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Abstract 

This article develops computational tools, called indicators, for judging the effectiveness of the auxiliary information used to 

control nonresponse bias in survey estimates, obtained in this article by calibration. This work is motivated by the survey 

environment in a number of countries, notably in northern Europe, where many potential auxiliary variables are derived 

from reliable administrative registers for household and individuals. Many auxiliary vectors can be composed. There is a 

need to compare these vectors to assess their potential for reducing bias. The indicators in this article are designed to meet 

that need. They are used in surveys at Statistics Sweden. General survey conditions are considered: There is probability 

sampling from the finite population, by an arbitrary sampling design; nonresponse occurs. The probability of inclusion in 

the sample is known for each population unit; the probability of response is unknown, causing bias. The study variable (the 

y-variable) is observed for the set of respondents only. No matter what auxiliary vector is used in a calibration estimator (or 

in any other estimation method), a residual bias will always remain. The choice of a “best possible” auxiliary vector is 

guided by the indicators proposed in the article. Their background and computational features are described in the early 

sections of the article. Their theoretical background is explained. The concluding sections are devoted to empirical studies. 

One of these illustrates the selection of auxiliary variables in a survey at Statistics Sweden. A second empirical illustration is 

a simulation with a constructed finite population; a number of potential auxiliary vectors are ranked in order of preference 

with the aid of the indicators. 
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1. Introduction 
 

Large nonresponse is typical of many surveys today. This 

creates a need for techniques for reducing as much as 

possible the nonresponse bias in the estimates. Powerful 

auxiliary information is needed. Administrative data files 

are a source of such information. The Scandinavian coun-

tries and some other European countries, notably the 

Netherlands, are in an advantageous position. Many poten-

tial auxiliary variables (called x-variables) can be taken from 

high quality administrative registers where auxiliary vari-

able values are specified for the entire population. Variables 

measuring aspects of the data collection is another useful 

type of auxiliary data. Effective action can be taken to 

control nonresponse bias. Beyond sampling design, design 

for estimation becomes, in these countries, an important 

component of the total design. Statistics Sweden has 

devoted considerable recourses to the development of 

techniques for selecting the best auxiliary variables. 

Many articles discuss weighting in surveys with non-

response and the selection of “best auxiliary variables”. 

Examples include Eltinge and Yansaneh (1997), Kalton and 

Flores-Cervantes (2003), and Thomsen, Kleven, Wang and 

Zhang (2006). Weighting in panel surveys with attrition 

receives special attention in, for example, Rizzo, Kalton and 

Brick (1996), who suggest that “the choice of auxiliary 

variables is an important one, and probably more important 

than the choice of the weighting methodology”. The review 

by Kalton and Flores-Cervantes (2003) provides many 

references to earlier work. As in this paper, a calibration 

approach to nonresponse weighting is favoured in Deville 

(2002) and Kott (2006).  

Some earlier methods are special cases of the outlook in 

this article, which is based on a systematic use of auxiliary 

information by calibration at two levels. Recently the search 

for efficient weighting has emphasized two directions: (i) to 

provide a more general setting than the popular but limited 

cell weighting techniques, and (ii) to quantify the search for 

auxiliary variables with the aid of computable indicators. 

Särndal and Lundström (2005, 2008) propose such indica-

tors, while Schouten (2007) uses a different perspective to 

motivate an indicator. An article of related interest is 

Schouten, Cobben and Bethlehem (2009). 

This content of this article has four parts: The general 

background for estimation with nonresponse is stated in 

Sections 2 to 4. Indicators for preference ranking of x-

vectors are presented in Sections 5 and 6, and the 

computational aspects are discussed. The linear algebra 

derivations behind the indicators is presented in Sections 7 

and 8. The two concluding Sections 9 and 10 present two 

empirical illustrations. The first (Section 9) uses real data 

from a large survey at Statistics Sweden. The second 

(Section 10) reports a simulation carried out on a con-

structed finite population. 
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2. Calibration estimators for a survey  

       with nonresponse 
 

A probability sample s is drawn from the population 

{1, 2,..., , ..., }.U k �=  The sampling design gives unit k 

the known inclusion probability π Pr( ) 0k k s= ∈ >  and the 

known design weight 1/π .k kd =  Nonresponse occurs. The 

response set r is a subset of s; how it was generated is 

unknown. We assume ,r s U⊂ ⊂  and r non-empty. The 

(design weighted) response rate is 

kr

ks

d
P

d
=
∑
∑

 (2.1) 

(if A is a set of units, ,A U⊆  a sum k A∈∑  will be written 

as ).A∑  Ordinarily a survey has many study variables. A 

typical one, whether continuous or categorical, is denoted y. 

Its value for unit k is ,ky  recorded for ,k r∈  not available 

for .k U r∈ −  We seek to estimate the population y-total, 

.U kY y∑=  Many parameters of interest in the finite 

population are functions of several totals, but we can focus 

on one such total. 

The auxiliary information is of two kinds. To these 

correspond two vector types, k

∗x  and .kx�  Population 

auxiliary information is transmitted by ,k

∗x  a vector value 

known for every .k U∈  Thus U k

∗∑ x  is a known population 

total. Alternatively, we allow that U k

∗∑ x  is imported from 

an exterior source and that k

∗x  is a known (observed) vector 

value for every .k s∈  Sample auxiliary information is 

transmitted by ,kx�  a vector value known (observed) for 

every ;k s∈  the total U k∑ x�  is unknown but is estimated 

without bias by .s k kd∑ x�  The auxiliary vector value 

combining the two types is denoted .kx  This vector and the 

associated information is 

; .
kUk

k

k k ks
d

∗∗   
 = =      

∑
∑

xx
x X

x x
� �

 (2.2) 

Tied to the thk  unit is the vector ( , , π ).k k ky x  Here, πk  is 

known for all , kk U y∈  for all ,k r∈  the component k

∗
x  of 

kx  carries population information, the component kx
�  of kx  

carries sample information. 

Many x-vectors can be formed with the aid of variables 

from administrative registers, survey process data or other 

sources. Among all the vectors at our disposal, we wish to 

identify the one most likely to reduce the nonresponse bias, 

if not to zero, so at least to a near-zero value. 

