $ d f x x o n

−

− − −

′ λ =

′+ λ − λ +

∑

∑ ∑  (4.1)

 

where ( ).i if f x′= λ  Then, assuming 1lim U$ i i i i$ q f x x−
→∞ ∑ ′  

is non-singular and using (2.3), we obtain 

1
, 0.5ˆ ( ).i i i i x i i i p

s s

d f x x T d F x o n
− − λ − λ =  −  +

      
∑ ∑  (4.2) 

See Fuller (2009, proof of Theorem 1.3.9) for formal details 

of how (4.1) and (4.2) may be derived and the underlying 

regularity conditions. Note that to ensure 1lim U$ i$ q−
→∞ ∑  

i i if x x′  is non-singular may require dropping redundant 

variables from ix  and possibly (as in Deville and Särndal 

1992) modifying the estimator for samples with small 

probability that result in singularity of this matrix. 

A similar argument involving the Taylor expansion of 

iw  in (2.2) about λ  gives: 

1.5ˆ[ ( )] ( ).i i i i i pw d F f x o $n−′= + λ − λ +  (4.3) 

Then, assuming the existence of necessary population 

moments so that the remainder term in (4.3) holds uniformly 

across i  (Fuller 2009, Corollary 2.7.1.1.), we have 

0.5

ˆ

ˆ( ) ( )

y i i
s

i i i i i p

s

T w y

d F f x y o $n
−

≡

 ′= + λ − λ + 

∑

∑  (4.4)
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and hence from (4.2) and (4.4):  

0.5ˆ ( ),y i i i x i i i p

s s

T d F y B T d F x o $n−= +  −  +
  

∑ ∑  (4.5) 

where 

1
.i i i i i i i i

s s

B d f y x d f x x
−

′ ′=    
      
∑ ∑  (4.6) 

Note that 1i iF f= =  under the assumptions of Deville and 

Särndal (1992) (since in this case 0λ =  and it follows from 

the assumptions about (.)G  that (0) (0) 1).F f= =  Hence, 

under these assumptions, expression (4.5) corresponds to 

Result 5 of Deville and Särndal (1992), i.e., the generalized 

raking estimator is asymptotically equivalent to the GREG 

estimator. Therefore, the asymptotic variance of ˆ
yT  is the 

same as that of ,s i id z∑  where iz  is the linearized variable: 

( ),i i i iz F y x= −β  (4.7) 

and it is assumed that B  converges to a finite limit matrix 

.β  An alternative derivation of this expression is given by 

Demnati and Rao (2004, section 3.4). 

For the purpose of linearization variance estimation, ˆ
yT  

is treated as the linear estimator ,ˆs i id z∑  where  

ˆ ˆ( )ˆi i i iz F y B x= −  (4.8) 

is treated as a fixed variable. 

A number of choices of ˆ
iF  and B̂  have been discussed 

in the literature. Starting with ˆ ,iF  the natural choice implied 

by the above argument is ˆˆ ( ).i iF F x′= λ  A simpler choice, 

however, would be to take ˆ 1.iF =  Deville and Särndal 

(1992) note that, in their classical theory with 0,λ =  these 

choices are asymptotically equivalent but they express a 

preference for the choice ˆˆ ( ).i iF F x′= λ  In our setting with 

nonresponse and with 0λ =  not necessarily holding, the 

second choice seems preferable and this is emphasized by 

Fuller (2002, page 15). Note that these two choices imply 

that ˆs i id z∑  either takes the form ˆ( )i i iw y B x∑ −  when 
ˆˆ ( )i iF F x′= λ  or ˆ( )i i id y B x∑ −  when ˆ 1.iF =  We shall 

therefore refer to these choices as either iw -weighted 

residuals or id - weighted residuals. 

Regarding ˆ,B  it follows from our argument on the 

choices of ˆ
iF  that if  in (4.2) should be replaced by ˆ

if =  
ˆ( ),if x′ λ  giving:   

(i) 
1ˆ ˆˆ [ ] [ ] ,s si i i i i i i iB d f y x d f x x −∑ ∑′ ′=  as also proposed 

by Demnati and Rao (2004). 

