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Calibration estimation using exponential tilting in sample surveys 

Jae Kwang Kim 1 

Abstract 

We consider the problem of parameter estimation with auxiliary information, where the auxiliary information takes the form 

of known moments. Calibration estimation is a typical example of using the moment conditions in sample surveys. Given 

the parametric form of the original distribution of the sample observations, we use the estimated importance sampling of 

Henmi, Yoshida and Eguchi (2007) to obtain an improved estimator. If we use the normal density to compute the 

importance weights, the resulting estimator takes the form of the one-step exponential tilting estimator. The proposed 

exponential tilting estimator is shown to be asymptotically equivalent to the regression estimator, but it avoids extreme 

weights and has some computational advantages over the empirical likelihood estimator. Variance estimation is also 

discussed and results from a limited simulation study are presented. 
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1. Introduction 
 
Consider the problem of estimating 1

�
i iY y=∑=  for a 

finite population of size .�  Let A  denote the index set of 

the sample obtained by a probability sampling scheme. In 

addition to ,iy  suppose that we also observe a p -

dimensional auxiliary vector ix  in the sample such that 

1
�
i i=∑=X x  is known from an external source. We are 

interested in estimating Y  using the auxiliary information 

.X  

The Horvitz-Thompson (HT) estimator of the form  

ˆ
d i i

i A

Y d y
∈

= ,∑  (1) 

where 1i id = /π  is the design weight and iπ  is the first 
order inclusion probability, is unbiased for .Y  But, it does 

not make use of the information given by .X  According to 

Kott (2006), a calibration estimator can be defined as the 

estimator of the form  

ˆ
w i i

i A

Y w y
∈

=∑  

where the weights iw  satisfy  

i i

i A

w
∈

=∑ x X  (2) 

and ˆwY  is asymptotically design unbiased (ADU). Cali-

bration estimation has become very popular in survey 

sampling because it provides consistency across different 

surveys and often improves the efficiency. (Särndal 2007).  

The regression estimator, using the weights  

1

ˆ( ) j j j
i i d i i

j A

dw d d
− 

 
 ∈ 

′′= + − ,∑ x xX X x  (3) 

obtained by minimizing  

2
( )i i i

i A

w d d
∈

− /∑  

subject to constraint (2), is asymptotically design unbiased. 

Note that if an intercept term is included in the column 

space of X  matrix then (2) implies that the population size 

�  is known. If �  is unknown, one can require that the 

sum of the final weights are equal to the sum of the design 

weights. Thus,  

ˆ
i

i A

w �
∈

= ,∑  (4) 

where  

if is known
ˆ

otherwisei

i A

� �
� d

∈


=  ,

∑  

can be imposed as a constraint in addition to (2), which 

yields the weights 

{ }
1

ˆ ˆ
ˆ

ˆ ˆ

( ) ( ) ( )

i i d

d d

j j d j d
i i d

j A

� �
w d

� �

d d
−

∈

′ 
= + −  

 

′− − − ,∑

X X

x X x X x X  (5)

 

where ˆ ,i Ad i id∈∑=X x ˆ ,i Ad i� d∈∑=  and ˆ ˆ .d d d�= /X X  

We define the regression estimator to be reg
ˆ

i A i iY w y∈∑=  

using the weights (5). The regression estimator can be 

efficient if iy  is linearly related with ix  (Isaki and Fuller 

1982; Fuller 2002), but the weights in the regression 

estimator can take negative or extremely large values. 
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The empirical likelihood (EL) calibration estimator, 

discussed by Chen and Qin (1993), Chen and Sitter (1999), 

Wu and Rao (2006), and Kim (2009), is obtained by maxi-

mizing the pseudo empirical likelihood 

ln ( )i i

i A

d w
∈
∑  

subject to constraints (2) and (4). The solution to the opti-

mization problem can be written as 

0 1

1

ˆ( )
i i

i

w d
�

= ,
′λ + − /λ x X

 (6) 

where 0λ  and 1λ  satisfy constraints (2), (4), and 0iw >  for 

all .i  The EL calibration estimator is asymptotically 

equivalent to the regression estimator using weights (5) and 

avoids negative weights if a solution exists, but can result in 

extremely large weights. 

Because the empirical likelihood method requires solving 

nonlinear equations, the computation can be cumbersome. 

Furthermore, in some extreme cases, 1
1

�
i i� −
=∑=X x  does 

not belong to the convex hull of the sample ix ’s and the 

solution does not exist. In this extreme situation, the con-

straint (2) can be relaxed. 

Rao and Singh (1997) solved a similar problem by 

allowing 

1 2 ...,i ij j j j

i A

w x X X j p
∈

− ≤ δ , = , , ,∑  

for some small tolerance level 0jδ >  where 1 .�
ij ijX x=∑=  

Note that the choice of 0jδ =  leads to the exact calibration 

condition (2). Rao and Singh (1997) chose the tolerance 

level jδ  using a shrinkage factor in the ridge regression but 

their approach does not directly apply to the empirical 

likelihood method and the choice of jδ  is somewhat 

unclear. Chambers (1996) and Beaumont and Bocci (2008) 

also discussed a ridge regression estimation in the context of 

avoiding extreme weights. Breidt, Claeskens and Opsomer 

(2005) used penalized spline approach to obtain the ridge 

calibration. Recently, Park and Fuller (2009) developed a 

method of obtaining the shrinkage factor jδ  using a 

regression superpopulation model with random components. 

Chen, Variyath and Abraham (2008) tackled a similar 

problem in the context of the empirical likelihood method 

and proposed a solution by adding an artificial point such 

that =X 1
1

�
i i� −
=∑ x  would belong to the convex hull of the 

augmented ix ’s. The proposed estimator in Chen et al. 

(2008) only satisfies the calibration property approximately 

in the sense that 

1 2( )i i p

i A

w o n �− /

∈

− = .∑ x X  (7) 

This approximate calibration property is attractive because it 

allows more generality in the choice of weights. In 

particular, when the dimension of the auxiliary variable x  is 

large the calibration constraint (2) can be quite restrictive. 