We consider vectors having the property that there exists 

a constant non-null vector µµµµ  such that 

1 for allk k U′ = ∈µ x  (2.3) 

“Constant” means that ≠µ 0µ 0µ 0µ 0  does not depend on k, nor on s 

or r. Condition (2.3) simplifies the mathematical derivations 

and does not severely restrict .kx  Most x-vectors useful in 

practice are in fact covered. Examples include: (1) 

(1, ) ,k kx ′=x  where kx  is the value for unit k of a 

continuous auxiliary variable x; (2) the vector representing a 

categorical x-variable with J mutually exclusive and 

exhaustive classes, 1( , ..., , ..., ) ,k k k jk Jk
′= = γ γ γx γ  where 

1jkγ =  if k belongs to group j, and 0jkγ =  if not, 

1, 2, , ;j J= …  (3) the vector kx  used to codify two 

categorical variables, the dimension of kx  being 1J +  

2 1,J −  where 1J  and 2J  are the respective number of 

classes, and the ‘minus-one’ is to avoid a singularity in the 

computation of weights calibrated to the two arrays of 

marginal counts; (4) the extension of (3) to more than two 

categorical variables. Vectors of the type (3) and (4) are 

especially important in statistics production in statistical 

agencies (the choice ,k kx=x  not covered by (2.3), leads to 

the nonresponse ratio estimator, known to be a usually poor 

choice for controlling nonresponse bias, compared with 

(1, ) ,k kx ′=x  so excluding the ratio estimator is no great 

loss). 

The calibration estimator of ,U kY y∑=  computed on the 

data ky  for ,k r∈  is 

CAL
ˆ

k kr
Y w y=∑  (2.4) 

with 1{1 ( ) ( ) }.r rk k k k k k k kw d d d −∑ ∑′ ′= + −X x x x x  The 

weights kw  are calibrated on both kinds of information: 

,r k kw∑ =x X  which implies r Uk k kw ∗ ∗∑ ∑=x x  and 

.r sk k k kw d∑ ∑=x x� �  We assume throughout that the 

symmetric matrix r k k kd∑ ′x x  is nonsingular (for compu-

tational reasons, it is prudent to impose a stronger 

requirement: The matrix should not be ill-conditioned, or 

near-singular). In view of (2.3), we have CAL
ˆ

r k kY w y∑=  

with weights k k kw d v=  where 1( ) .rk k k k kv d −∑′ ′= X x x x  

The weights satisfy ,r k k kd v∑ =x X  where X has one or 

both of the components in (2.2). 

A closely related calibration estimator is based on the 

same two-tiered vector kx  but with calibration only to the 

sample level: 

CAL k k kr
Y d m y=∑ɶ  (2.5) 

where  

( ) ( ) 1

.k k k k k k ks r
m d d

−′ ′= ∑ ∑x x x x  (2.6) 

The calibration equation then reads r k k kd m∑ =x  

,s k kd∑ x  where kx  has the two components as in (2.2). The 

auxiliary vector kx  serves two purposes: To achieve a low 

variance and a low nonresponse bias. From the variance 

perspective alone, CALŶ  is usually preferred to CALYɶ  because 

the former profits from the input of a known population 

total .U k

∗∑ x  But this paper studies the bias. From that 

perspective, we are virtually indifferent between CALŶ  and 



Survey Methodology, December 2010 133 
 

 

Statistics Canada, Catalogue No. 12-001-X 

CAL,Yɶ  and we focus on the latter. Under liberal conditions, 

the difference between the bias of 1

CAL
ˆ� Y−  and that of 

1

CAL� Y− ɶ  is of order 1,n−  thereby of little practical 

consequence even for modest sample sizes n, as discussed 

for example in Särndal and Lundström (2005). 

An alternative expression for (2.5) is 

( )CAL k ks
Y d

′= ∑ xx Bɶ  (2.7) 

where 

( ) 1

| ;r d k k k k k kr r
d d y

−
′= = ∑ ∑x xB B x x x  (2.8) 

is the regression coefficient vector arising from the ( kd -

weighted) least squares fit based on the data ( , )k ky x  for 

.k r∈  

A remark on the notation: When needed for emphasis, a 

symbol has two indices separated by a semicolon. The first 

shows the set of units over which the quantity is computed 

and the second indicates the weighting, as in | ;r dxB  given 

by (2.8), and in weighted means such as ;r dy =  

/ .r rk k kd y d∑ ∑  If the weighting is uniform, the second of 

the two indices is dropped as in (1/ ) .UU ky � y∑=  

 
3. Points of reference 

 
The most primitive choice of vector is the constant one, 

1k =x  for all k. Although inefficient for reducing 

nonresponse bias, it serves as a benchmark. Then 1/km P=  

for all k, where P is the survey response rate (2.1), and CALYɶ  

is the expansion estimator: 

EXP ;
ˆ(1/ ) k k r dr

Y P d y � y= =∑ɶ  (3.1) 

where ˆ
s k� d∑=  is design unbiased for the population size 

�. The bias of  EXPYɶ  can be large.  

At the opposite end of the bias spectrum are the 

unbiased, or nearly unbiased, estimators obtainable under 

full response, when .r s=  They are hypothetical, not 

computable in the presence of nonresponse. Among these 

are the GREG estimator with weights calibrated to the 

known population total ,U k

∗∑ x  

FUL
ˆ

k k ks
Y d g y=∑  

where 11 ( ) ( ) ,U s sk k k k k k k kg d d
′∗ ∗ ∗ ∗ − ∗∑ ∑ ∑′= + −x x x x x  and 

FUL refers to full response. The unbiased HT estimator 

(obtained when 1kg =  for all k) is 

FUL ;
ˆ .k k s ds

Y d y � y= =∑ɶ  (3.2) 