 

Other choices are  
(ii) ˆ ˆ ,sB = B  as in (2.4), as proposed by Deville et al. 

(1993). 

(iii) 1ˆ [ ] [ ] ,s si i i i i iB w y x w x x −∑ ∑′ ′=  as proposed by 

Deville and Särndal (1992, equation 3.4), which 

might be more practical to compute than ˆ
sB  for 

users of survey data files which include the iw  

weights but not the id  weights.  
The extent to which these choices differ depends on the 

choice of (.)G  function. For the linear case ( ) 1f u =  so 

that the estimators in (i) and (ii) are identical. In the case of 

classical raking adjustment, ( ) ( ) exp( )f u F u u= =  so that 
ˆ ˆ
i if F=  and ˆ

i i id f w=  and the estimators (i) and (iii) are 

identical. For the ‘maximum likelihood’ raking estimator we 

have 1( ) (1 )F u u −= −  and 2( ) (1 )f u u −= −  so that ˆ
i id f =  

2

i iw /d  and the three variance estimators are all distinct.  

Having determined the form of ˆiz  in (4.8), the lin-

earization variance estimator for ˆ
yT  is obtained by esti-

mating the variance of the linear estimator ,ˆs i id z∑  treating 

id  and ˆiz  as fixed. In the case of a stratified multistage 

sampling design, assuming “with replacement” sampling of 

primary sampling units (PSUs) within strata, a standard 

estimator of the variance (e.g., Stukel et al. 1996) is: 

2

1 1

ˆ ˆ( ) ( )
1

hnH
h

y hj h
h jh

n
V T z z

n= =

= −
−

∑ ∑  (4.9) 

where ,ˆkhj hjk hjkz d z∑= /jh hj hz z n∑=  and ˆhjkz  is the value 

of the variable defined in (4.8) for the thk  individual within 

the thj  selected PSU in stratum .h  This estimator remains 

appropriate in the presence of nonresponse if individual 

response in each PSU is independent of response in all other 

PSUs and if at least one individual is observed in each 

selected PSU (Fuller et al. 1994, page 78). 

 
5. Simulation studies  

In order to compare the performance of the weighted 

estimators and their corresponding variance estimators, two 

simulation studies were undertaken by constructing artificial 

populations using data from the British Labour Force 

Survey (LFS) and the German Sample Survey of Income 

and Expenditure (SIE). In each case, R = 1,000 samples 

were generated from these populations by first sampling, in 

a way designed to mimic the real sampling scheme after 

some simplification, and then removing nonresponding 

cases according to two nonresponse models. The first 

assumes multiplicative nonresponse which, from Condition 

C in section 3, might be expected to lead to least bias for the 

raking ratio method. The second model assumed additive 

nonresponse, which might be expected to lead to least bias 

for the GREG estimator. 

For each of the R  samples, point estimates of parameters 

were calculated using the different generalized raking 

methods presented in section 2 and variance estimates were 

calculated using the different linearization methods 

presented in section 4. The properties of the estimators were 

then summarised.  
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5.1 Study based on the British Labour Force Survey   
The first study was based upon data from the March-May 

1998 quarter of the British LFS, a survey of persons living 

in private households in Britain, designed to provide 

information on the British labour market and carried out by 

the Office for National Statistics (ONS). The sample of 

approximately 58,000 households was treated as an artificial 

population. Repeated samples were drawn from this 

population in a way intended to mimic the design used for 

the LFS (ONS 1998, Section 3). Each sample consisted of 

1,211 households selected by stratified simple random 

sampling with proportional allocation across 19 strata, 

defined by region of residence. These regions were designed 

to mimic interviewer areas which defined strata in the LFS. 

In the LFS all individuals in a sampled household are 

interviewed if possible. In this simulation study, all the 

respondents in a sample household were retained, except 

those aged under 16, who are not relevant for the estimates 

of interest. 

The following two nonresponse models, based upon 

results of a study of Foster (1998), were used to determine 

whether sampled individuals responded. 
 
