
Article

Component of Statistics Canada
Catalogue no. 12-001-X Business Survey Methods Division

Small area estimation of the 
number of firms’ recruits by using 
multivariate models for count data 
 
by Maria Rosaria Ferrante and Carlo Trivisano  

December 2010



Survey Methodology, December 2010  171 
Vol. 36, No. 2, pp. 171-180 
Statistics Canada, Catalogue No. 12-001-X 

 

Small area estimation of the number of firms’  
recruits by using multivariate models for count data 

Maria Rosaria Ferrante and Carlo Trivisano 1 

Abstract 

The number of people recruited by firms in Local Labour Market Areas provides an important indicator of the 

reorganisation of the local productive processes. In Italy, this parameter can be estimated using the information collected in 

the Excelsior survey, although it does not provide reliable estimates for the domains of interest. In this paper we propose a 

multivariate small area estimation approach for count data based on the Multivariate Poisson-Log Normal distribution. This 

approach will be used to estimate the number of firm recruits both replacing departing employees and filling new positions. 

In the small area estimation framework, it is customary to assume that sampling variances and covariances are known. 

However, both they and the direct point estimates suffer from instability. Due to the rare nature of the phenomenon we are 

analysing, counts in some domains are equal to zero, and this produces estimates of sampling error covariances equal to 

zero. To account for the extra variability due to the estimated sampling covariance matrix, and to deal with the problem of 

unreasonable estimated variances and covariances in some domains, we propose an “integrated” approach where we jointly 

model the parameters of interest and the sampling error covariance matrices. We suggest a solution based again on the 

Poisson-Log Normal distribution to smooth variances and covariances. The results we obtain are encouraging: the proposed 

small area estimation model shows a better fit when compared to the Multivariate Normal-Normal (MNN) small area 

model, and it allows for a non-negligible increase in efficiency. 
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1. Introduction 

 
The number of people recruited by firms for a certain 

period can be taken as a key indicator of ongoing changes in 

the economic system. To highlight the dynamic of the 

demand for local labour, we consider the number of people 

recruited by firms in Local Labour Market Areas (LLMAs), 

these last grouped according to i) productive specialization, 

ii) firms’ size classes and iii) industrial sector. Domains are 

defined by cross-classifying these three variables. In order to 

emphasise the signals of the reorganisation of the productive 

process, we focus on the numbers of “recruits replacing 

employees leaving the firm (substitute recruits – SR)” and 

“recruits filling new positions (new recruits – NR)”. In Italy, 

information about firms’ recruits is collected by the 

Excelsior Survey co-sponsored by the Union of Italian 

Chambers of Commerce (UNIONCAMERE), the Ministry of 

Labour and the European Union. Unfortunately, this survey 

does not provide reliable estimates of firms’ recruits for 

each of these domains due to small domain sample size. As 

a consequence, a small area estimation (SAE) technique has 

to be adopted in order to obtain estimates with an acceptable 

degree of variability. 

In this paper, we propose a SAE approach for the 

estimation of counts. Due to data constraints, we adopt an 

aggregated area-level model.  

Since we aim at estimating SR and NR, we adopt a 

multivariate SAE model that borrows strength not only from 

areas but also from the correlations between the NR and SR 

true values. In order to estimate the median income of 

different sized groups of families, Fay (1987) proposed a 

multivariate regression model in an Empirical Bayes 

context. Multivariate SAE approaches have also been 

developed by Ghosh, Nangia and Kim (1996) and Datta, 

Fay and Ghosh (1991), Datta, Ghosh, Nangia and Natarajan 

(1996) and Datta, Lahiri, Maiti and Lu (1999) for contin-

uous data in the hierarchical cross-section time series model 

framework. Fabrizi, Ferrante and Pacei (2005, 2008) 

adopted multivariate area level models to estimate a vector 

of continuous poverty parameters. As in the univariate Fay-

Herriot model (Fay and Herriot 1979), all of the papers 

mentioned above assume the use of small area normal 

sampling and linking models.  

Since the sampling correlations between SR and NR esti-

mators are mainly negative, we propose a SAE model based 

on the Multivariate Poisson-Log Normal (MPLN) distribu-

tion. Unlike other multivariate distributions for counts 

proposed in the literature, this particular distribution allows 

for unconstrained (that is, both positive and negative) 

correlations (Aitchison and Ho 1989). 

We also deal with the instability of estimators of sam-

pling error variances and covariances. An approximately 

unbiased estimate of the variance of direct estimators is 
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usually available in SAE. However, in area-level models it 

is customary to assume that the sampling variance is known 

and equal to its estimate (Rao 2003; page 76). This 

assumption is commonly stated and largely accepted in the 

case of large samples, whereas both the variance estimator 

and direct point estimators suffer from instability in the case 

of small samples. As a partial solution, sampling variance 

estimates are often smoothed through the generalized 

variance functions (GVF) approach (Wolter 1985). In You, 

Rao and Gambino (2003), sampling variances and covari-

ances were smoothed over areas and times. In order to 

consider the extra variability associated with the estimated 

sampling variances, Arora and Lahiri (1997) proposed an 

integrated Hierarchical Bayes (HB) smoothing approach for 

continuous data. See You and Chapman (2006), Liu, Lahiri 

and Kalton (2007) and You (2008) for different extensions 

of Arora and Lahiri (1997). 