It disregards the information ,U k

∗∑ x  which may be 

important for variance reduction. But for the study of bias in 

this paper, we are indifferent between FULŶ  and FUL.Yɶ  The 

difference in bias between the two is of little consequence, 

even for modest sample sizes. We can focus on FUL .Yɶ  

 
4. The bias ratio 

 
For a given outcome (s, r), consider the estimates 

CAL,Yɶ EXPYɶ  and FULYɶ  given by (2.5), (3.1) and (3.2) as three 

points on a horizontal axis. Both EXPYɶ  (generated by the 

primitive 1)k =x  and CALYɶ  (generated by a better x-vector) 

are computable, but biased. As the x-vector improves, CALYɶ  

will distance itself from EXPYɶ  and may come near the 

unbiased but unrealized ideal FUL .Yɶ  We consider therefore 

three deviations: EXP FUL EXP CAL,Y Y Y Y− −ɶ ɶ ɶ ɶ  and CAL FUL,Y Y−ɶ ɶ  

of which only the middle one is computable. The unknown 

“deviation total”, EXP FUL,Y Y−ɶ ɶ  is decomposable as 

“deviation accounted for” (by the chosen x-vector) plus 

“deviation remaining”: 

EXP FUL EXP CAL CAL FUL( ) ( ).Y Y Y Y Y Y− = − + −ɶ ɶ ɶ ɶ ɶ ɶ  (4.1) 

If computable, CAL FULY Y−ɶ ɶ  would be of particular 

interest, as an estimate of the bias remaining in CALYɶ  (and in 

CAL
ˆ ),Y  whereas EXP FULY Y−ɶ ɶ  would estimate the usually 

much larger bias of the benchmark, EXP .Yɶ  The bias ratio for 

a given outcome (s, r) sets the estimated bias of CALYɶ  in 

relation to that of EXP
ˆ :Y   

CAL FUL

EXP FUL

bias ratio .
Y Y

Y Y

−
=

−

ɶ ɶ

ɶ ɶ
 (4.2) 

We scale the three deviations by the estimated population 

size ˆ
s k� d∑=  and use the notation ,T A R∆ = ∆ + ∆  where 

T suggests “total”, A “accounted for” and R “remaining”. 

Noting that ( ) 0,r k k kd y∑ ′− =xx B  we have  

1

EXP FUL ; ;

1

CAL FUL ; ;

1

EXP CAL ; ;

ˆ ( ) ;

ˆ ( )

ˆ ( ) ( )

T r d s d

R s d s d

A r d s d

� Y Y y y

� Y Y y

� Y Y

−

−

−

∆ = − = −

′∆ = − = −

′∆ = − = −

x

x

x B

x x B

ɶ ɶ

ɶ ɶ

ɶ ɶ

 

where ; ;/ , / ,s s r rs d k k k r d k k kd d d d∑ ∑ ∑ ∑= =x x x x  and 

;s dy  and ;r dy  are the analogously defined means for the y-

variable. Then (4.2) takes the form 

; ;

; ;

( )
bias ratio 1 1 .

r d s dR A

T T r d s dy y

′−∆ ∆
= = − = −
∆ ∆ −

xx x B
 (4.3) 

We have bias ratio = 1 for the primitive vector 1.k =x  

Ideally, we want the auxiliary vector kx  for CALYɶ  to give 

bias ratio 0.≈  For a given outcome (s, r) and a given y-

variable, we take steps in that direction by finding an x-

vector that makes the computable numerator A∆ =  

; ;( )r d s d
′− xx x B  large (in absolute value). This is within our 
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reach. But whatever our final choice of x-vector, the 

remaining bias of CALYɶ  is unknown. Even with the best 

available x-vector, considerable bias may remain. We have 

then attempted to do the best possible, under perhaps 

unfavourable circumstances. 

To summarize, for a given outcome (s, r) and a given y-

variable, the three deviations have the following features: (i) 

; ;T r d s dy y∆ = −  is an unknown constant value, depending 

on both unobserved and observed y-values; (ii) A∆  is 

computable; it depends on ky  for k r∈  and on the values 

kx  for k s∈  of the chosen x-vector; (iii) R∆  cannot be 

computed; it depends on unobserved values ,ky  and on kx  

for .k s∈   

To follow the progression of the estimates when the x-

vector improves, consider a given outcome (s, r). The 

deviation T∆  can have either sign. Suppose > 0,T∆  

indicating a positive bias in EXP,Yɶ  as when large units 

respond with greater propensity than small ones. When the 

x-vector in CALYɶ  becomes progressively more powerful by 

the inclusion of more and more x-variables, A∆  tends to 

increase away from zero and will, ideally, come near ,T∆  

indicating a desired closeness of CALYɶ  to the unbiased FUL .Yɶ  

As long as the x-vector remains relatively weak, A T∆ < ∆  is 

likely to hold. When the x-vector becomes increasingly 

powerful, A∆  moves closer to the fixed ,T∆  a sign of bias 

nearing zero. It could even “move beyond”, so that an 

“over-adjustment”, > ,A T∆ ∆  has occurred. This not a 

detrimental feature; although R T A∆ = ∆ − ∆  is then 

negative, it is ordinarily small (the analyst can only work 

with ;A∆  it is unknown to him/her whether A∆  and T∆  are 

close, or whether the over-adjustment >A T∆ ∆  has 

occurred). These points are illustrated by the simulation in 

Section 10. If 0,T∆ <  these tendencies are reversed. 

The form of (4.3) may suggest an argument which can 

however be misleading: Suppose that a vector kx  has been 

suggested, containing variables thought to be effective, 

along with an assumption that ,k k ky ′= + εβ x  where kε  is 

a small residual. Then ; ; ; ;( )r d s d r d s dy y ′− ≈ − ≈xx x B  

; ;( ) ,r d s d
′−x x β  and consequently bias ratio 0,≈  sending a 

message, often false, that the postulated vector kx  is 

efficient. One weakness of the argument stems from the 

well-known fact that nonresponse (unless completely 

random) will cause xB  to be biased for a regression vector 

that describes the y-to-x relationship in the population. 

Further comments on this issue are given in Section 8. 

Finally, there is the practical consideration that a typical 

survey has many y-variables. To every y-variable corre-

sponds a calibration estimator, and a bias ratio given by 

(4.3). The ideal x-vector is one that would be capable of 

controlling bias in all those estimators. This is usually not 

possible without compromise, as we discuss later. 