As can be seen in Section 2, an estimator satisfying the 

asymptotic calibration property (7) enjoys most of the 

desirable properties of the empirical likelihood calibration 

estimator and is computationally efficient. 

In this paper, we consider a class of empirical-likelihood-

type estimators that satisfy the approximate calibration 

property (7). In Section 2, the idea of estimated importance 

sampling of Henmi et al. (2007) is discussed and a new 

estimator using this methodology is proposed. In Section 3, 

a weight trimming technique to avoid extreme calibration 

weights is proposed. In Section 4, variance estimation of the 

proposed estimator is discussed. In Section 5, results from a 

simulation study are presented. Concluding remarks are 

made in Section 6. 

 
2. Proposed method 

 
To introduce the proposed method, we first discuss 

estimated importance sampling introduced by Henmi et al. 

(2007). Suppose that ix  is observed throughout the popu-

lation but iy  is observed only in the sample. We assume a 

superpopulation model for ix  with density ( )f ;x η  known 

up to a parameter .∈Ωη  The superpopulation model char-

acterized by the density ( )f ;x η  is a working model in the 

sense that the model is used to derive a model-assisted 

estimator (Särndal, Swenson and Wretman 1992). 

Let η̂  be the pseudo maximum likelihood estimator of 

η  computed from the sample 

ˆ arg max ln{ ( )}i i

i A

d f
Ω ∈

= ;∑η x η  

and let 
0 �,η  be the maximum likelihood estimator of η  

computed from the population 

0
1

arg max ln{ ( )}
�

i�
i

f, Ω =

= ; .∑ x ηη  

Following Henmi et al. (2007), we can construct the 

following estimated importance weight 

0
( )

ˆ( )

i �
i i

i

f
w d

f

;
= .

;

x η

x η
 (8) 

To discuss the asymptotic properties of the estimator 

using the weights in (8), assume a sequence of the finite 

populations and the samples, as in Isaki and Fuller (1982), 

such that 
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1 2

1

( ) ( ) ( ) ( ) ( )
�

i i i i i i i i i p

i A i

d y y y y O n �− /

∈ =

′ ′ ′ ′ ′ ′, , − , , =∑ ∑x x x x  

for all possible A  and for each .�  The following theorem 

presents some asymptotic properties of the estimator with 

the estimated importance weights in (8).  
Theorem 1. Under the regularity conditions given in Appen-

dix A, the estimator ˆ ,i Aw i iY w y∈∑=  with the iw  defined by 

(8), satisfies 

1 ˆ ˆ( ) (1)w l pn� Y Y o− − = ,  (9) 

where 

1

0
ˆˆ ˆ ˆ ˆ

l d sy ss dY Y −′= − ,Σ Σ S  (10) 

ˆ
dY  is defined in (1), 

1

0 0 0
ˆ ˆ, ,i A i Ad i i sy i i id � d y

−
∈ ∈∑ ∑= =S s Σ s  

and 1 2

0
ˆ .i Ass i i� d− ⊗

∈∑=Σ s  Here, 
0 ,0 ln ( ) η ηs x η η

�i if ==∂ ; /∂ |  

and the notation 2B⊗  denotes .BB′   
The proof of Theorem 1 is presented in Appendix A. 

Because 10 0 ,�
i� i=∑≡ =S s 0  we can write (10) as 

1

0 0
ˆˆ ˆ ˆ ˆ ( )l d sy ss � dY Y −′= + − ,Σ Σ S S  

which is a regression estimator of Y  using 
0

( )i �
s η  as the 

auxiliary variable. Therefore, under regularity conditions, 

the proposed estimator using estimated importance sam-

pling is asymptotically unbiased and has asymptotic vari-

ance no greater than that of the direct estimator ˆ .dY  Note 

that the validity of Theorem 1 does not require that the 

working model ( )f ;x η  be true. 

If the density of ix  is a multivariate normal density, then 

the weights in (8) become 

( )

ˆ( )

i � xx �

i i

i d xx d

w d
,

,

φ ; ,
= ,

φ ; ,

x X Σ

x X Σ
 (11) 

where dX  is defined after (5), 
2

,
ˆ ˆ ,( )i Axx d i di d

d �
⊗

∈∑= /−Σ x X  
2

1, ,( )�
ixx � i �

�
⊗

=∑= /−Σ x X  and ( )φ ; ,x µ Σ  is the density 

of the multivariate normal distribution with mean µ  and 

variance-covariance matrix .Σ  If ,xx �Σ  is unknown and 

only �X  is available, then we can use 

,

,

ˆ( , )

ˆ( , )

i � xx d

i i

i d xx d

w d
φ ;

= .
φ ;

x X Σ

x X Σ
 (12) 

Tillé (1998) derived weights similar to those in (12) in the 

context of conditional inclusion probabilities.  

In general, the parametric model for ix  is unknown. 

Thus, we consider an approximation for the importance 

weights in (8) using the Kullback-Leibler information 

criterion for distance. Let ( )f x  be a given density for x  

and let 0P  be the set of densities that satisfy the calibration 

constraint. That is,  

{ }0 0 0 0( ) ( ) 1 ( ) �P f f d f d= ; = , = .∫ ∫x x x x x x X  

The optimization problem using Kullback-Leibler distance 

can be expressed as  

0 0

0
0

( )
min ( ) ln

( )
f P

f
f d

f
∈

 
. 

 
∫

x
x x

x
 (13) 

The solution to (13) is  

0

ˆexp( )
( ) ( )

ˆ{exp( )}
f f

E

′
=

′

λ x
x x

λ x
 (14) 

where λ̂  satisfies 0 ( ) .�f d∫ =x x x X  Thus, the estimated 

importance weights in (8) using the optimal density in (14) 

can be written  

0
0 1

( ) ˆ ˆexp( )
( )

i
i i i i

i

f
w d d

f
′= = λ +

x
λ x

x
 (15) 

where 0λ̂  and 1λ̂  satisfy constraint (2) and (4). The shift 

from ( )f x  to 0 ( )f x  in (14) is called exponential tilting. 