Multiplicative $onresponse Model: 

1

iq− = 1.15 × 1.17 (if London)  

  × 1.13 (if aged under 35) 

  × 1.1 (if female) 

 
Additive $onresponse Model: 

1

iq− = 1.15 + 0.20 (if London)  

  + 0.15 (if aged under 35) 

  + 0.10 (if female) 

 
where iq  is the response probability defined at the begin-

ning of section 3 and the form of the model is chosen to 

satisfy Condition C. 

Three parameters of interest are defined for the artificial 

population: the total number of persons unemployed, em-

ployed or inactive in the workforce. Weights were con-

structed for responding individuals, with calibration totals 

consisting of population counts in the categories of three 

categorical auxiliary variables and with Horvitz-Thompson 

initial weights ,id  as in section 2. The choice of auxiliary 

variables was designed to mimic those used in the LFS. 

However, because of the reduced scale of our artificial 

population and the consequent smaller numbers of indi-

viduals within strata, we simplified the LFS calibration 

variables to the following three categorical factors, defining 

83 control totals:  
• area of residence with 23 categories; 

• a cross-classification of sex by 10 age groups (consisting 

of single years for those between 16 and 24 and a 

separate age group for 25 or older) with 20 categories; 

• a cross-classification of region (Northern England; 

London and South East; Midlands and East Anglia; 

Scotland) by sex by age in 15-year age groups (16-29, 

30-44, 45-59, 60-75 and 75 or older) with 40 categories.  
5.2 Study based on the German sample Survey of 

Income and Expenditure   
Our second study is based on the 1998 German Survey of 

Income and Expenditure (SIE), a national household survey 

conducted every 5 years by the Federal Statistical Office, to 

provide information about the economic and social situation 

of households, especially regarding the distribution of 

income and expenditure (Muennich and Schulrle 2003). We 

used data from a synthetic population of 64,326 households, 

created to represent 20% of all households from the Bremen 

region, excluding those with a monthly household net 

income of DM 35,000 or above (DM denotes the currency of 

German marks). A quota sampling design was employed for 

this survey and we have not attempted to mimic this design. 

Instead, our simulation study employs simple random 

sampling together with nonresponse. Repeated simple 

random samples of 1,340 households were drawn from the 

artificial population, representing a sampling fraction of 

about 1/48. Nonresponse models were constructed using the 

results of studies of similar surveys in Great Britain: the 

Family Expenditure Survey and the National Food Survey 

(Foster 1998). For each selected sample, the subset of 

responding households was determined by the following 

nonresponse models:  
 
Multiplicative Model: 

1

iq− = 1.44 × 1.09 (if self-employed)  

  × 1.03 (if unemployed) 

  × 0.97 (if employed) 

  × 1.16 (if no children in the household). 

Additive Model: 

1

iq− = 1.44 + 0.13 (if self-employed)  

  + 0.04 (if unemployed) 

  – 0.04 (if employed) 
  + 0.23 (if no children in the household). 

The parameters of interest are the total household net 

income per quarter and the total household expenditure per 

quarter, computed from the finite artificial population.  

As for the LFS study, each sampled household was as-

signed a weight. In the actual SIE the weights are constructed 

using essentially the maximum likelihood raking method by 

adjusting the sample data simultaneously to the marginal 
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distributions of several characteristics, such as household 

type, social economic status of the reference person, house-

hold net income class and region (land). We try to mimic this 

adjustment, as far as possible, in our study. However, as for 

the LFS, because of the problem of strata with small numbers 

of households we simplify the SIE calibration variables to the 

following three categorical factors:  
• household type with 7 categories  

− mother/father alone + 1child,  

− mother/father alone + 2 or more children,  

− couple with 1 child – spouse employed,  

− couple with 1 child – spouse unemployed,  

− couple with 2 or more children – spouse employed,  

− couple with 2 or more children – spouse unemployed, 

− other.  
• social status of the reference person with 5 categories  

− self-employed, 

− civil servant or military, 

− employee,  

− worker, 

− unemployed, pensioner, student or other.  
• household net income per quarter with 3 categories 