Due to the rarity of recruits in certain domains, a further 

problem arises that is linked to the instability of sampling 

error variances and covariances estimators. When direct 

estimates of SR or NR (or both) are equal to zero, estimated 

sampling error variances and covariances are also equal to 

zero. Note that observing estimated variances equal to zero 

does not necessarily imply that the estimates have a high 

degree of accuracy. This problem was encountered in 

previous small area estimation problems (e.g., Elazar 2004; 

Chattopadhyay, Lahiri, Larsen and Reimnitz 1999). Chen 

(2001) proposed a unit level hierarchical modeling to handle 

the problem. Moreover, some studies (Cohen 2000) use the 

logarithmic transformation of the mean (or total) direct 

estimates of the count data in order to adopt a linear SAE 

model, simply discarding the estimates equal to zero. 

Although this solution overcomes the “zero variance” 

problem, it also leads to biased estimates and neglects a 

portion of the sample.  

In order to deal with the instability of variances and 

covariances estimators as well as the problem of estimated 

sampling variances equal to zero, we suggest an “inte-

grated” approach in the spirit of that proposed by Arora and 

Lahiri (1997), Liu et al. (2007) and You (2008). Within an 

HB framework, we jointly model the parameters of interest 

and the sampling error covariance matrices by adopting a 

smoothing covariance solution based once again on the 

Poisson-Log Normal distribution. 

The layout of this paper is as follows. The data set 

employed is described in section 2, while section 3 presents 

direct domain estimation and its associated sampling error 

variances and covariances. In section 4, we describe the 

multivariate SAE model we propose for estimating counts 

as well as the solution we suggest for overcoming the 

instability of sampling error variances and covariances 

estimators in the presence of zero counts. Section 5 reports 

the results obtained by measuring the performance of the 

adopted SAE model. Details on the Poisson-Log Normal 

distribution are given in the Appendix. 

 
2. The excelsior survey  

The Excelsior Survey is one of the most complete Italian 

statistical sources for labour demand data, providing esti-

mates of the number of people recruited by Italian firms. 

Each year, a stratified simple random sample of about 

100,000 firms with at least one employee is contacted and 

asked about the number of people it plans to hire in the short 

term. The factors used for stratification are the firm’s 

industrial sector and size class. The allocation of the sample 

in the strata satisfies a constraint on the maximum estimated 

standard error corresponding to a 95% significance level 

(Baldi, Bellisai, Fivizzani and Sorrentino 2007). By focus-

ing on local geographical details, the survey is designed to 

produce reliable estimates for the administrative provinces 

(NUTS3, following the “Nomenclature of Units for 

Territorial Statistics” reported in http://europa.eu.int/comm/ 

eurostat/ramon/nuts). This geographical unit, singled out on 

the basis of administrative criteria, does not appear to be the 

best choice when analysing the dynamics of the local labour 

demand. In order to shed some light on the signals of the 

reorganization of the local productive process, a better 

territorial subdivision would be LLMAs (following the 

OECD definition). LLMAs are groups of municipalities 

sharing the same labour market conditions (for the location 

of LLMAs in Italy, see Sforzi 1991). In Italy, following the 

strategy proposed by Sforzi and Lorenzini (2002) and 

adopted by the Italian Statistical Institute (ISTAT), certain 

LLMAs are labelled “industrial districts” (IDs). IDs are 

geographically defined productive systems characterized by 

a dominant specialization. In the 1990s, these were con-

sidered to be the main stimulus for the growth of the Italian 

economic system (Becattini 1992). 

Estimating the number of substitute and new recruits in 

firms operating within/outside of IDs can help us verify 

whether IDs are still a source of dynamism for the Italian 

economy as a whole. In order to refer to types of ID, we 

group them according to their productive specialization. 

Similarly, LLMAs not labelled as IDs can be classified 

according to their economic vocation (LLMAs can be 

characterized by a specific manufacturing activity, tourist 

area, city, etc.). Moreover, the comparison between ID and 

non-ID firms makes economic sense if the industrial sector 

and size of the firms are also taken into account. Finally, as 

already noted, domains of interest are defined by cross-

classifying: i) groups of LLMAs obtained according to their 

productive specialization, ii) firm’s industrial sector and iii) 

firm’s size. 



Survey Methodology, December 2010 173 
 

 

Statistics Canada, Catalogue No. 12-001-X 

This paper focuses on the manufacturing sector charac-

terising the IDs’ economic activity. The analysis is limited 

to two Italian regions containing a large quantity of IDs, 

namely Tuscany and Emilia-Romagna, and to firms with 

fewer than 100 employees (as censuses are taken for the 

other size classes). The target population consists of 54,089 

firms employing a total of 809,059 people.  

 
3. Direct estimates  

Table 1 provides details of the categories defining the 

208 domains of interest. Note that the number of domains is 

less than that expected due to the absence of a number of 

domains within the population. The domains are unplanned 

since they are formed grouping LLMAs contained in the 

same planned stratum. For the sake of simplicity, in the 

following we avoid using the stratum subscription wherever 

possible. 

Let 1iθ  and 2iθ  be the true number of NR and SR for 

domain ( 1, ..., 208),i i =  respectively. We shall first define 

a direct estimator of ( 1, ..., 208; 1, 2).ij i jθ = =  Let ijly  be 

the response of the thl  unit related to the thj  variable in the 
thi  domain ( 1, ..., ,il n=  where in  is the sample size in 

domain ; 1, ..., 208; 1, 2).i i j= =  As design based (direct) 

estimator we use a ratio domain estimator defined as ˆ ijθ =  

1
ˆ/ ( / ) / ,in

l ijl i i i iy n 
 
 
=∑  where i
  and in  are respec-

tively the population size and the sampling size referred to 

domain ,i  and ˆ / ,i i t i t i
 n n 
∋ ∋=  where t i
 ∋  and t in ∋  are 

respectively the population size and the sampling size of the 

stratum t  containing the domain i  (Särndal, Swensson and 

Wretman 1992; page 391). 