Thus, an estimator using the weight (15) satisfying the cali-

bration constraints (2) and (4) can be called an exponential 

tilting (ET) calibration estimator. That is, we define the ET 

calibration estimator as  

ET 0 1
ˆ ˆˆ exp( )i i i

i A

Y d y
∈

′= λ + ,∑ λ x  (16) 

where 0λ̂  and 1λ̂  satisfy constraint (2) and (4). Estimators 

based on exponential tilting have been used in various 

contexts. For examples, see Efron (1981), Kitamura and 

Stutzer (1997), and Imbens (2002). When �  is known, 

Folsom (1991) and Deville, Särndal and Sautory (1993) de-

veloped the estimator (16) using a very different approach.  

To compute 0λ  and 1λ  in (16), because of the cali-

bration constraints (2) and (4), we need to solve the follow-

ing estimating equations:  

0 0 1
ˆ ˆ( ) exp( ) 0i i

i A

U d �
∈

′≡ λ + − =∑λ λ x  (17) 

1 0 1
ˆ ( ) exp( )i i i

i A

d
∈

′≡ λ + − = ,∑U λ λ x x X 0  (18) 

where 0 1( ).′ ′= λ ,λ λ  Writing 0 1
ˆ ˆ ˆ( , ),U′ ′=U U  we can use 

the Newton-type algorithm of the form  

1

( 1) ( ) ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ( ) ( )t t t t

−

+

∂ = −  ′∂ 
λ λ U λ U λ

λ
 

and the solution can be written 

{ }
1( 1) 1( )

1
2

( )( ) ( )

ˆ ˆ

( )

t t

i w ti t i t i
i A i A

w w

+

−⊗
 
 
 ∈ ∈ 

=

−+ − ,∑ ∑

λ λ

x X X x  (19) 



148 Kim: Calibration estimation using exponential tilting in sample surveys 

 

 

Statistics Canada, Catalogue No. 12-001-X 

where ( ) 0( ) 1( )
ˆ ˆexp( )i t i t t iw d ′= λ + λ x  and ( ) ( )i Aw t i t iw∈∑= /X x  

( ),i A i tw∈∑  with the initial values 1(0)
ˆ .=λ 0  Once 1( )

ˆ
tλ  is 

computed by (19), 0( )
ˆ

tλ  is computed by  

0( )

1( )

ˆ
ˆexp( )

ˆexp( )
t

i t ii A

�

d
∈

λ = .
′∑ λ x

 (20) 

Note that, (0)
ˆ ˆ

i i dw d � �= /  since 1(0)
ˆ .=λ 0  Because ˆ ( )U λ  

is twice continuously differentiable and convex in ,λ  the 

sequence ( )
ˆ

tλ  always converges if the solution to ˆ ( ) =U λ 0  

exists (Givens and Hoeting 2005). The convergence rate is 

quadratic in the sense that 

1( 1) 1 1( ) 1
ˆ ˆ ˆ ˆ

t tC
2

+| − | ≤ | − |λ λ λ λ  

for some constant ,C  where 1 1( )
ˆ ˆlim .t t→∞=λ λ  

By construction, the t -step exponential tilting (ET) esti-

mator, defined by 

ET( ) 0( ) 1( )
ˆ ˆˆ exp( )t i t t i i

i A

Y d y
∈

′= λ +∑ λ x  (21) 

where 0( )
ˆ

tλ  and 1( )
ˆ

tλ  are computed by (19) and (20), 

satisfies the calibration constraint (2) for sufficiently large 

t . By the recursive form in (19) with 1(0)
ˆ ,=λ 0  we can 

write 
1

1

( )1( ) ( )
0

ˆ ( ) ( )
t

xx w jt � w j
j

−
−

,
=

= − ,∑ Sλ X Xɶ  (22) 

where ˆ
� �= /X Xɶ  and 

2

( ) ( ) ( )
ˆ( ) .i Axx w j i t i w tw �

⊗
∈, ∑= − /S x X  

Thus, the t -step ET estimator (21) can be written as 

( )

ET( )

( )

ˆ ˆ i i t ii A
t

i i ti A

d g y
Y �

d g

∈

∈

= ,
∑
∑

 

where 

1
( )

( )

0 ( ) ( )

t
i � xx w j

i t

j i w j xx w j

g

 −  , 

 
 = , 

φ ; ,
= .

φ ; ,
∏

x X S

x X S

ɶ

 

The following theorem presents some asymptotic 

properties of the exponential tilting estimator.  
Theorem 2. The t -step ET estimator (21) based on 

equations (19) and (20) satisfies 

1

ET( ) reg
ˆ ˆ( ) (1)t pn� Y Y o

− − = ,  (23) 

for each 1 2 ...,t = , ,  where regŶ  is the regression estimator 

using the regression weight in (5).  
The proof of Theorem 2 is presented in Appendix B. 

Theorem 2 presents the asymptotic equivalence between the 

t -step ET estimator and the regression estimator. Unlike the 

regression estimator, the weights of the ET estimator are 

always positive. For sufficiently large ,t  the t -step ET 

estimator satisfies the calibration constraint (2). Deville and 

Särndal (1992) proved the result (23) for the special case of 

.t →∞   
Remark 1. The one-step ET estimator, defined by ET(1)

ˆ ,Y  

has a closed-form tilting parameter  

{ }
1

2

1(1)

ˆˆ ( ) ( )i i d d � d
i A

d �
−⊗

∈

−= − ,∑ x Xλ X Xɶ  (24) 

where ˆ
� �= /X Xɶ  and .i A i Ad i i id d∈ ∈∑ ∑= /X x  By 

Theorem 2, the one-step ET estimator is asymptotically 

equivalent to the regression estimator, but the calibration 

constraint (2) is not necessarily satisfied. Using Theorem 2 

applied to ix  instead of ,iy  the one-step ET estimator can 

be shown to satisfy the approximate calibration constraint 

described in (7).  
Remark 2. The ET estimator can also be derived by finding 

the weights that minimize 

( ) ln i
i

i A i

w
Q w w

d∈

 
=  

 
∑  (25) 

subject to constraints (2) and (4). The objective function 

(25) is often called the minimum discrimination function. 