 

5. Expressing the deviation accounted for 
 

The responding unit k receives the weight k kd m  in the 

estimator CAL .r k k kY d m y∑=ɶ  The nonresponse adjustment 

factor 1( ) ( )s rk k k k k k km d d −∑ ∑′ ′= x x x x  expands the design 

weight .kd  We can view km  as the value of a derived 

variable, defined for a particular outcome (r, s) and choice 

of ,kx  independent of all y-variables of interest, and 

computable for k s∈  (but used in CALYɶ  only for 

).k r∈ Using (2.3), we have 

2

; ;

.

k k k k k k k kr s r s

k k k kr s

d m d d m d

d m d m

= =

=

∑ ∑ ∑ ∑

∑ ∑

x x

 

(5.1)

 

Two weighted means are needed: 

; ;

1
;

k k kk k s sr
r d s d

k k kr r s

d d md m
m m

d d P d
= = = =

∑ ∑∑
∑ ∑ ∑

 (5.2) 

where P is the response rate (2.1). Thus the average 

adjustment factor in CAL r k k kY d m y∑=ɶ  is 1/ ,P  regardless 

of the choice of x-vector. Whether a chosen x-vector is 

efficient or not for reducing bias will depend on higher 

moments  of the .km  The weighted variance of the km  is 

2 2 2
| ; ;( ) .m m r d k k r d kr r

S S d m m d= = −∑ ∑  (5.3) 

The simpler notation 2

mS  will be used. A development of 

(5.3) and a use of (5.1) and (5.2) gives 

2
; ; ;( ).m r d s d r dS m m m= −  (5.4) 

The coefficient of variation of the km  is 

;

; ;

cv 1.
s dm

m

r d r d

mS

m m
= = −  (5.5) 

The weighted variance of the study variable y is given by 

2 2 2
| ; ;( )y y r d k k r d kr r

S S d y y d= = −∑ ∑  (5.6) 

(when the response probabilities are not all equal, 2
yS =  

2
| ;y r dS  is not unbiased for the population variance 2

| ,y US  but 

this is not an issue for the derivations that follow). We need 

the covariance 

;

; ;

Cov( , ) Cov( , )

1
( )( )

r d

k k r d k r dr
kr

y m y m

d m m y y
d

= =

− −∑∑

 

(5.7)

 

and the correlation coefficient, , Cov( , ) /( ),y m y mR y m S S=  

satisfying ,1 1.y mR− ≤ ≤  

The deviation ; ;( )A r d s d
′∆ = − xx x B  is a crucial 

component in the bias ratio (4.3). We seek an x-vector that 
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makes A∆  large. The factors that determine A∆  are seen in 

(5.8) to (5.10). Computational tools (indicators) to assist the 

search for effective x-variables are given in (5.11) and 

(5.12). Their derivation by linear algebra is deferred to 

Section 7, which may be bypassed by readers more 

interested in the practical use of these tools in the search for 

x-variables, as illustrated in the empirical Sections 9 and 10. 

We can factorize /A yS∆  as 

,/ cv .A y y m mS R∆ = − ×  (5.8) 

Two simple multiplicative factors determine / :A yS∆  

The coefficient of variation cv ,m  which is free of ky  and 

computed on the known kx  alone, and the (positive or 

negative) correlation coefficient , .y mR  Another factor-

ization in terms of simple concepts is 

,/ cvA y y mS F R∆ = × ×x  (5.9) 

where 2

, ,y yR R=x x  is the coefficient of multiple correla-

tion between y and x, 2
,yR x  is the proportion of the y-

variance 2
yS  explained by the predictor x, and F =  

, ,/y m yR R− x  (formula (7.8) states the precise expression for 
2
, ).yR x  As Section 7 also shows, , ,| |y m yR R≤ x  for any x-

vector and y-variable; consequently 1 1.F− ≤ ≤  

In (5.8) and (5.9), cvm  and ,yR x  are non-negative 

terms, while ,y mR  and F can have either sign (or possibly 

be zero). Hence 

, ,| | / | | cv | | cv .A y y m m y mS R F R∆ = × = × ×x  (5.10) 

All of , ,, cv , ,y m y y mS R Rx  and F are easily computed in 

the survey. Both cvm  and ,yR x  increase (or possibly stay 

unchanged) when further x-variables are added to the x-

vector; ,y mR  does not have this property. 

To illustrate with the aid of fairly typical numbers, if 

,0.5; 0.6yF R= =x  and cv 0.4,m =  then / 0.12,A yS∆ =  

implying that CAL EXP/ / 0.12 .yY � Y � S= − ×ɶ ɶ  That is, the 

estimated y-mean CAL
ˆ/Y �ɶ  has become adjusted by 0.12 

standard deviations down from the primitive estimate 

EXP
ˆ/ .Y �ɶ  The adjustment can be large compared to the 

standard deviation of the estimated y-mean, especially when 

the survey sample size is in the thousands. It remains 

unknown whether or not that adjustment has cured most of 

the biasing effect of nonresponse. 

It follows from (5.8) that 0 | | / cvA y mS≤ ∆ ≤  whatever 

the y-variable. A shaper inequality is ,| | / cv ,A y y mS R∆ ≤ ×x  

but it depends on the y-variable. Further, if the correlation 

ratio F stays roughly constant when the x-vector changes, so 

that 0,F F≈  then  0 ,| | / | | cv .A y y mS F R∆ ≈ × ×x  

Although computable for any x-vector and any outcome 

(s, r), A∆  does not reveal the value of the bias ratio. But A∆  

suggests computational tools, called indicators, for com-

paring alternative x-vectors. By (5.8), let 

0 ,/ cv .A y y m mH S R= ∆ = − ×  (5.11) 

As borne out by theory in Section 8 and by the empirical 

work in Section 10, over a long run of outcomes (s, r), the 

average of 0H  tracks the average deviation CALY Y−ɶ  

(which measures the bias of CAL )Yɶ  in a nearly perfect linear 

manner when the x-vector changes. This holds indepen-

dently of the response distribution that generates r from s. 

Since 0H  can have either sign, it is practical to work with 

its absolute value denoted 1;H  in addition we consider two 

other indicators, 2H  and 3,H  inspired by (5.9) to (5.10): 

1 ,

2 , 3

| | / | | cv ;

cv ; cv .