Since we are estimating the number of occurrences of 

rare events, in 50 of the 208 domains, direct estimates of NR 

and/or of SR are equal to zero, that is, 1
ˆ 0iθ =  and/or 

2
ˆ 0.iθ =  Zero point estimates imply that 1

ˆˆ ( ) 0iV θ =  and/or 

2
ˆˆ ( ) 0,iV θ =  where 1

ˆˆ( )iV θ  and 2
ˆˆ ( )iV θ  are the standard 

design-based variance estimates of 1
ˆ

iθ  and 2
ˆ ,iθ  respec-

tively. This result gives a false impression of high accuracy, 

whereas the exact opposite is more likely to be true in a 

small area context. Moreover, design based estimates of NR 

and/or of SR equals to zero produce 1 2
ˆ ˆ ˆCOV( , ) 0,i iθ θ =  

where 1 2
ˆ ˆ ˆCOV( , ) 0i iθ θ =  denotes the standard design-based 

estimate of the design-based covariance between 1
ˆ

iθ  and 

2
ˆ .iθ  As a result, covariances also need to be smoothed in a 

multivariate SAE model. 

We hereafter refer to the set of the 50 small areas having 

one or both zero estimated variances and zero covariances 

as the “Zero Count” (ZC) set. The complementary set of 

158 domains, where 1
ˆˆ ( ) 0iV θ >  and 2

ˆˆ ( ) 0,iV θ >  is named 

the “Non Zero Count” (NZC) set.  

Considering the data generating process and the nature of 

the outcome variables, we expect mainly negative correla-

tions between 1iθ  and 2.iθ  Briefly, we need a suitable 

distribution for both smoothing covariance matrices and 

modeling small area parameters that allows for an un-

restricted covariance matrix, that is, for both positive and 

negative correlations. 

 

 

 

 
Table 1 

Variables defining domains of interest 
 

LLMAs grouped by productive specialization Firm size (b) Industrial sector(a) 

Industrial district(a,c)  1-9  1 Food, beverages and tobacco 

Food, beverages and tobacco 10-49  2 Textiles and clothing  

Textiles and clothing  50-99 3 Paper products, printing and publishing 

Paper products, printing and publishing ≥  100 4 Machinery 

Machinery  5 Chemicals and basic metals 
Jewellery, musical instruments, games, etc.  6 Leather and footwear 

Leather and footwear  7 Wood, furniture and household equipment 

Wood, furniture and household equipment  8 Jewellery, musical instruments, games, etc. 

LLMAs not defined as district (c)  9 Builders, contractors 

Non-specialised manufacturing   10 Other manufacturing 

Non-specialized, excluding manufacturing   

Tourist   

Cities   

(a) As defined by the 2-digit ATECO 91-ISIC 3 level classification and by Sforzi (1991). 
(b) Defined according to the number of employees. 
(c) Defined in accordance with Istat (1997). 
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4. An integrated multivariate small  

 area model for count data 
 

Multivariate count data can have a non-trivial correlation 

structure. In general, the modeling of this structure signif-

icantly affects the estimators’ efficiency and the computa-

tion of correct standard errors. A number of multivariate 

models for count data have been proposed in the literature, 

such as the Multivariate Poisson, Multivariate Negative 

Binomial and Multivariate Poisson-Gamma Mixture models 

(for a review of such models, see Winkelmann 2003). Un-

fortunately, these distributions are not suitable for modeling 

our data since they are based on the hypothesis that correla-

tion is the result of an individual factor that does not vary 

across outcomes, thus implying a covariance structure re-

stricted to non-negative correlations. In the bivariate case, a 

more flexible covariance structure is provided by the Latent 

Poisson Normal distribution (van Ophem 1999); however, 

any extensions to higher dimensional multivariate data ap-

pear impractical.  

Aitchison and Ho (1989) proposed a d-variate distri-

bution that allows for an unrestricted covariance structure, 

the Multivariate Poisson-Log Normal distribution (MPLN). 

No closed form exists for this distribution, but it can be 

represented as a simple mixture allowing for parameter 

estimation in an MCMC approach (Chib and Winkelmann 

2001). Details of the MPLN distribution are provided in the 

Appendix. 
 
4.1 Smoothing sampling covariance matrices  

As previously mentioned, the instability of standard 

errors in SAE is usually dealt with using a GVF approach. 

In this section, we present a GVF model with a regression 

function inspired by the MPLN distribution. 

Let 1 2[ , ]il i l i ly y ′=y  be the vector of the two outcome 

variables referring to the thl  unit in the thi  domain. Let 

,il i i| ⊥y λ Σ ,il i i′ |y λ Σ  and 2| , ~ PLN ( , ),il i i i iy λ Σ λ Σ  

,i∀ .l∀  Under these hypotheses, the moments leading up to 

the second order can be expressed as follows: 

,

2

,

1 2 ,

( | , ) exp( /2)

( | , ) [exp( ) 1]