− 0-5,000 DM, 

− 5-7,000 DM, 

− 7-35,000 DM.   
6. Results 

 
6.1 Properties of point estimators   

Table 6.1 presents the properties of the point estimators 

of total unemployed in the LFS study for different 

calibration methods and alternative assumptions about 

nonresponse. The properties are assessed following usual 

practice in simulation studies. For example, the bias in 

Table 6.1 is obtained from ˆ ˆ ˆ ˆ( ) ( ) ,y y yB T E T T= −  where 

1
ˆ ˆ ˆ( ) 1/ ,

r

R
ry yE T R T=∑= ˆ

ryT  is the value of ˆ
yT  for sample r  

and R  is the number of simulated samples. We observe 

from this table that the standard error remains virtually 

constant across alternative raking methods for a given 

nonresponse model. Nonresponse leads to an increase in the 

standard error across all estimators as expected (since the 

sample size is reduced). The table does show evidence of 

nonresponse bias, which is of a similar order for each of the 

raking methods. We do not find that this bias is least when 

the estimator matches the nonresponse model (i.e., the 

GREG estimator for additive response and the raking esti-

mator for multiplicative response) as we might have 

expected. Perhaps this is because the covariates used in the 

nonresponse models (e.g., the aged 35+ variable) are not all 

included in the calibrating variables. Nevertheless, the 

nonresponse bias is small in the sense that the root mean 

square error is very similar to the standard error in each 

case. Under nonresponse, the GREG calibration method 

generates some negative weights whereas this is avoided by 

the two raking methods, as expected. A greater number of 

very large weights are observed, however, for the ‘maxi-

mum likelihood’ raking estimator. 

Corresponding results for the SIE data are presented in 

Table 6.2. The pattern of results is broadly similar, although 

there is now no evidence of significant nonresponse bias 

(i.e., the observed bias could be explained by simulation 

variation). The standard errors and root mean square errors 

also remain virtually constant across weighting methods for 

a given nonresponse model. 
 
 
Table 6.1 

Simulation properties of point estimators of total unemployed using data from LFS with R = 1,000 
 

3onresponse Model/Point Estimator Bias (simulation 

standard error) 

Standard 

Error 

Root Mean 

Square Error 

3umber of 

3egative Weights1 

3umber of Very 

Large Weights1, 2 

Complete Response:      

GREG 7.6 (14.3) 452.8 452.8 0 0 

Classical Raking 8.3 (14.3) 452.8 452.9 0 0 

‘ML’ Raking 9.0 (14.3) 453.3 453.4 0 1 

Multiplicative nonresponse:      

GREG -45.6 (15.8) 498.3 500.3 4 1 

Classical Raking -42.1 (15.8) 498.8 500.6 0 2 

‘ML’ Raking -39.7 (15.8) 499.4 501.0 0 7 

Additive nonresponse:      

GREG -37.3 (15.7) 497.4 498.8 5 1 

Classical Raking -34.7 (15.7) 497.5 498.7 0 3 

‘ML’ Raking -32.4 (15.8) 498.1 499.1 0 7 
1 the number of such weights across all sample units and all 1000 samples. 
2 the number of weights more than 10 times the corresponding design weight. 
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Table 6.2 

Simulation properties of point estimators of total income using data from SIE with R = 1,000 
 

3onresponse Model/Point Estimator Bias (simulation 

standard error) 

Standard 

Error 

Root Mean 

Square Error 

3umber of 

3egatives Weights 

3umber of Very 

Large Weights 

Complete Response:      

GREG -172.2 (331.3) 10,477.3 10,478.7 0 0 

Classical Raking -170.6 (331.5) 10,484.1 10,485.8 0 0 

‘ML’ Raking -169.8 (331.8) 10,491.5 10,492.9 0 0 

Multiplicative nonresponse:      