A y y m m

y m m

H S R

H R H

= ∆ = ×

= × =x

 

(5.12)

 

Our main alternatives are 1H  and 3.H  Of these, 1H  is 

motivated by its direct link to ,A∆  which we want to make 

large, for a given y-variable. A strong reason to consider 

3H  is its independence of all y-variables in the survey. The 

indicator 2H  is an ad hoc alternative; although 2H  

contains a familiar concept, the multiple correlation 

coefficient , ,yR x  it is less appropriate than 1H  because the 

correlation coefficient ratio , ,/y m yF R R= − x  may vary 

considerably from one x-vector to another. Both 2H  and 

3H  increase when further x-variables are added to the x-

vector, something which does not hold in general for 1.H  

The use of these indicators is illustrated in the empirical 

Sections 9 and 10. 

 
6. Preference ranking of auxiliary vectors 

 
The methods in this paper are intended for use primarily 

with the large samples that characterize government 

surveys. The sample size is ordinarily much larger than the 

dimension of the x-vector. The variance of estimates is 

ordinarily small, compared to the squared bias. However, 

for categorical auxiliary variables, no group size should be 

allowed to be “too small”. It is recommended that all group 

sizes be at least 30, if not at least 50, in order to avoid 

instability. The crossing of categorical variables (to allow 

interactions) implies a certain risk of small groups. It is 

preferable to calibrate on marginal counts, rather than on 

frequencies for small crossed cells. 

In a number of countries, the many available admi-

nistrative registers provide a rich source of auxiliary 

information, particularly for surveys on individuals and 

households. These registers contain many potential x-

variables from which to choose. Many different x-vectors 

can be composed. The indicators in (5.12) provide compu-

tational tools for obtaining a preference ordering, or a 

ranking, of potential x-vectors, with the objective to reduce 
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as much as possible the bias remaining in the calibration 

estimator.  
Scenario 1: Focus on a specific y-variable. The bias 

remaining in the calibration estimator depends on the y-

variable; some are more bias prone than others. We identify 

one specific y-variable deemed to be highly important in the 

survey, and we seek to identify an x-vector that reduces the 

bias for this variable as much as possible (if more than one 

y-variable needs to be taken into account, a compromise 

must be struck, which suggests Scenario 2 below). For this 

purpose, we use the y-variable dependent indicator 1H =  

,| | / | | cvA y y m mS R∆ = ×  and choose the x-vector so as to 

make 1H  large. An ad hoc alternative is to use the indicator 

2 , cv ,y mH R= ×x  and strive to make it as large as possible.  
Scenario 2: The objective is to identify a general purpose x-

vector, efficient for all or most y-variables in the survey. 

This suggests 3 cvmH =  as a compromise indicator, and to 

choose the x-vector that maximizes 3.H  To that same 

effect, Särndal and Lundström (2005, 2008) used the 

indicator 2 2 2

3 / .mS H P=  They showed that the derived 

variable km  in (2.6) can be seen as a predictor of the inverse 

of the unknown response probability and that choosing the 

x-vector to make 2

mS  large signals a bias reduction in the 

calibration estimator, irrespective of the y-variable.  
For each scenario we can distinguish two procedures:  

All vectors procedure: A list of candidate x-vectors is 

prepared, based on appropriate judgment. We compute the 

chosen indicator for every candidate x-vector, and settle for 

the vector that gives the highest indicator value. The 

resulting x-vector may not be the same for 1H  (which 

targets a specific y-variable) as for 3H  (which seeks a 

compromise for all y-variables in the survey). 
 

Stepwise procedure: There is a pool of available x-variables. 

We build the x-vector by a stepwise forward (or stepwise 

backward) selection from among the available x-variables, 

one variable at a time, using the successive changes (if 

considered large enough) in the value of the chosen 

indicator to signal the inclusion (or exclusion) of a given x-

variable at a given step. The indicators 1 2,H H  and 3H  do 

not in general give the same selection of variables. Consider 

two x-vectors, 1kx  and 2 ,kx  such that 2kx  is made up of 

1kx  and an additional vector :k+x 2 1( , ) .k k k+′ ′ ′=x x x  The 

transition from 1kx  to 2kx  will increase the value of 2H  

and 3.H  In each step of a forward selection procedure we 

select the variable bringing the largest increase in 2H  or 

3.H  But the transition does not guarantee an increased 

value for the most appropriate indicator, 1.H  However, 1H  

may be used in stepwise selection in the manner described 

in Section 9. 

 

7. Derivations 
 

For given y-variable and outcome (s, r), we seek an x-

vector to make the computable numerator A∆ =  

; ;( )r d s d
′− xx x B  in the bias ratio (4.3) large, in absolute 

value. In this section we prove the factorizations /A yS∆ =  

, ,cv cvy m m y mR F R− × = × ×x  in (5.8) and (5.9). We note 

first that 2cvm  is a quadratic form in the vector that contrasts 

the x-mean in the response set r with the x-mean in the 

sample s. Let  

; ; ; .r d s d k k k kr r
d d′= − =∑ ∑D x x Σ x x  (7.1) 

Then, with P given by (2.1),  

2 2 2 1cv .m mP S −′= × = D Σ D  (7.2) 

This expression follows from (5.3) and a consequence of 

(2.3), namely,  

1 1
; ; ; ; 1.r d r d r d s d

− −′ ′= =x Σ x x Σ x  (7.3) 

The vector of covariances with the study variable y is 

( ) ( ); ;( ) ( ) .k k r d k r d kr r
d y y d= − −∑ ∑C x x  (7.4) 

We can then write A∆  as a bilinear form: 

1

A

−′ ′∆ = =xD B D Σ C  (7.5) 

using that 1 1
; ; ; ;( ) 0r d r d s d r d

− −′ ′= − =D Σ x x x Σ x  by (7.3). 

A useful perspective on A∆  is gained from the geometric 

interpretation of C and D in (7.5) as vectors in the space 

whose dimension is that of .kx  We have 

1 1/ 2 1 1/ 2Λ ( ) ( )A

− −′ ′∆ = D Σ D C Σ C  (7.6) 

where 

1

1 1/ 2 1 1/ 2
Λ .