The minimum value of ( )Q w  is zero if (4) is the only 

calibration constraint and is monotonically increasing if 

additional calibration constraints are imposed. 

 
3. Instrumental-variable calibration 

 
We consider some extension of the proposed method in 

Section 2 to a more general class of ET calibration estimator 

using instrumental-variables. Use of instrumental-variable 

in the calibration estimation has been discussed in Estevao 

and Särndal (2000) and Kott (2003) in some limited 

simulations. Let ( )i i=z z x  be an instrumental-variable 

derived from ,xi  where the function ( )⋅z  is to be 

determined. The instrumental-variable exponential tilting 

(IVET) estimator using the instrumental variable iz  can be 

defined as 

IVET 0 1
ˆ ˆˆ exp( )i i i i i

i A i A

Y w y d y
∈ ∈

′= = λ + ,∑ ∑ λ z  (26) 

where 0λ̂  and 1λ̂  are computed from (2) and (4). Note that 

the IVET estimator (26) is a class of estimators indexed by 

.iz  The instrumental-variable approach defined in (26) 

provides more flexibility in creating the ET estimator. The 

choice of i i=z x  leads to the standard ET estimator in (16) 

but some transformation ( )i i=z z x  can make the resulting 

ET estimator in (26) more attractive in practice. The 

solution to the calibration equations can be obtained 

iteratively by 

{ }
1

( ) ( ) ( )
1( 1) 1( )

( )

( ) ( )ˆ ˆ i t i w t i w t
t t

i A

i t i

i A

w

w

−

+
∈

 
 
 

∈ 

′− −= +

− ,

∑

∑

x X z Zλ λ

X x  (27)

 

where ( ) 0( ) 1( )
ˆ ˆexp( )i t i t t iw d ′= λ + λ z  and ( ) ( )i Aw t i t iw∈∑= /Z z  

( ) ,i A i tw∈∑  with equation (20) unchanged and 1(0)
ˆ .=λ 0  
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The IVET estimator (26) is useful in creating the final 

weights that have less extreme values. Since the final weight 

in (26) is a function of ,iz  we can make i i ig w d= /  

bounded by making iz  bounded. To create bounded ,iz  we 

can use a trimmed version of ,ix  noted by 1( ,i iz=z  

2, ..., ),i ipz z  where 

if

if

if

ij ij j j j

ij j j j ij j j j

j j j ij j j j

x x x C S

z x C S x x C S

x C S x x C S

 | − | ≤


= + > +
 − < − ,

 (28) 

1 ,i Aj i ijx � d x−
∈∑= 2 1 2( ) ,i Aj i ij jS � d x x−

∈∑= −  and jC  is 

a threshold for detecting outliers, for example, jC = 3. Thus, 
the IVET estimator using the instrumental-variable obtained 

by trimming ix  can be used as an alternative approach to 

weight trimming. 

Instead of using the trimmed instrumental variable iz  in 

(28), we can consider the following instrumental variable 

i i i= Φz x  

for some symmetric matrix iΦ  such that iz  is bounded. 

Some suitable choice of iΦ  can also improve the efficiency 

of the resulting IVET estimator. To see this, using the same 

argument from Theorem 2, the instrumental-variable ET 

estimator (26) using equations (20) and (27) is asymptotically 

equivalent to 

IV, reg
ˆ ˆ( )d d zY Y ′= + −X X Bɶ ɶ  (29) 

where 

ˆ
ˆ ˆ( , ) ( , )

ˆd d d d

d

�
Y Y

�

 
′ ′=   

 
X Xɶ ɶ  

and 

{ }
1

( ) ( )ˆ ( )i i d i d
z i i d i

i A
i A

d d y
−

∈ ∈

′− −= − .∑ ∑z Z x XB z Z  (30) 

The estimator (29) takes the form of a regression estimator 

and is called the instrumental-variable regression estimator. 

Thus, under the choice of ,i i i= Φz x  the instrumental-

variable regression estimator can be written as (29) with 

1

ˆ ( ) ( ) ( )z i i d i i d i i d i i

i A i A

d d y

−

∈ ∈

 
′= − Φ − − Φ 

 
∑ ∑B x X x X x X  

and its variance is minimized for 1

i iV −Φ =  where iV  is the 

model-variance of iy  given ix  (Fuller 2009). The model-

variance is the variance under the working superpopulation 

model for the regression of iy  on .ix  Thus, instrumental-

variable can be used to improve the efficiency of the 

resulting calibration estimator, in addition to avoid extreme 

final weights. Furthermore, the optimal instrumental-

variable can be trimmed as in (28) to make the final 

weightsbounded. Further investigation of the optimal choice 

of Φ  is beyond the scope of this paper and will be a topic 
of future research.  

Remark 3. Deville and Särndal (1992) also considered 

range-restricted calibration weights of the form 

ˆ( 1) (1 )exp( )ˆ( )
ˆ( 1) (1 )exp( )

i
i i i i

i

L U U L K
w d g d

U L K

′− + −
= = ,

′− + −

λ x
λ

λ x
 (31) 

where ( ) {(1 )( 1)},K U L L U= − / − −  for some L  and U  

such that 0 1 .L U< < <  If calibration constraints (2) and 

(4) are to be satisfied, then we can use 0 1
ˆ ˆ

i
′λ + λ x  instead of 

ˆ
i

′λ x  in (31). The resulting calibration estimator is 

asymptotically equivalent to the regression estimator using 

the weights in (5) while the IVET estimator is asymptotically 

equivalent to the instrumental-variable regression estimator 

(29). Computation for obtaining λ̂  is somewhat compli-

cated because ( )ig∂ /∂λ λ  is not easy to evaluate in (31). In 

the IVET estimator, the computation, given by (27), is 

straightforward.  
To compare the proposed weight with existing methods, 

we consider an artificial example of a simple random 

sample with size 5n =  where ,kx k= 1, 2, ..., 5.k =  Cal-

culations are for three population means of ;x �X = 3, 

�X = 4.5, and �X = 6. Table 1 presents the resulting 
weights for the regression estimator, the empirical like-

lihood (EL) estimator, the t -step ET estimator (16) with 

1t =  and 10,t =  and the t -step instrumental variable 

exponential tilting (IVET) estimator (26) with 1t =  and 

10.t =  For the IVET estimator, the instrumental variable iz  

is created by 

1.5 if 1 5

if (1.5, 4.5)

4.5 if 4 5

i

i i i

i

x

z x x

x

≤ .