COV( , | , ) [exp( ) 1],

ijl i i ij i jj ij

ijl i i ij ij i jj

ijl ihl i i i i i jh

E y

V y

y y j h

= λ + σ = ζ

= ζ + ζ σ −

= ζ ζ σ − ≠

λ Σ

λ Σ

λ Σ

 

where ,i jhσ  denotes the ( , ), , 1, 2,j h j h =  element of .iΣ  

To deal with the problem of smoothing covariance 

matrices, Otto and Bell (1995), suggested an approach based 

on a Wishart distributional assumption; specifically, they 

used smoothed estimates in a small area Normal-Normal 

model. In the same spirit, we propose a Bayesian approach 

using the following GVF strategy. Under simple random 

sampling, let us assume that the sampling covariance matrix 

in domain ,i iC  follows a Wishart distribution with 1in −  

degrees of freedom: 

2| , ~ ( 1, )i i i i in W n −C Γ Γ  

where ( | , ),i i i iE n=Γ C Γ 1,2,...,158,i=  and elements ( , )j h  

of iC  are defined as 1
1, ( ) ( ),in

ii jh i ijl ij ijh ihC n y y y y−
=∑= − −  

where 1
1 .in

iij i ijly n y−
=∑=  

If ijζ  parameters are known, then ( | , )i i iE nC Γ  only 

depends on elements of the iΣ  matrix. We propose to 

estimate ijζ  using the design based estimator 1ˆ ˆ .ij i ij
 −ζ = θ  

Thus, we can express each element of the iΓ  matrix as a 

function of estimates ˆ ijζ  and of the elements of the iΣ  

matrix: 
2

,11 1 1 ,11

2

,22 2 2 ,22

,12 1 2 ,12

ˆ ˆ (exp( ) 1)

ˆ ˆ (exp( ) 1)

ˆ ˆ (exp( ) 1)

i i i i

i i i i

i i i i

Γ = ζ + ζ σ −

Γ = ζ + ζ σ −

Γ = ζ ζ σ −

 

where ,11 11 ,i i
′σ = σ Z ,22 22 ,i i

′σ = σ Z ,12 12 ,i i
′σ = σ Z  being iZ  

is a 3 1×  vector of dummy variables identifying the firm’s 

size class in the domain i, and 

1,11 1,22 1,12

11 2,11 22 2,22 12 2,12

3,11 3,22 3,12

, ,

     σ σ σ
     

= σ = σ = σ     
     σ σ σ     

σ σ σ  

that is, we assume that parameters iΣ  are equal for domains 

belonging to the same firm size class.  

We estimate 11 22 12, ,σ σ σ  parameters on NZC data. Since 

we are following a Bayesian approach, prior specifications 

for ,k jjσ  and ,12kσ 1, 2, 3k =  are needed. We use the 

following prior specifications: 1 2
,11 ~ ,k U +σ 1 2

,22 ~ ,k U +σ  

~ ( 1,1),k Uρ −  where 1 2
,12 ,11 ,22( )k k k kσ = ρ σ σ  and U +  

denotes a uniform distribution over a subset of R+  with a 

large but finite length. In section 4.3, we show how these 

estimates can be used to integrate the SAE model with a 

model for sampling error covariance matrices.  
 
4.2 A Multivariate 0ormal-Poisson-Log 0ormal 

small area model  
In this section, we propose a multivariate SAE model 

based on the MPLN distribution in order to jointly estimate 

SR and NR using the NZC set. 

Let 1 2( , )T

i i i= θ θθ  be the vector of the two parameters of 

interest for the thi  domain in the set of NZC data 

( 1, ..., 158),i =  and let ˆ iθ  be the corresponding vector of 

direct estimates. The SAE model consists of two separate 

models. The first model is a sampling model: 

2
ˆ ~ ind ( ),     1, ..., 158.i i i i
 i| | =θ θ θ Ψ  (1) 
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As in Lahiri and Rao (1995), we justify the normality 

assumption in (1) using the central limit argument. It is 

standard practice to assume that sampling error covariance 

matrices iΨ  are known, and a GVF method is generally 

used to estimate .iΨ  Here, as a smoothed estimation of iΨ  

we adopt ˆ ( , ) ,i i i i iE n K= |Ψ Γ C  where ( / 1).i i t i t iK 
 
 n∋ ∋= −  

From this point on we will refer to ˆ
iΨ  as Smoothed 

Sampling Error Covariance matrix (SMSEC). 

The second component of the SAE model is a linking 

model that relates iθ  to area specific auxiliary data: 

2~ ind PLN ( , ), 1, ...,158,i i iν =θ η Σ  

where (2) 

i i i ix= + +η α γZ βZ  

iZ  is a 3 1×  vector of dummy variables identifying the 

firm’s size class in the domain i and *log ( ),i ix x=  where 
*

ix  is the number of employees in the domain .i  

At the end, νΣ  is the covariance matrix related to the 

area-specific random effects: 

,11 ,12

,21 ,22

ν ν
ν

ν ν

 σ σ
=   σ σ 

Σ  

and  

12 13 11 12 131

22 23 21 22 232

0
, , .

0

γ γ β β βα     
= = =     γ γ β β βα     

α γ β  

From here on, we refer to this small area model as 

“Multivariate Normal-Poisson-Log Normal” (MNPLN). 

We adopt a fully hierarchical Bayesian approach. In this 

framework, relatively complex (e.g., multivariate) models 

can be implemented easily; in addition, posterior 

distributions can be approximated using MCMC algorithms. 