( ) ( )

−

− −

′
=

′ ′
D Σ C

D Σ D C Σ C
 (7.7) 

For a specific y-variable and a specific x-vector, the 

scalar quantities 1 1/ 2( )−′D Σ D  and 1 1/ 2( )−′C Σ C  represent the 

respective vector lengths of D and C (following an 

orthogonal transformation based on the eigenvectors and 

eigenvalues of 1).−
Σ  The scalar quantity Λ  represents the 

cosine of the angle between D (which is independent of y) 

and C (which depends on y); hence 1 Λ 1.− ≤ ≤  

When the auxiliary vector kx  is allowed to expand by 

adding further available x-variables, both vector lengths 
1 1/ 2( )−′D Σ D  and 1 1/ 2( )−′C Σ C  increase. The change in the 

angle Λ  may be in either direction; if | |Λ  stays roughly 

constant, (7.6) shows that | |A∆   will increase. 

A second useful perspective on A∆  follows by decom-

posing the total variability of the study variable y, 
2 2

;( ) ( ) .r rk k r d k yd y y d S∑ ∑− =  Two regression fits need 
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to be examined, the one of y on the auxiliary vector x, and 

the one of y on the derived variable m defined by (2.6). To 

each fit corresponds a decomposition of 2
yS  into explained 

y-variation and residual y-variation. The two explained 

portions have important links to the bias ratio (4.3). Result 

7.1 summarizes the two decompositions.  
Result 7.1. For a given survey outcome (s, r), let ,D Σ  and 

C be given by (7.1) and (7.4). Then the proportion of the y-

variance 2
yS  explained by the regression of y on x is 

2 1 2
, ( ) / .y yR S−′=x C Σ C  (7.8) 

The coefficient of correlation between y and the 

univariate predictor m is 

1 1 1/ 2
, ( ) /[( ) ].y m yR S− −′ ′= − ×D Σ C D Σ D   (7.9) 

Consequently, the proportion of 2
yS  explained by m is 

2 1 2 1 2
, ( ) /[( ) ].y m yR S− −′ ′= ×D Σ C D Σ D  (7.10) 

The proportions 2
,yR x  and 2

,y mR  satisfy 2 2
, , 1.y m yR R≤ ≤x   

Proof. The proof of (7.8) uses the weighted least squares 

regression of y on x fitted over r. The residuals are 

( )ˆ ,k ky y− x  where ( )ˆ k ky ′= xx x B  with xB  given by (2.8). 

The decomposition is 

2 2

; ;

2

( )

( )

ˆ( ) ( )

ˆ( ) .

k k r d k k r dr r

k k kr

d y y d y y

d y y

− = −

+ −

∑ ∑

∑

x

x

 

The mixed term is zero. A development of the term 

“variation explained” gives 2
;( )ˆ( ) ( )r rk k r d kd y y d∑ ∑− =x  

1 .−′C Σ C  Thus the proportion of variance explained is 
2 2 2 1 2
, ;( )ˆ( ) /[( ) ] / ,r ry k k r d k y yR d y y d S S−∑ ∑ ′= − =x x C Σ C  as 

claimed in (7.8). To show (7.9) we note that the covariance 

(5.7) can be written with the aid of (7.5) as 

1Cov( , ) / / .Ay m P P−′= −∆ = −D Σ C  

It then follows from (7.2) that , Cov( , ) /( )y m y mR y m S S=  

has the expression (7.9). The residuals from the regression 

(with intercept) of y on the univariate explanatory variable 

m are ; ;( )ˆ ( )k r d m k r dmy y B m m= + −  with 2Cov( , )/m mB y m S= =  
1 1( ) /( ).P − −′ ′− D Σ D ΣC D  The proportion of variance 

explained is 2 2
;( )ˆ( ) / [( ) ],r rk k r d k ymd y y d S∑ ∑−  which upon 

development gives the expression for 2
,y mR  in (7.10). 

Finally, 2 2
, ,y m yR R≤ x  follows from the Cauchy-Schwarz 

inequality for a bilinear form: 1 2 1( ) ( )− −′ ′≤D Σ C D Σ D  
1( ).−′C Σ C  

The inequality 2 2
, , 1y m yR R≤ ≤x  can also be deduced by 

the fact that, among all predictions ˆk ky ′= x β  that are linear 

in the x-vector, those that maximize the variance explained 

are ( )ˆ ,k ky ′= xx x B  so the predictions ( )ˆ ,kmy  which are 

linear in kx  via ,km  cannot yield a greater variance 

explained than that maximum. 

Now from (7.9), (7.2) and (7.5), 1
, cv /y m mR −′− =D Σ C  

/ ,y A yS S= ∆  as claimed by formula (5.8). Moreover, (7.7), 

(7.8) and (7.9) imply , ,/ ,y m yR R− = Λx  so the correlation 

coefficient ratio F in (5.9) equals the angle Λ  defined by 

(7.7). 

 
8. Comments: Goodness of fit, properties of the 

          bias and a related selection procedure 
 

Three issues are examined in this section: (i) The 

relationship between bias and goodness of fit, (ii) the linear 

relation between the expected value of 1
EXP

ˆ (A � Y−∆ = −ɶ  

CAL )Yɶ  and the bias of CALYɶ  or CAL
ˆ ,Y  and (iii) the alternative 

method for selection of auxiliary variables proposed by 

Schouten (2007).  

For the issue (i), recall that the total deviation in Section 

4 is ,T A R∆ = ∆ + ∆  where A∆  is computable but T∆  and 

R∆  are not. If computable, CAL FUL
ˆ

R� Y Y∆ = −ɶ ɶ  would be 

an estimate of the bias of CALYɶ  (and of that of CAL
ˆ ).Y  A 

small R∆  is desirable. The question arises: Is this achieved 

when k k ky ′= + εβ x  (with a given vector )kx  fits the data 

well? We need to distinguish two aspects: (a) The 

computable fit to the data ( , )k ky x  observed for ;k r∈  and 

(b) The hypothetical fit to the data ( , )k ky x  for ,k s∈  some 

observed, some not. 