GREG -495.7 (429.7) 13,586.8 13,595.8 0 0 

Classical Raking -493.8 (429.6) 13,584.6 13,593.5 0 0 

‘ML’ Raking -463.5 (429.5) 13,582.8 13,590.7 0 0 

Additive nonresponse:      

GREG -473.2 (430.5) 13,614.8 13,623.0 0 0 

Classical Raking -469.4 (430.5) 13,612.9 13,621.0 0 0 

‘ML’ Raking -439.5 (430.5) 13,613.5 13,620.6 0 0 

 

 

 

 

 

6.2 Properties of variance estimators   
The properties of the different estimators of the variances 

of the point estimators of the total unemployed from the 

LFS are shown in the Table 6.3 (the ‘standard error 

estimate’ in the table refers to the square root of the variance 

estimate). We make a number of observations:  
• weighting the residuals by iw  rather than by id  

reduces the bias and root mean squared error of the 

standard error estimator. The bias arising from the use 

of id  weighted residuals in the case of nonresponse is 

particularly important (as noted by Fuller 2002) but 

there are also non-negligible reductions of bias even in 

the complete response case. 

• The choice of weight used in B̂  for the calculation of 

residuals seems to have little impact. 

• For a given nonresponse setting and choice of 

weighting the residuals, there is little difference in the 

results for the different choices of point estimator. 

 

The results in Table 6.3 are extended in Table 6.4 to 

consider relative bias of the standard error estimators, rather 

than their absolute bias, and to consider two additional 

parameters: total numbers employed and inactive. We see 

again that the relative bias arising from using id  weighted 

residuals can be substantial in the presence of nonresponse, 

over 20% in several cases, and that this is reduced using the 

iw  weighted residuals. Again, little change is observed in 

the percent relative bias of the standard error estimators 

when different choices of weights are used in the calculation 

of B̂  for the residuals.  

Corresponding results for the SIE data when estimating 

total income are shown in Table 6.5. Again, the pattern of 

results is broadly similar to that for the LFS data in Table 

6.3. For the complete response case, the use of iw  weighted 

residuals rather than id  weighted residuals leads to modest 

improvement in bias and RMSE of the standard error 

estimators. For the nonresponse cases the improvements are 

considerable. Little change in the standard error estimators 

is observed when modifying the choice of weight used to 

compute the estimated regression coefficients. The results in 

Table 6.5 are extended in Table 6.6 to consider relative bias 

of the standard error estimators, rather than their absolute 

bias, and to consider one additional parameter: total 

expenditure per quarter. We see again that the relative bias 

arising from using id  weighted residuals can be substantial 

in the presence of nonresponse, over 35% in all cases, and 

that this is reduced using the iw  weighted residuals, for 

which the relative bias never exceeds about 3%. 
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Table 6.3 
Properties of variance estimators when estimating total unemployed from the LFS (R = 1,000) 
 

Weighting Method w- or d-

weighted 

residuals1 

weight used  

for B̂  in 

residual1 

Mean of Standard 

Error Estimator 

Bias of SE  

Estimator  

(simulation s.e.) 

RMSE of 

SE 

Estimator 

Coverage2 of 

Confidence 

Interval (%) 

Complete Response:     
     
 GREG d  

d  

w  

w  

d  

w  

d  

w  

433.9 

434.3 

442.8 

441.9 

-18.8 (0.9) 

-18.5 (0.9) 

-10.0 (1.0) 

-10.8 (1.0) 

33.4 

33.3 

31.9 

32.0 

93.5 

93.5 

93.8 

93.7 
       
 Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

433.9 

434.2 

443.0 

442.0 

-18.8 (0.9) 

-18.5 (0.9) 

-9.8 (1.0) 

-10.7 (1.0) 

33.4 

33.3 

32.0 

32.0 

93.5 

93.5 

93.8 

93.8 
       
 ‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

433.9 

434.3 

435.4 

443.7 

442.3 

441.6 

-19.4 (0.9) 

-19.1 (0.9) 

-17.9 (0.9) 

-9.6 (1.0) 

-11.1 (1.0) 

-11.8 (1.0) 