Computing small area multivariate estimates, and estimates 

of their MSE in particular, can be difficult within a 

frequentist approach. The specification of priors for the 

described model is as follows: 

1

2 2

2

1

2 2

2

1

2 2

2

1

2

1 1

2 2

~ ( , ),

~ ( , ) 2,3,

~ ( , ) 1, 2, 3,

~ ( , ),

,

k

k

k

k

k

k

k k

k k


 a


 g k


 b k

W s

′
′

′

−
ν

′

′

α 
 α 

γ 
′ = γ 

β 
= β 

γ β   
⊥   γ β   

0 I

0 I

0 I

Σ I

 

where s = 3 and , ,k ka g b′  are large compared with the 

scale of the data. This is to reflect the lack of prior 

information about model parameters, thus defining diffuse 

but proper specification of priors. The posterior means 
HBˆ ˆ ˆ( | , )i i i iE=θ θ θ Ψ  are taken as estimators of the area 

parameters, while the posterior variance ˆ ˆ( | , )i i iV θ θ Ψ  is 

used as a measure of uncertainty. 

For the sake of comparison, we take the standard 

Multivariate Normal-Normal (MNN) model as a bench-

mark, where the sampling model is defined as in (1) and the 

linking model is defined as follows:  

* *

2~ ind ( , ),i i
 νθ µ Σ  (3) 

where * * * * *.i i i ix= + +µ α γ Z β Z  Parameters *,α *,γ *β  and 

their prior distributions are defined as ,α γ  and β  in the 

previous model. 
 
4.3 An integrated M0PL0 small area model  

In order to account for the extra variability due to the 

estimated covariance matrices of sampling errors, as well as 

to overcome the zero variances and covariances problem, 

we suggest a solution in the spirit of that proposed by Arora 

and Lahiri (1997), Liu et al. (2007) and You (2008). We 

integrate the model for sampling error covariance matrices 

of section 4.1 into SAE models (1) and (2). Thus, we here 

refer to the whole set of 208 domains. 

In this context, the small area sampling model is 

formulated as usual, that is, *

2
ˆ ~ ind ( , ),i i i i
|θ θ θ Ψ i =  

1, ..., 208.  Under the hypotheses regarding ily  formulated 

in section 4.1, assuming that the iΣ s are known and 

assuming that ,ij i ij
θ = ζ  the elements of the sampling 

error covariance matrix *

iΨ  can be expressed as follows: 

 * 2 2
,

ˆ[ / / (exp( ) 1)]i jj i ij i ij i jj iK 
 
 ′Ψ = θ + θ −σ Z  (4) 

* 2
,12 1 2 12

ˆ[ (exp( ) 1)]i i i i i iK 
 − ′Ψ = θ θ −σ Z  (5) 

where ˆ 1, 2jj j′ =σ  and 12
ˆ ′σ  are posterior means of 

parameters jjσ  and 12,σ  respectively, computed using the 

model of section 4.1. 

Since the sampling error covariance matrices are 

expressed as a function of the iθ  parameters, here they can 

be considered Model Based Sampling Error Covariances 

(MBSEC). The posterior means HBˆ ˆ( | )i i iE=θ θ θ  are taken 

as estimators of s,i
′θ  while the posterior variance ˆ( | )i iV θ θ  

is used as a measure of uncertainty. 

We note that the MNN model cannot be implemented 

following the integrated approach described above. In fact, 

(3) does not ensure the positivity of iθ  nor of the diagonal 

elements of iΨ  as a result. 
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5. Data analysis 
 

In section 5.1, we compare the MNPLN model with the 

benchmark MNN model and their univariate counterparts. 

We assume SMSEC for both models; we thus refer to the 

two strategies as MNPLN-SMSEC and MNN-SMSEC from 

here on. Since these models do not allow us to deal with the 

zero count problem, we refer this analysis to the NZC set. In 

section 5.2, we compare the SAE integrated strategy based 

on the MNPLN model and MBSEC (MNPLN-MBSEC), 

which we presented in Section 4.3, with the strategy based 

on the MNPLN-SMSEC. We limit the analysis to the NZC 

set in order to evaluate the two strategies under the same 

conditions. Finally, in section 5.3 we evaluate the overall 

performance of the proposed SAE model MNPLN-MBSEC 

for the whole data set (NZC+ZC).  

Posterior distributions of parameters were obtained for all 

models, using Monte Carlo integration via the Gibbs sam-

pling algorithm. We used the MCMC software WinBUGS 

(Spiegelhalter, Thomas, Best and Gilks 1995) to run three 

parallel chains (each with 25,000 runs), the starting point 

being drawn from an over-dispersed distribution. WinBUGS 

codes are available at the URL http://www2.stat.unibo.it/ 

trivisano/. The convergence of the Gibbs sampler was 

monitored by visual inspection of the chains’ plots and of 

autocorrelation diagrams, and by means of the potential 

scale reduction factor proposed by Gelman and Rubin 

(1992). Although all models displayed fast convergence, we 

discarded the first 5,000 iterations from each chain. In 

multivariate models, the fairly strong autocorrelation of 

chains is reduced by thinning the chain (1 out of every 3 

values has been considered for posterior summaries). See 

Rao (2003, pages 228-232) for details. 

The performances of the small area models discussed in 

sections 4.2 and 4.3 are compared using various measures. 

In order to choose among competing models, we computed 

the Deviance Information Criterion (DIC). The DIC is a 

model selection criterion according to which a model’s 

performance is evaluated as the sum of a measure of fit (the 

posterior mean of the deviance )D  and a measure of 

complexity obtained as the difference between D  and the 

deviance evaluated at the parameters’ posterior mean. In this 

way, a model is preferred if it displays a lower DIC value 

(Spiegelhalter, Best, Carlin and Van der Linde 2002). 