A good fit for the respondents, ,k r∈  does not guarantee 

a small :R∆  The weighted LSQ fit using the observed data  

( , )k ky x  for k r∈  gives the residuals | ;k r de = ky −  

| ; ,k r d
′

xx B  computable for ,k r∈  with the property 

| ; 0r k k r dd e∑ =  (here, the detailed notation | ;r dxB  specified 

in (2.8) is preferable to the simplified notation ).xB  For 

| ;, k r dk s r e∈ −  is not computable; it has an unknown non-

zero mean ; | ; / .s r s rs r d k k r d ke d e d− −− ∑ ∑=  We have 

CAL FUL ;
ˆ( ) / (1 ) 0.R s r dY Y � P e −∆ = − = − − ≠ɶ ɶ  (8.1) 

Regardless of whether the fit is good (small residuals 
2

| ; ,;k r d ye R x  near one) or poor (large residuals 2
| ; ,;k r d ye R x  

near zero), the deviation R∆  given by (8.1) may be large, 

and CALYɶ  far from unbiased. Even with a perfect fit for the 

respondents ( | , 0k r de =  for all ,k r∈  and 2
, 1),yR =x  there is 

no guarantee that the bias is small. 

A similar inadequacy affects imputation based on the 

respondent data. If the regression imputations  ˆky =  

| ;k r d
′

xx B  are used to fill in for the values ky  missing for 

,k s r∈ −  the imputed estimator is 

imp
ˆ ˆ .k k k kr s r

Y d y d y
−

= +∑ ∑  

Then imp CAL
ˆ ,Y Y= ɶ  so impŶ  has the same exposure to bias 

as CAL,Yɶ  as is easily understood: When the nonresponse 
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causes a skewed selection of y-values, the imputed values 

computed on that skewed selection will misrepresent the 

unknown y-values that characterize the sample s or the 

population U. 

Consider now the aspect (b) of the fit, that is, the 

hypothetical weighted LSQ regression fit to the data 

( , )k ky x  for .k s∈  The regression coefficient vector would 

be 1
| ; ( ) ,s ss d k k k k k kd d y−∑ ∑′=xB x x x  and the residuals  

| ; | ;k s d k k s de y ′= − xx B   for k s∈  satisfy | ; 0.s k k s dd e∑ =  

Using that ;
ˆ/r k k k s dd m �∑ =x x  and ˆ/r k k kd m y �∑ =  

; | ; ,s d r d
′

xx B  we have  

1
CAL FUL | ;

ˆ ˆ( ) (1/ ) .R k k k s dr
� Y Y � d m e−∆ = − = ∑ɶ ɶ  (8.2) 

Suppose the model is “true for the sample s”, with a 

perfect fit, so that | ; 0k s de =   for all .k s∈  Then, by (8.2) we 

do have 0,R∆ =  so the nonresponse adjusted estimator 

CALYɶ  agrees with the unbiased estimator FUL .Yɶ  A belief that 

the bias is small hinges on an unverifiable assumption.  

Turning to the issue (ii), we now explain the essentially 

linear relation between the bias of CALYɶ  and the expected 

value of the indicator 0 EXP CAL
ˆ/ ( ) / .A y yH S Y Y � S= ∆ = −ɶ ɶ  

For a given outcome ( , ),s r  a fixed y-variable and a fixed 

x-vector we have 

CAL EXP 0
ˆ ˆ( ) / ( ) / .y yY Y � S Y Y � S H− = − −ɶ ɶ  

Let pqE  denote the expectation operator with respect to 

all outcomes ( , ),s r  that is, ( ) ( ( | )),pq p qE E E s= ⋅⋅  where 

( )p s  and ( | )q r s  are, respectively, the known sampling 

design and the unknown response distribution. We denote 

CAL CALbias( ) ( ) ,pqY E Y Y= −ɶ ɶ  EXPbias( )Y =ɶ
EXP( )pqE Y Y−ɶ  

and ˆ( ).pq yC E �S=  Using the usual large sample replace-

ment of the expected value of a ratio by the ratio of the 

expected values, we have CAL
ˆ[( ) / ]pq yE Y Y � S− ≈ɶ  

CAL
ˆ[ ( ) ] / ( )pq pq yE Y Y E � S−ɶ  and analogously for EXP,Yɶ  so 

CAL EXP 0bias( ) bias( ) ( ).Y Y C E H≈ − ×ɶ ɶ  (8.3) 

Here EXPbias( )Yɶ  and C do not depend on the choice of x-

vector, whereas CALbias( )Yɶ  and 0( )E H  do. Therefore, as 

the x-vector changes, CALbias( )Yɶ  and 0( )E H  are essen-

tially linearly related. No particular forms of ( )p s  and 

( | )q r s  need to be specified for (8.3) to hold. As a 

consequence, when two auxiliary vectors, 1kx  and 2 ,kx  are 

compared, the difference in bias is, to close approximation, 

proportional to the change in the expected value of 0 :H  

CAL 1 CAL 2 1 2bias( ( )) bias( ( )) ( )k kY Y C E E− ≈ − −x xɶ ɶ  (8.4) 

where 0( ( ))i pq ikE E H= x  for 1, 2.i =  The properties (8.3) 

and (8.4) are validated by the Monte Carlo study in 

Section 10.  

Note that formula (8.3) does not guarantee that CALYɶ  

based on a certain vector kx  will have zero or near-zero 

bias. It does not state that a comparatively large value of 

| |A∆  guarantees a small bias in CAL .Yɶ  What (8.3) says is that 

CALbias( )Yɶ  is linearly related to the expectation of the 

indicator 0 / .A yH S= ∆  Therefore, to assess available x-

vectors in terms of the indicator 0H  (or the indicator 

1 | | /A yH S= ∆ ) is consistent with the objective of bias 

reduction. 