= ∈
 ≥ . .

 

The last column of Table 1 presents the estimated mean of 

X  using the respective calibration weights. All the weights 

are equal to 1 n/ = 0.2 for �X = 3. The regression estimator 
is linearly increasing in ix  but has negative weights for the 

population with �X = 4.5 and �X = 6. For the population 
where �X = 6, the weights could not be computed for the 
EL method because �X  is outside the range of the sample 

ix ’s. In this extreme case of �X = 6, the ET method 
provides nonnegative weights by sacrificing the calibration 

constraint and the EL estimator has more extreme weights 

than the ET estimator or IVET estimator in the sense that 

the weight for k = 5 is the largest among the estimators 
considered. The weight for the one-step ET estimator is 

close to that of the regression estimator for large ix  but it is 

close to that of EL estimator for small .ix  The 10-step ET 

estimators has better calibration properties in the sense of 

smaller value of squared error, 
25

1 ,( )k k k �w x X=∑ −  than the 

one-step ET estimator. The ET estimator and the IVET 

estimator provide almost the same estimates of �X  for both 

,t  but the IVET estimator produces less extreme weights 

than the ET estimator. 
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Table 1 
An example of calibration weights with a sample of size 5n ====  
 

  ix    

Method  �X   1  2  3  4  5  ˆ
�X    

Reg.  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  -0.100  0.050  0.200  0.035  0.500  4.5   
6.0  -0.400  -0.100  0.200  0.500  0.800  6.0   

EL  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.033  0.043  0.063  0.115  0.746  4.5  
6.0  N/A  N/A  N/A  N/A  N/A  N/A   

ET (t = 1)  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.027  0.057  0.100  0.255 0.540  4.2   
6.0  0.002  0.009  0.039  0.173  0.777  4.7   

ET (t = 10)  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.009  0.027  0.078  0.227 0.659  4.5   
6.0  0.000  0.000  0.000  0.001  0.999  5.0   

IVET (t = 1)  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.030  0.047  0.121  0.309  0.493  4.2   
6.0  0.003  0.006  0.041  0.267  0.683  4.6   

IVET (t = 10)  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.007  0.015  0.066  0.294  0.618  4.5   
6.0  0.000  0.000  0.000  0.087  0.913  4.9   

 

Reg., Regression estimator; EL, empirical likelihood; ET, exponential tilting; IVET, instrumental variable exponential tilting; N/A, Not 
applicable. 

 

4. Variance estimation  
We now discuss variance estimation of the ET calibra-

tion estimators of Sections 2 and 3. Because the estimated 

parameter 0 1
ˆ ˆ( , )′λ λ  in the ET calibration estimator (16) has 

some sampling variability, variance estimation method 

should take into account of this sampling variability of these 

estimated parameters. In this case, variance estimation can 

be often obtained by a linearization method or by a 

replication method (Wolter 2007). For the discussion of the 

linearization method, let the variance of the HT estimator 

(1) be consistently estimated by 

ˆ ˆ( )d ij i j
i A j A

V Y y y
∈ ∈

= Ω .∑∑  (32) 

The linearization variance estimator for the ET estimator 

can be obtained by the linearization variance formula for the 

regression estimator, as in Deville and Särndal (1992), using 

the asymptotic equivalence between the ET calibration 

estimator andthe regression estimator, as shown in Theorem 

2. Specifically, if the population size �  is known, a 

linearization variance estimator of the IVET estimator in 

(26) can be written as 

IVET
ˆ ˆ ˆ ˆ( ) ij i j i j

i A j A

V Y g g e e
∈ ∈

= Ω∑∑  (33) 

where ijΩ  are the coefficients of the variance estimator in 

(32), i i ig w d= /  is the weight adjustment factor, and 
ˆˆ ( ) ,i i d i d ze y Y ′= − − −x X B  where ˆ zB  is defined in (30). 

The choice of i i=z x  in (33) gives the linearized variance 

estimator for the ET estimator in (16). Consistency of the 

variance estimator (33) can be found in Kim and Park 

(2010). 

For the one-step ET estimator, a replication method can 

be easily implemented. Let the replication variance esti-

mator be of the form 

( ) 2
rep

1

ˆ ˆ ˆ( ) ,
L

k
k d d

k

V c Y Y
=

= −∑  (34) 

where L  is the number of replication, kc  is the replication 

factor associated with replicate ,k ( ) ( )ˆ ,k k
i Ad i iY d y∈∑=  and 

( )k

id  is the thk  replicate of the design weight .id  For 

example, the replication variance estimator (34) includes the 

jackknife and the bootstrap (see Rust and Rao 1996). 