In order to verify the strength of the multivariate ap-

proach to SAE, we use as a benchmark the univariate 

versions of models discussed in sections 4.2 and 4.3, 

defined as follows. For all models, we set ,12 0νσ =  in ,νΣ  

and we assume ,11 ,22,ν νσ ⊥ σ 1/ 2
, ~ (0, ),jj U U +
νσ 1, 2.j =  

For SMSEC models, we set ˆdiag ( ),i i=Ψ Ψ  while for 

MBSEC models we set 1,12 0σ =  in (5). In addition, a new 

set of estimates for parameters 11σ  and 22σ  is obtained by 

setting 0kρ =  in the model of section 4.1. 

Table 2 reports the DIC results for the whole set of small 

area models. 

 
Table 2 

Model comparison using DIC statistic 
 

Model Data set DIC 

MNN-SMSEC NZC 2,742.2 

(univariate version) NZC 2,745.4 

   

MNPLN-SMSEC NZC 2,656.9 

(univariate version) NZC 2,661.0 

   

MNPLN-MBSEC NZC 2,623.6 

(univariate version) NZC 2,638.1 

   

MNPLN-MBSEC NZC+ZC 3,202.7 

(univariate version) NZC+ZC 3,214.3 

 
All the multivariate models considered perform better in 

terms of DIC than their univariate counterparts (Table 2). In 

addition, for all multivariate models we find that posterior 

credibility intervals of ,12 ,11 ,22/ν ν ν νρ = σ σ σ  do not contain 

zero. We thus focus on multivariate models in the following 

paragraphs. 

We checked the adequacy of the specified multivariate 

models using posterior predictive checks. Simulated values 

of a suitable discrepancy measure are generated from the 

posterior predictive distribution and are then compared with 

the values of the same measure computed from observed 

data. Let obsθ̂  and newθ̂  denote the observed and generated 

data, respectively. The posterior predictive p-value is de-

fined as new obs obs
ˆ ˆ ˆ{ ( , ) ( , ) }.p P d d= > |θ θ θ θ θ  We consider 

a discrepancy measure proposed in Datta et al. (1999), 

which is defined as 

1

1

ˆ ˆ ˆ( , ) ( ) ( ).



i i i i

i

d −

=

′= − −∑θ θ θ θ Ψ θ θ  (6) 

Computing the p-value is straightforward using the 

MCMC output. Extreme values of the probability p indicate 

a given model’s lack of fit. Following Rao (2003, page 245-

246) and You and Rao (2002), we computed two statistics 

that are useful in order to assess model fit at the individual 

domain level. The first statistic, *
, new , obs obs

ˆ ˆ ˆ( ),ij ij ijp P= θ <θ |θ  

provides information about the degree of consistent over-

estimation or underestimation of , obs
ˆ .ijθ  

The second statistics is defined as 

*

obs , obs obs
ˆ ˆ ˆ ˆ ˆ[ ( ) ] ( ),ij ij ij ijd E V= θ | − θ θ |θ θ  
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where expectation and variance are under the posterior 

predictive distribution. Table 3 summarizes results relative 

to p, *
ijp  and *.ijd  

To further check the consistency of the data, we cal-

culated direct and model-based estimates of ,A sj sθ =  
1, ..., 10,  that is, the total number of NR and SR for the ten 

domains identified by classifying firms only according to 

the industrial sector. Let 1isw =  if the number of recruits in 

the domain i  refers to the industrial sector s  and 0;isw =  

otherwise, then  

.A sj ij is

i

wθ = θ∑  (7) 

At this level of aggregation, direct estimates can be 

considered accurate. Consequently, given two sets of 

model-based estimates referring to these large domains, we 

prefer the one that agrees with the direct estimates. Domains 

identified by industrial sectors are planned in the Excelsior 

Survey; each industrial sector is stratified according to firm 

size. Therefore, direct estimates ˆ
A sjθ  for each industrial 

sector are calculated using the standard Horwitz-Thompson 

estimator. Aggregated model-based estimates are computed 

based on the MCMC output. For models referring to NZC 

data, we aggregated following (7) at each MCMC step 

, 1, ..., ,t t T=  with samples *t
ijθ  and **t

ijθ  generated respect-

tively from the posterior distribution of ijθ  for domains 

belonging to the NZC set and from the predictive distri-

bution of ijθ  for domains belonging to the ZC set. The HB 

estimator is defined as HB 1 *
1

ˆ ( tT
t i 
ZCA sj ij isT w−
= ∈∑ ∑θ = θ +  

** ).t
i ZC ij isw∈∑ θ  Otherwise, for the model on NZC+ZC data, 

we aggregated following (7) MCMC samples from the 

posterior distributions of  .ijθ  In this case, the HB estimator 

is defined as HB 1 *
1

ˆ ( ).tT
t i 
ZCA sj ij isT w−
= ∈∑ ∑θ = θ  Table 4 reports 

summaries  of  ˆ
A sjθ   and  HBˆ .A sjθ  

For all the multivariate models, we examined the follow-

ing variants of the prior distributions: independent non-

informative flat prior distributions were used for the 

elements of vectors * * * 1 2
,, , , , , and ; ~ ,jj U +
νσα β γ α β γ j =  

1, 2, ~ ( 1,1),Uνρ − 1 2
,12 ,12 ,12( ) .ν ν ν νσ = ρ σ σ  We do the 

same for the elements of matrix *
Σ  in the MNN model. We 

did not find any relevant changes in the posterior distribu-

tions of parameters of interest. 