33.7 

33.6 

33.0 

32.5 

32.4 

32.3 

93.5 

93.5 

93.5 

93.7 

93.7 

93.7 
       

Multiplicative nonresponse:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

385.7 

386.1 

489.5 

487.8 

-112.6 (0.9) 

 -112.1 (0.9) 

-8.8 (1.2) 

 -10.4 (1.2) 

116.0 

115.5 

39.2 

39.2 

85.8 

85.8 

94.2 

94.2 
       
Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

385.7 

386.1 

490.3 

488.4 

-113.1 (0.9) 

-112.7 (0.9) 

-8.5 (1.2) 

-10.4 (1.2) 

116.5 

116.1 

39.6 

39.5 

85.7 

85.7 

94.3 

94.1 
       
‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

385.7 

386.2 

387.8 

491.9 

488.9 

487.5 

-113.7 (0.9) 

-113.2 (0.9) 

-111.6 (0.9) 

-7.5 (1.3) 

-10.5 (1.2) 

-11.9 (1.2) 

117.1 

116.6 

115.0 

40.4 

39.9 

39.8 

85.4 

85.6 

85.8 

94.2 

94.0 

94.0 
       

Additive nonresponse:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

386.5 

387.0 

489.3 

487.6 

-110.9 (0.9) 

-110.5 (0.9) 

-8.2 (1.2) 

-9.8 (1.2) 

114.4 

113.9 

39.0 

39.0 

86.0 

86.0 

94.6 

94.6 
       
Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

386.5 

387.0 

490.1 

488.1 

-111.0 (0.9) 

-110.6 (0.9) 

-7.4 (1.2) 

-9.4 (1.2) 

114.4 

114.0 

39.2 

39.1 

85.8 

85.8 

94.7 

94.6 
       
‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

386.5 

387.0 

388.6 

491.6 

488.6 

487.3 

-111.6 (0.9) 

-111.1 (0.9) 

-109.5 (0.9) 

-6.5 (1.3) 

-9.5 (1.2) 

-10.8 (1.2) 

115.0 

114.6 

113.0 

40.0 

39.5 

39.4 

85.6 

85.6 

85.9 

94.7 

94.6 

94.6 
       

1 see text following equation (4.8), where choices ,df d  and w  correspond to B̂  in (i), (ii) and (iii) respectively.  
2 percentage of 95% normal-theory confidence intervals containing true value. 
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Table 6.4 

Relative bias (%) of standard error estimators of unemployed, employed and inactive totals from LFS (R = 1,000) 
 

Weighting Method w- or d-weighted 

residuals1 

weight used for B̂ in 

residual1 

Relative Bias of Standard Error Estimator 

Unemployed Employed Inactive 

Complete Response:    
    

GREG d  

d  

w  

w  

d  

w  

d  

w  

-4.2 

-4.1 

-2.2 

-2.4 

-3.4 

-3.3 

-2.2 

-2.3 

0.5 

0.6 

1.9 

1.7 
      

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

-4.2 

-4.1 

-2.2 

-2.4 

-3.3 

-3.2 

-2.1 

-2.2 

0.7 

0.8 

2.1 

1.9 
      

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-4.3 

-4.2 

-4.0 

-2.1 

-2.4 

-2.6 

-3.3 

-3.3 

-3.1 

-2.0 

-2.2 

-2.3 

0.7 

0.8 

1.1 

2.3 

1.9 

1.8 
      

Multiplicative nonresponse:    
    

GREG d  

d  

w  

w  

d  

w  

d  

w  

-22.6 

-22.5 

-1.8 

-2.1 

-22.3 

-22.2 

-3.3 

-3.5 

-18.2 

-18.1 

1.8 

1.5 
      

Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

-22.7 

-22.6 

-1.7 

-2.1 

-30.6 

-30.5 

-13.5 

-13.7 

-18.4 

-18.3 

1.7 

1.3 
      

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-22.8 

-22.7 

-22.3 

-1.5 

-2.1 

-2.4 

-22.0 

-21.9 

-21.7 

-2.7 

-3.1 

-3.3 

-18.4 

-18.3 

-17.9 

1.9 

1.3 

1.1 
      

Additive nonresponse:    
    