Assume that the replication variance estimator (34) is a 

consistent estimator for the variance of ˆ .dY  The thk  

replicate of the one-step ET estimator can be computed by 

( ) ( ) ( ) ( )

ET(1) 0(1) 1(1)
ˆ ˆˆ exp( )

k k k k

i i i

i A

Y d y
′

∈

= λ +∑ λ z  (35) 

where 
1

( ) ( ) ( ) ( ) ( ) ( ) ( )

1(1)

( )
( ) ( )

( )

( ) ( )

( )

ˆ ˆ ˆ( ) ( ) ( )

ˆif
ˆ

ˆ ˆ ˆif ,

( , )
( )

k k k k k k k

i i d i d d d
i A

k
k k

d i d

i A

k

i i ik k i A
d d k

ii A

d � �

� � �
�

� d � �

d

d

−

∈

∈

∈

∈

 
′= − − / − , 

 

 =
=  = =

, = ,

∑

∑

∑
∑

λ x X z Z X X

x z
X Z

and 

( )

0(1) ( ) ( )

1(1)

ˆ
ˆexp( )

ˆexp( )z λ

k

k k

ii A

�

d
∈

λ = .
′∑

 

The replication variance estimator defined by 
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( ) 2
rep ET ET

1

ˆ ˆ ˆ( )
L

k
k

k

V c Y Y
=

= − ,∑  (36) 

where ( )

ET
ˆ kY  is defined in (35), can be used to estimate the 

variance of the ET calibration estimator in (26). 

 
5. Simulation study  

To study the finite sample performance of the proposed 

estimators, we performed a limited simulation study. In the 

simulation, two finite populations of size � = 10,000 were 
independently generated. In population A, the finite popula-

tion is generated from an infinite population specified by 

exp(1) 1 3 , (0 1)i i i i i i ix y x x e e x �+ ; = + + | , ;∼ ∼  
2( , ) (1) .i i i iz x y y| χ + | |∼  In population B, ( , , )i i ix e z  

are the same as in population A but (5 1 8)iy = − / +  
21 8( 2) .i ix e/ − +  The auxiliary variable, ,ix  is used for 

calibration and iz  is the measure of size used for unequal 

probability sampling. From both of the finite populations 

generated, M = 10,000 Monte Carlo samples of size n  

were independently generated under two sampling schemes 

described below. The parameter of interest is the population 

mean of y  and we assume that the population size �  is 

known. 

The simulation setup can be described as a 2 2 8 2× × ×  

factorial design with four factors. The factors are (a) two 

types of finite populations, (b) Sampling mechanism: simple 

random sampling and probability proportional to size ( )iz  

sampling with replacement, (c) Calibration method: no 

calibration, the regression estimator, the EL method in (6) 

with t = 1 and t = 10, the t -step ET method in (21) with 

t = 1 and t = 10, and the IVET method (26) with t = 1 and 
t = 10, (d) sample size: n = 100 and n = 200. Since �  is 

assumed to be known, the calibration estimators are 

computed to satisfy 1 (1, ) (1, )n
i i i �w x X=∑ =  in both 

populations. For the IVET method (26), the instrumental 

variable iz  is created using the definitions in (28) with 

threshold 3.C =  

Using the Monte Carlo samples generated as above, the 

biases and the mean squared errors of the eight estimators of 

the population mean of ,y  the variable of interest, were 

computed and are presented in Table 2. The calibration 

estimators are biased but the bias is small if the regression 

model holds or the sample size is large. In population A, the 

linear regression model holds and the regression estimator is 

efficient in terms of mean squared errors. However, the 

regression estimator is not efficient in population B because 

the model used for the regression estimator is not a good fit. 

The seven calibration estimators show similar performances 

for the larger sample size. The 10-step IVET estimator 

performs as well as the regression estimator in population 

A, and it shows slightly better performance than the other 

six calibration estimators. In population B, the 10-step IVET 

estimator performs the best among the calibration estimators 

considered. 

In addition to point estimation, variance estimation was 

also considered. We considered only the variance estimation 

for the t -step ET estimators and IVET estimators. The 

linearization variance estimator in (33) and the replication 

variance estimator in (36) were computed for each estimator 

in each sample. In the replication method, the jackknife 

method was used by deleting one element for each 

replication. The relative biases of the variance estimators 

were computed by dividing the Monte Carlo bias of the 

variance estimator by the Monte Carlo variance. The Monte 

Carlo relative biases of the linearization variance estimators 

and the replication variance estimators are presented in 

Table 3. The theoretical relative bias of the variance esti-

mators is of order (1),o  which is consistent with the 

simulation results in Table 3. The linearization variance 

estimator slightly underestimates the true variance because 

it ignores the second order term in the Taylor linearization. 

The replication variance estimator shows slight positive bias 

in the simulation. The biases of the variance estimators are 

generally smaller in absolute values in population A because 

the linear model holds. In population B, variance estimators 

for the IVET estimator are less biased than those for the ET 

estimator because of less extreme weights used by the IVET 

estimator. 

 
6. Concluding remarks  

We have considered the problem of estimating Y  with 

auxiliary information of the form { ( )} 0E U =X  with some 

known function ( ).U ⋅  The class of the linear estimators of 
the form ˆ i A i iY w y∈∑=  with ˆ{1, ( )} ( , 0)i A i iw U �∈∑ =x  

and 0iw >  is considered. If the density ( )f ;x η  of X  is 

known up to ,∈Ωη  then an efficient estimation can be 

implemented using the estimated importance weight 

0
( )

ˆ( )

i �

i i

i

f x
w d

f x

,;
∝ ,

;

η

η
 

where id  are the initial weights and where 
0 �,η  and η̂  are 

the maximum likelihood estimators of η  based on the 

population and the sample, respectively. If the parametric 

form of ( )f ;x η  is unknown, thenthe exponential tilting 

weights of the form 

( ) exp{ ( )}i iw Uλ ′∝ λ x  

can be used, where λ  is determined to satisfy 

( ) ( ) 0i i

i A

w Uλ
∈

= .∑ x  (37) 
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Table 2 
Monte Carlo Biases and Monte Carlo Mean squared errors of the point estimators for the mean of ,y  based on 10,000 Monte 
Carlo samples 
 