 
5.1 Comparing the M0PL0-SMSEC and M00-

SMSEC models on the 0ZC set 
 

We find that the MNPLN-SMSEC model largely out-

performs the MNN-SMSEC one in terms of DIC (Table 2). 

This last model shows a lack of fit as it displays a p-value 

equal to 0.034 (Table 3), whereas a value of 0.65 suggests 

the adequacy of the MNPLN-SMSEC model. This finding 

is confirmed when *
ijp  and *

ijd  measures (Table 3) for the 

two models are compared. For the MNN-SMSEC model, 
*
ijp  ranges over domains from 0.000 to 0.995 for NR 

( 1)j =  and from 0.003 to 0.993 for SR ( 2),j =  respec-

tively, indicating overestimation and underestimation in 

some domains. In addition, summaries of the standardized 

residuals *
ijd  indicate that there are predicted values outside 

two standard deviations of the corresponding observed 

values. The same measures for the MNPLN-SMSEC model 

indicate an adequate fit. 

We also find that the MNPLN-SMSEC model out-

performs the MNN-SMSEC models when performances are 

evaluated with reference to estimates for large domains 

(Table 4). In fact, credibility intervals for the MNN-SMSEC 

only cover 2 aggregated direct estimates for NR and 4 for 

SR, while credibility intervals under the MNPLN-SMSEC 

cover 6 aggregated direct estimates for NR and 6 for SR. 

 

 

 
Table 3 
Posterior predictive checks; summaries of 

*
ijp  and 

*
ijd  calculated with respect to i 

 

Model Data set p   
*
1ip  

*
2ip  

*
1id  

*
2id  

   min 0.000 0.003 -3.764 -2.867 
MNN-SMSEC NZC 0.034 median 0.591 0.616 0.257 0.295 
   max 0.995 0.993 2.656 -2.515 

           min 0.154 0.129 -0.965 -1.165 
MNPLN-SMSEC NZC 0.65 median 0.535 0.561 0.124 0.149 
   max 0.891 0.912 1.216 1.286 

           min 0.090 0.134 -1.085 -0.983 
MNPLN-MBSEC NZC 0.78 median 0.515 0.519 -0.084 -0.085 
   max 0.916 0.914 1.401 1.787 

           min 0.072 0.111 -1.164 -0.945 
MNPLN-MBSEC NZC+ZC 0.79 median 0.506 0.523 -0.076 -0.094 
      max 0.903 0.913 1.301 1.778 
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Table 4 
Direct and HB estimates for industrial sectors; in italic HB estimates whose credibility intervals cover direct estimates 
 

 Direct estimates HB estimates 

   

M00-SMSEC  

(0ZC) 

M0PL0-SMSEC  

(0ZC) 

M0PL0-MBSEC  

(0ZC) 

M0PL0-MBSEC 

(0ZC+ZC) 

s 
1

ˆ
A sθ  1

ˆse( )A sθ  
HB
1

ˆ
A sθ  

95%  

cred int. 

HB
1

ˆ
A sθ  

95%  

cred int. 
 

HB
1

ˆ
A sθ  

95%  

cred int. 

HB
1

ˆ
A sθ  

95%  

cred int. 

1 1,702.0 41.3 1,077.0 964.3 1,201.0 1,266.0 1,055.0 1,509.0 1,649.0 1,434.0 1,906.0 1,630.0 1,406.0 1,899.0 

2 1,758.8 41.9 1,936.0 1,793.0 2,091.0 1,720.0 1,441.0 2,011.0 1,975.0 1,665.0 2,347.0 1,908.0 1,598.0 2,291.0 

3 725.0 26.9 557.8 460.6 662.7 534.6 435.8 642.3 696.6 573.3 842.3 682.8 575.5 811.8 

4 373.9 19.3 202.7 123.0 294.8 192.1 129.1 277.0 370.0 291.1 471.4 319.8 252.1 408.3 

5 142.4 11.9 158.2 66.5 258.2 146.0 98.4 205.7 235.6 164.3 326.9 149.7 108.3 205.0 

6 5,624.1 75.0 4,134.0 3,800.0 4,484.0 5,235.0 4,814.0 5,670.0 5,537.0 5,136.0 5,963.0 5,594.0 5,187.0 6,029.0 

7 887.7 29.8 659.9 549.1 783.7 629.6 526.4 743.4 872.7 761.7 1,003.0 844.6 732.3 980.3 

8 223.9 15.0 263.3 188.2 340.6 260.6 182.8 351.3 362.0 262.8 494.1 288.7 203.1 410.8 

9 661.5 25.7 893.7 790.3 999.4 777.6 624.7 948.7 931.0 754.8 1,150.0 803.3 638.7 1,017.0 

10 1,792.6 42.3 1,460.0 1,334.0 1,598.0 1,579.0 1,381.0 1,798.0 1,847.0 1,650.0 2,074.0 1,813.0 1,610.0 2,053.0 

 2
ˆ

A sθ  2
ˆse( )A sθ   

HB
2

ˆ
A sθ  

95%  

cred int. 

HB
2

ˆ
A sθ  

95%  

cred int. 

HB
2

ˆ
A sθ  

95%  

cred int. 

HB
2

ˆ
A sθ  

95%  

cred int. 