GREG d  

d  

w  

w  

d  

w  

d  

w  

-22.3 

-22.2 

-1.6 

-2.0 

-21.8 

-21.7 

-2.9 

-3.1 

-18.5 

-18.4 

1.1 

0.8 
      

Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

-22.3 

-22.2 

-1.5 

-1.9 

-30.2 

-30.1 

-13.3 

-13.5 

-18.0 

-17.9 

1.8 

1.4 
      

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-22.4 

-22.3 

-22.0 

-1.3 

-1.9 

-2.2 

-21.6 

-21.5 

-21.3 

-2.4 

-2.8 

-3.0 

-18.0 

-17.9 

-17.6 

2.0 

1.5 

1.3 
      

1 see text following equation (4.8), where ,df d  and w  correspond to B̂  in (i), (ii) and (iii) respectively.  
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Table 6.5 
Properties of variance estimators when estimating total income from the SIE (R = 1,000) 
 

Weighting Method w- or d- 

weighted 

residuals1 

weight used for B̂ in 

 residual1 

Mean of 

Standard Error 

Estimator 

Bias of  

SE Estimator  

(s.e.) 

RMSE of  

SE Estimator 

Coverage2 of 

Confidence 

Interval (%) 

Complete Response:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

10,338.8 

10,339.2 

10,377.9 

10,376.8 

-138.5 (6.9) 

-138.2 (6.9) 

-99.5 (6.9) 

-100.5 (6.9) 

259.0 

258.8 

240.0 

240.3 

93.8 

93.8 

94.1 

94.1 
       

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

10,338.8 

10,339.2 

10,370.0 

10,376.9 

-145.3 (6.9) 

-144.9 (6.9) 

-106.1 (6.9) 

-107.2 (6.9) 

262.7 

262.5 

243.1 

243.5 

93.8 

93.8 

94.0 

94.0 
       

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

10,338.8 

10,339.2 

10,340.3 

10,378.3 

10,377.1 

10,376.7 

-152.7 (6.9) 

-152.4 (6.9) 

-151.3 (6.9) 

-113.2 (6.9) 

-114.4 (6.9) 

-114.8 (6.9) 

266.9 

266.7 

266.1 

246.5 

247.0 

247.2 

93.9 

93.9 

94.0 

94.0 

94.0 

94.0 
       

Multiplicative nonresponse:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

8,104.7 

8,105.5 

13,214.5 

13,210.9 

-5,482.1 (7.4) 

-5,481.3 (7.4) 

-372.3 (12.8) 

-375.9 (12.8) 

5,487.1 

5,486.3 

549.7 

551.7 

75.8 

75.8 

94.5 

94.5 
       

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

8,104.7 

8,105.5 

13,214.1 

13,210.4 

-5,479.8 (7.4) 

-5,479.1 (7.4) 

-370.4 (12.8) 

-374.2 (12.8) 

5,484.9 

5,484.1 

549.4 

551.5 

75.8 

75.8 

94.5 

94.5 
       

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

8,104.7 

8,105.5 

8,108.1 

13,215.2 

13,210.6 

13,208.9 

-5,478.1 (7.4) 

-5,477.3 (7.4) 

-5,474.7 (7.4) 

-367.6 (12.9) 

-372.2 (12.9) 

-373.9 (12.9) 

5,483.1 

5,482.3 

5,479.7 

549.4 

551.6 

552.3 

75.8 

75.8 

75.9 

94.5 

94.5 

94.5 
       

Additive nonresponse:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

8,106.3 

8,107.1 

13,207.9 

13,204.3 

-5,508.5 (7.4) 

-5,507.7 (7.4) 

-407.0 (12.8) 

-410.5 (12.8) 

5,513.5 

5,512.7 

573.8 

575.9 

75.6 

75.6 

94.3 

94.3 
       

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

8,106.3 

8,107.1 

13,207.7 

13,203.9 

-5,506.6 (7.4) 

-5,505.9 (7.4) 