Population Sample  
Size 

Estimator SRS PPS 

Bias MSE Bias MSE  

A 100  No Calibration  0.00  0.02398  0.00  0.02023  
Regression estimator  0.00  0.01261  0.00  0.01289  
EL estimator (t = 1)  0.01  0.01369  0.01  0.01353  
EL estimator (t = 10)  0.00  0.01285  0.00  0.01289  
ET estimator (t = 1)  0.01  0.01334  0.01  0.01353  
ET estimator (t = 10)  0.00  0.01269  0.00  0.01289  
IVET estimator (t = 1)  0.01  0.01309  0.01  0.01330  
IVET estimator (t = 10)  0.00  0.01263  0.00  0.01289  

200  No Calibration  0.00  0.01069  0.00  0.00925  
Regression estimator  0.00  0.00595  0.00  0.00568  
EL estimator (t = 1)  0.01  0.00632  0.01  0.00604  
EL estimator (t = 10)  0.00  0.00597  0.00  0.00568  
ET estimator (t = 1)  0.00  0.00616  0.01  0.00578  
ET estimator (t = 10)  0.00  0.00596  0.00  0.00568  
IVET estimator (t = 1)  0.00  0.00605  0.01  0.00574  
IVET estimator (t = 10)  0.00  0.00591  0.00  0.00567  

B 100  No Calibration  0.00  0.02044  0.00  0.01692  
Regression estimator  -0.01  0.01473  0.00  0.01461  
EL estimator (t = 1)  0.01  0.01652  0.01  0.01516  
EL estimator (t = 10)  0.00  0.01490  0.01  0.01472  
ET estimator (t = 1)  0.00  0.01516  0.01  0.01483  
ET estimator (t = 10)  0.00  0.01470  0.00  0.01459  
IVET estimator (t = 1)  0.00  0.01497  0.00  0.01458  
IVET estimator (t = 10)  0.00  0.01472  0.00  0.01453  

200  No Calibration  0.00  0.00888  0.00  0.00823  
Regression estimator  -0.01  0.00705  0.00  0.00735  
EL estimator (t = 1)  0.01  0.00769  0.01  0.00764  
EL estimator (t = 10)  0.00  0.00715  0.01  0.00745  
ET estimator (t = 1)  0.00  0.00723  0.01  0.00749  
ET estimator (t = 10)  0.00  0.00706  0.01  0.00734  
IVET estimator (t = 1)  0.00  0.00704  0.00  0.00728  
IVET estimator (t = 10)  0.00  0.00699  0.00  0.00725  

 

SRS, simple random sampling; PPS, probability proportional to size sampling; MSE, mean squared error; EL, empirical likelihood; ET, 
exponential tilting; IVET, instrumental-variable exponential tilting.  

 
 
Table 3 
Monte Carlo Relative Biases of the variance estimators, based on 10,000 Monte Carlo samples 
 

Population Sample  

size 

Estimator Linearization Replication 

SRS PPS  SRS  PPS   

A 100  ET (t = 1) -7.02  -2.66  10.65  4.11   

 ET (t = 10) -4.91  -0.80  5.60  0.67   

 IVET (t = 1) -5.28  -3.63  7.67  2.25   

 IVET (t = 10) -4.11  -0.87  4.96  0.41   

200  ET (t = 1) -3.97  -0.19  3.65  0.57   

 ET (t = 10) -2.93  0.87  2.23  -0.35   

 IVET (t = 1) -3.35  -0.10  2.34  0.02   

 IVET (t = 10) -2.72  0.78  1.62  -0.53   

B 100  ET (t = 1) -7.64  -3.01  10.72  4.50   

 ET (t = 10) -5.98  -0.98  7.21  0.74   

 IVET (t = 1) -5.77  -2.31  4.53  -0.10   

 IVET (t = 10) -5.44  -1.86  5.17  -0.51   

200  ET (t = 1) -2.41  -1.01  5.76  2.53   

 ET (t = 10) -1.29  0.18  4.30  1.91   

 IVET (t = 1) -1.39  -0.35  2.09  1.04   

 IVET (t = 10) -1.15  -0.06  2.04  0.99   
 

SRS, simple random sampling; PPS, probability proportional to size sampling; ET, exponential tilting; IVET, instrumental-variable 
exponential tilting.  
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If a solution to (37) exists, it can be expressed as the limit of 

the form 

1
1

( ) ( ) ( )

0

ˆ ˆexp{ ( )}
t

i t s aa s i

s

w U U
−

−

=

′∝ − Σ∏ x  (38) 

where ( ) ( )
ˆ ( ),i As i s iU w U∈∑= x ( ) ( )

ˆ { ( )i Aaa t i t iw U∈∑Σ = −x  
2

( ) ( ) ( ) ( )} , ( )xi A i At t i t i i tU U w U w⊗
∈ ∈∑ ∑= /  with the initial weight 

(0)
ˆ ˆ( ).i i dw d � �= /  If the solution to condition (37) does not 

exist, we can still use the weights in (38), but the equality 

must be relaxed. Instead, approximate equality will be 

satisfied in (37) in the sense that ( ) ( )i A i t iw U∈∑ x  converges 

to zero much faster than (0) ( )i A i iw U∈∑ x  for 1.t ≥  

Approximate equality in (37) is called the approximate 

calibration condition.  

The estimators ( ) ( )
ˆ

i At i t iY w y∈∑=  that use the t -step ET 

weights in (38), including the one-step estimator (1)
ˆ ,Y  are 

asymptotically equivalent to the regression estimator of the 

form 

1

reg (0) (0) (0) (0)
ˆ ˆ ˆ ˆ ˆ ,aa ayY Y U

−′= − Σ Σ  

where (0) (0)
ˆ

i A i iY w y∈∑=  and (0) (0)
ˆ { ( )i Aay i iw U∈∑Σ = −x  

(0)} .iU y  Unlike the regression estimator, the weights of the 

proposed method are always nonnegative. Furthermore, 

using the instrumental variable technique in Section 3, the 

weights are bounded above. Suitable choice of the instru-

mental variable also improves the efficiency of the resulting 

calibration estimator. 

The exponential tilting calibration method is asympto-

tically equivalent to the empirical likelihood calibration 

method but it is more attractive computationally in the sense 

that the partial derivatives are not required in the iterative 

computation. Because the computation is simple, the 

variance of the proposed estimator can be easily estimated 

using a replication method, as discussed in Section 4. 