1 942.7 300.2 482.0 428.5 531.3 503.7 413.3 600.4 832.6 706.4 987.6 817.8 686.0 980.0 

2 920.0 135.7 883.9 798.7 967.4 849.8 694.8 1,022.0 949.8 778.9 1,161.0 922.3 747.6 1,167.0 

3 253.2 35.6 249.2 209.2 292.1 254.1 202.1 309.9 338.8 269.2 423.1 284.7 226.2 354.5 

4 150.5 36.0 84.4 53.3 120.4 84.7 56.8 119.2 160.6 116.7 218.0 131.5 97.0 179.6 

5 39.8 16.6 66.7 31.2 104.2 62.0 37.3 89.3 116.3 74.3 173.0 60.9 38.4 90.5 

6 2,304.0 131.5 1,869.0 1,692.0 2,054.0 2,070.0 1,856.0 2,282.0 2,273.0 2,060.0 2,508.0 2,297.0 2,079.0 2,542.0 

7 532.7 105.8 293.0 247.7 345.6 299.0 245.9 357.2 471.5 402.8 553.2 443.3 377.2 538.3 

8 80.8 32.3 115.7 85.7 143.5 100.5 67.7 140.3 139.5 76.7 210.4 98.0 58.5 156.9 

9 362.7 66.3 407.0 358.6 453.0 361.0 285.8 438.8 432.1 335.4 552.9 360.4 274.7 476.2 

10 856.3 70.7 661.1 598.1 722.6 714.4 614.0 824.7 855.4 740.5 984.6 832.7 719.8 964.5 

 

 

 

 

 

5.2 Comparing the M0PL0-SMSEC and M0PL0-

MBSEC models on the 0ZC set 
 

Values of p, *
ijp  and *

ijd  are approximately comparable 

for the MNPLN-SMSEC and MNPLN-MBSEC models 

(Table 3). Likewise, model-based estimates produced by 

MNPLN-SMSEC assume values very close to those 

obtained using MNPLN-MBSEC; in fact, the correlation 

between the posterior means of 1iθ  under the two models is 

equal to 0.98, while the same measure referring to 2iθ  is 

equal to 0.94. The same results arise for the correlation 

between posterior standard errors, which are 0.92 and 0.94, 

respectively. Performances of the MNPLN-MBSEC model 

in terms of agreement with direct estimates of large domains 

(Table 4) are slightly better than those of the MNPLN-

SMSEC model: respectively, 7 direct estimates of 
R and 8 

of SR are covered by the credibility interval calculated 

under this model. 

Given these results, we conclude that the fit of the 

MNPLN-MBSEC model is adequate.  
 

5.3 Evaluating the performances of M0PL0-

MBSEC models on the 0ZC+ZC set  
We observe that the performances of the MNPLN-

MBSEC model on the whole dataset in terms of *, ijp p  and 
*
ijd  measures are satisfactory and comparable with those of 

the same model on the NZC data set (Table 3). Obviously, 

DIC values for the two models cannot be compared as the 

two models are estimated on different data sets. 

As can be seen in Table 4, all the credibility intervals 

calculated using this model cover direct estimates referring 

to large domains; in other words, the agreement of HB 

estimates with direct estimates is very satisfactory. This 

result can be explained by noting that zero counts are more 

probable in small domains, which are characterized by a 

small number of employees (the covariate in all models). 

Therefore, estimating models on NZC data can lead to 

biased estimates of parameter .β  We conclude that inte-

grating a sampling covariance model into the MNPLN small 

area model leads to an appreciable increase in the reliability 
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of small area estimates. To describe the efficiency gain of 

the HB estimates, we computed on the NZC set the average 

percent CV reduction (You 2008), defined as the average of 

the difference of the direct CV and HB CV (the ratio of the 

square root of the posterior variance and the posterior mean) 

relative to direct CV. The average CV reduction is 23.1% 

for NR and 29.1% for SR. 
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Appendix 

 
The Multivariate Poisson-Log 0ormal distribution  

Let 1 2( , , ..., , ..., )j dy y y y=y  be a d-dimensional vector 

of counts, and suppose that ~ Po( ),j j jy | τ τ  with 

( ).j j j jy y j j′ ′ ′|τ ⊥ | τ ≠  Let the vector of parameters 

1 2( , , ..., ,..., )j d= τ τ τ ττ  follow a multivariate Log 

Normal, that is, | , ~ LN ( , ),dτ λ Σ λ Σ  where (log )E=λ τ  

and COV(log ).=Σ τ  Then the marginal distribution of y  

is a Multivariate Poisson-Log Normal (MPLN) distribution, 

which is a log normal mixture of d independent Po( ),jτ  

that is, | , ~ PLN ( , ).dy λ Σ λ Σ  By denoting the 

( , ), , 1, 2, ...,j h j h d=  element of Σ  as ,jhσ  marginal 

moments can be obtained easily through conditional 

expectation results and the standard properties of the 

Poisson and Log Normal distributions: 

2

( | , ) exp( / 2)

( | , ) exp( ) 1

COV( , | , ) [exp( ) 1], .

j j jj j

j j j jj

j h j h jh

E y

V y

y y j h

= λ +σ = ζ

 = ζ + ζ σ − 

= ζ ζ σ − ≠

λ Σ

λ Σ

λ Σ

 

Note that the MPLN model allows for overdispersion 

provided that 0,jjσ >  thus leading to ( | , )jV y >λ Σ  

( | , ).jE y λ Σ  Moreover, the correlation structure of counts 

is unrestricted, since COV( , | , )j hy y λ Σ  can be either 

positive or negative depending on the sign of .jhσ  Aitchison 

and Ho (1989), as well as Good and Pirog-Good (1989), 

studied a bivariate MPLN distribution, albeit exclusively in 

cases without covariates. However, the same model can 

easily be extended to take covariates into consideration 

(Chib and Winkelmann 2001). 
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