-405.3 (12.8) 

-409.0 (12.8) 

5,511.6 

5,510.9 

573.6 

575.8 

75.7 

75.7 

94.1 

94.1 
       

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

8,106.3 

8,107.1 

8,109.7 

13,208.9 

13,204.2 

13,202.5 

-5,507.2 (7.4) 

-5,506.4 (7.4) 

-5,503.8 (7.4) 

-404.6 (12.9) 

-409.2 (12.9) 

-411.0 (12.9) 

5,512.2 

5,511.4 

5,508.8 

574.8 

577.3 

578.1 

75.9 

75.9 

75.9 

94.1 

94.1 

94.1 
       

1see text following equation (4.8), where choices ,df d  and w  correspond to B̂  in (i), (ii) and (iii) respectively. 
2 percentage of 95% normal-theory confidence intervals containing true value. 
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Table 6.6 

Relative bias (%) of variance estimators of expenditure and income totals from SIE (R = 1,000) 
 

Weighting Method w- or d-weighted 

residuals1 

weight used for 

B̂  in residual1 

Relative Bias of Standard Error Estimator 

Expenditure Income 

Complete Response:   
   

GREG d  

d  

w  

w  

d  

w  

d  

w  

0.7 

0.7 

1.3 

1.3 

-1.3 

-1.3 

-1.0 

-1.0 
     

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

0.7 

0.7 

1.2 

1.2 

-1.4 

-1.4 

-1.0 

-1.0 
     

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

0.6 

0.6 

0.6 

1.2 

1.2 

1.2 

-1.5 

-1.5 

-1.4 

-1.1 

-1.1 

-1.1 
     

Multiplicative nonresponse:   
   

GREG d  

d  

w  

w  

d  

w  

d  

w  

-38.2 

-38.2 

-0.3 

-0.3 

-40.4 

-40.3 

-2.7 

-2.8 
     

Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

-38.2 

-38.2 

-0.3 

-0.3 

-40.3 

-40.3 

-2.7 

-2.8 
     

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-38.2 

-38.2 

-38.2 

-0.3 

-0.3 

-0.4 

-40.3 

-40.3 

-40.3 

-2.7 

-2.7 

-2.8 
     

Additive nonresponse:   
   

GREG d  

d  

w  

w  

d  

w  

d  

w  

-38.1 

-38.1 

-0.2 

-0.2 

-40.5 

-40.5 

-3.0 

-3.0 
     

Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

-38.1 

-38.1 

-0.2 

-0.2 

-40.5 

-40.5 

-3.0 

-3.0 
     

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-38.2 

-38.2 

-38.1 

-0.2 

-0.3 

-0.3 

-40.5 

-40.5 

-40.4 

-3.0 

-3.0 

-3.0 
     

1 see text following equation (4.8), where ,df d  and w  correspond to B̂  in (i), (ii) and (iii) respectively. 
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7. Conclusions 
 

The simulation study showed little difference between 

the bias or variance properties of the three calibration 

estimators considered: the GREG estimator, the classical 

raking estimator and the maximum likelihood raking 

estimator. Some small differences in the distribution of 

extreme weights were observed: the maximum likelihood 

raking estimator had the most very large weights and the 

GREG estimator was the only one with a few negative 

weights.  

Amongst the variance estimators, the main finding was 

the contrast between the approach which weights residuals 

by the design weight and that which weights them by the 

calibrated weight. It was found that the latter variance 

estimator always had smaller bias and that this effect was 

very marked in the presence of nonresponse, when the 

former estimator could be severely biased. The bias of the 

latter estimator was generally small and the coverage level 

of the associated confidence intervals was generally close to 

the nominal coverage. 

Alternative ways of weighting the observations in 

constructing the regression coefficients, when calculating 

the residuals in the linearization variance estimator, were 

considered but little effect was observed and there was no 

evidence that this choice is important in practice.  

In general, the findings for the categorical variables in the 

British Labour Force Survey were remarkably similar to the 

findings for the continuous variables in the German Income 

and Expenditure survey. 
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