Further investigation in this direction, including interval 

estimation, can be a topic of future research. 

 
Acknowledgements 

 
The author wishes to thank Minsun Kim for compu-

tational support and two anonymous referees and the 

associated editor for very helpful comments that greatly 

improved the quality of the paper. This research was 

partially supported by a Cooperative Agreement NRCS 68-

3A75-4-122 between the US Department of Agriculture 

Natural Resources Conservation Service and Iowa State 

University. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the 

authors and do not necessarily reflect the views of the 

USDA Natural Resources Conservation Service. 

 

Appendix  
A. Assumptions and proof of Theorem 1  
We first assume the following regularity conditions:  

[A-1] The density ( )f ;x η  is twice differentiable with 

respect to η  for every x  and satisfy 

2 ( )
( )

i j

f
K

∂ ;
≤

′∂η ∂η

x η
x  

for function ( )K x  such that { ( )} ,E K < ∞x  in a 

neighborhood of 
0
.

�,η  

[A-2] The pseudo maximum likelihood estimator η̂  

satisfies 
0

ˆ( ) (1).p�
n O,− =η η  

[A-3] The matrix 
2

0
( ){ }�E

⊗
,ηs  exists and is nonsingular, 

where 
00

( ) ln ( ) .
�i�

f
,η=η, = ∂ ; /∂ |s x η ηη   

To prove Theorem 1, write 

0
( )

( )
( )

i �

i

i

f
g

f

,;
= ,

;

x η
η

x η
 

and ( ) ( )i i iw d g= .η η  The estimated importance weight in 

(8) can be written ˆ( ).i iw w= η  Taking a Taylor expansion 

of 1 ˆ( ) 0i A i i� d−
∈∑ =s η  around 

0 �,η  leads to  

0

00

0

1
( )

1
ˆ( ) ( )

ˆ( ).

i i �
i A

i i ��
i A

p �

d
�

d
�

o

,
∈

,,
∈

,

=

 ∂
+ − ′∂ 

+ | − |

∑

∑

0 s η

s η ηη
η

η η

 

Note that the first term on the right side of 

2

2

( )1 1
( )

( )

( )1
.

( )

i
i i i

i A i A i

i
i

i A i

f
d d

� � f

f
d

� f

∈ ∈

⊗

∈

′∂ ; /∂ ∂∂
=

∂η ;

 ∂ ; /∂
−  

; 

∑ ∑

∑

x η η η
s η

x η

x η η

x η
 (A1)

 

converges to 2
{ }( )f d∫ ′∂ ; / ∂ ∂x η η η x  which equals to zero 

by the dominated convergence theorem with [A1]. The 

second term converges to 
2

0
( ){ }.�E

⊗
,ηs  Thus, by [A-2], 

1 2

0 0

1
( ) ( )d i i p�

i A

d O n
�

− /
,

∈

≡ =∑S s η  (A2) 

and 

1 1 2

00
ˆˆ ( ).ss d p�

o n
− − /− = +η Σ Sη  (A3) 
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Now, taking a Taylor expansion of 1 1ˆ
w� Y �− −=  

ˆ( )i A i iw y∈∑ η  around 
0 �,=η η  leads to  

0 0 0

ˆ ˆ

1
ˆ ˆ( ) ( ) ( )η ηη η η

η

w d

i i p� � �
i A

Y Y

� �

w y o
�

 
 
 , , , 

∈ 

′

=

∂
+ − + | − |

∂
∑

 

(A4)

 

by the uniform continuity of { ( ) }i A i iw y∈∑∂ / ∂η η  around 

0
.

�,η  Now, using 

( )
( ) ( )

( ) ( ) ( ),
( )

i i
i i i

i i

f f
g g s

f f

; ∂ ; / ∂∂
= − × = − ×

∂ ; ;

x η x η η
η η η

η x η x η
 

where ( ) ln ( ) ,i if= ∂ ; / ∂s η x η η  we have 

( ) ( ) ( ) .i i i i i

i A i A

w y w y
∈ ∈

∂
= −

∂
∑ ∑η η s η

η
 

Using 
0

( )i i�
w d, =η  and writing 00

( ) ,i i�, =s sη  we have, 

by (A2), 

00

1 2

1 1
( )

ˆ ( ).

i i i i i�
i A i A

sy p

w y d y
� �

O n

,
∈ ∈

− /

∂
= −

∂

= − +

∑ ∑ sη
η

Σ  (A5)

 

Using (A5) and (A3) in (A4), result (9) is obtained. 
 
B. Proof of Theorem 2  
Write 

1

1

1

( )
ˆ ( )

( )

i i ii A

i ii A

d m y

d m

∈

∈

θ = ,
∑
∑

λ
λ

λ
 

where 1 1( ) exp( ).i im ′=λ λ x  Note that ET( ) 1( )
ˆ ˆˆ ˆ ( )t tY �= θ λ  

and 1( )
ˆ

tλ  is defined in (19). By a Taylor expansion of 
1

1( ) ET( )
ˆ ˆ ˆ ˆ( )t t� Y

−θ =λ  around 1 =λ 0  and by the continuity of 

the partial derivatives of 1
ˆ ( ),θ λ  we have 

1( ) 1( ) 1( )
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t p to′θ = θ + θ − + | − | ,λ 0 0 λ 0 λ 0ɺ  (B1) 

where ˆ( ) ( ) .θ = ∂θ / ∂λ λ λɺ  Because 1( )
ˆ

tλ  converges in qua-

dratic order and the one-step estimator satisfies 1(1)λ̂ =  
1 2( ),pO n− /  equation (22) can be written as 

1

21 1
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1 2
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t d i di d
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where 1 1 1( ) ( ) .i im m= ∂ / ∂λ λ λɺ  Using ( ) 1im =0  and 
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Therefore, inserting (B2) and (B3) into (B1), we have 
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which proves (23). 
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