Turning to the issue (iii), we comment on the alternative 

method for selection of auxiliary variables proposed by 

Schouten (2007). His indicator for the step-by-step selection 

of variables differs from our indicators; it will usually not 

select exactly the same set of variables. In a list of say 30 

available categorical x-variables, the first ten to enter will 

not be the same set of ten as with our indicators 0H  to 3.H  

The order in which variables are selected will not neces-

sarily be the same either. For comparison, we compared, in 

some of our empirical work, with the variable selection 

realized by Schouten’s method. In some cases we noted a 

considerable congruence between the two sets of “first ten” 

picked in the two procedures.  

The differences between the two approaches are best 

appreciated by a comparison of their background and 

derivation. Our indicators 0H  and 1H  originate in the 

notion of separation (or distance), for a given outcome 

( , ),s r  between the adjusted estimator CALYɶ  and the 

primitive one, EXP,Yɶ  and in the idea that this separation will 

ordinarily increase when the x-vector becomes more 

powerful. The probability sampling design is taken into 

consideration; no assumptions are made on the response 

distribution.  

Schouten uses a superpopulation argument; sampling 

weights do not appear to enter into consideration. An 

expression for the model-expected bias of an estimator of 

the population mean is found to be proportional to the 

correlation (at the level of the population) between the y-

variable and the 0-1 indicator for response. It is shown that 

this correlation (and consequently the bias) can be bounded 

inside an interval. In particular, the generalized regression 

estimator is considered and it is shown that its maximum 

absolute bias equals the width of the bias interval. This 

width depends on the true unknown regression vector ββββ  for 

the regression (at the population level) between y and x. 

This unknown ββββ  is replaced by an estimate based on the 

respondents, thus subject to some bias because of the 

nonresponse. Schouten emphasizes that a missing-at-

random assumption is not needed for his method, which is 

in that respect similar to our method. 

 
 



Survey Methodology, December 2010 139 
 

 

Statistics Canada, Catalogue No. 12-001-X 

9. Auxiliary variable choice for the Swedish pilot 

      survey on gaming and problem gambling 

 
We identified a real survey data set to illustrate the use of 

the indicators 1 2,H H  and 3H  in building the x-vector. In 

2008, The Swedish National Institute of Public Health 

(Svenska Folkhälsoinstitutet) conducted a pilot survey to 

study the extent of gambling participation and the charac-

teristics of persons with gambling problems. Sampling and 

weight calibration was carried out by Statistics Sweden. We 

illustrate the use of the indicators in this survey, for which a 

stratified simple random sample s of n = 2,000 persons was 

drawn from the Swedish Register of Total Population 

(RTP). The strata were defined by the cross classification of 

region of residence by age group. Each of the six regions 

was defined as a cluster of postal code areas deemed similar 

in regard to variables such as education level, purchasing 

power, type of housing, foreign background. The four age 

groups were defined by the brackets 16-24; 25-34; 35-64 

and 65-84.  

The overall unweighted response rate was 50.8%. The 

nonresponse, more or less pronounced in the different 

domains of interest, interferes with the accuracy objective. 

An extensive pool of potential auxiliary variables was 

available for this survey, including variables in the RTP, in 

the Education Register and a subset of those in another 

extensive Statistics Sweden data base, LISA. For this 

illustration, we prepared a data file consisting of 13 selected 

categorical variables. Twelve of these were designated as x-

variables, and one, the dichotomous variable Employed, 

played the role of the study variable. The values of all 

variables are available for all units .k s∈  Response ( )k r∈  

or not ( )k s r∈ −  to the survey is also indicated in the data 

file.  

Variables that are continuous by nature were used as 

grouped; all 12 x-variables are thus categorical and of the 

kx
�  type, as defined in Section 2 (because most of the 

variables are available for the full population, they are 

potentially of the type ,k

∗
x  but since the effect on bias is of 

little consequence, we used them as kx
� -variables). The 

study variable value, 1ky =  if k is employed and 0ky =  

otherwise, is known for ,k s∈  so the unbiased estimate 

FULYɶ  defined by (3.2) can be computed and used as a 

reference. We also computed EXPYɶ  defined by (3.1), as well 

as CALYɶ  defined by (2.5) for different x-vectors built by 

stepwise selection from the pool of 12 x-variables with the 

aid of the indicators 1 2,H H  and 3H  defined by (5.12). 

We carried out forward selection as follows: The 

auxiliary vector in Step 0 is the trivial 1,k =x  and the 

estimator is EXP .Yɶ  In Step 1, the indicator value is computed 

for every one of 12 presumptive auxiliary variables; the 

variable producing the largest value of the indicator is 

selected. In Step 2, the indicator value is computed for all 11 

vectors of dimension two that contain the variable selected 

in Step 1 and one of the remaining variables. The variable 

that gives the largest value for the indicator is selected in 

Step 2, and so on, in the following steps. A new variable 

always joins already entered variables in the “side-by-side” 

(or “+”) manner. Interactions are thereby relinquished. The 

order of selection is different for each indicator. 

The values of 2H  and 3H  that identify the next variable 

for inclusion are by mathematical necessity increasing in 

every step. This does not hold for 1.H  In a certain step j, we 

used the rule to include the x-variable with the largest of 

computed 1H -values. That value can be smaller than the 

1H -value that identified the variable entering in the 

preceding step, 1.j −  The series of 1H -values for inclusion 

will increase up to a certain step, then begin to decline, as 

Table 9.1 illustrates. 

The unbiased estimate is FUL 4,265;Y =ɶ  the primitive 

estimate is EXP 4,719Y =ɶ  (both in thousands). This suggests 

a large positive bias in EXP,Yɶ  whose relative deviation (in 

%) from FULYɶ  is 2

EXP FUL FULRDF ( ) / 10 10.7.Y Y Y= − × =ɶ ɶ ɶ  

Adding categorical x-variables one by one into the x-vector 

will successively change this deviation, although when a 

few variables have been admitted, the change is not always 

in the direction of a smaller value. In each step we 

computed the indicator, CALYɶ  and CAL FULRDF ( ) /Y Y= −ɶ ɶ  
2

FUL 10 .Y ×ɶ  

Table 9.1 shows the stepwise selection with the indicator 

1H  (the number of categories is given in parenthesis for 

each selected variable). First to enter is the variable Income 

class; this brings a large reduction in RDF from 10.7 to 4.5. 

The next five selections take place with increased 1H -

values, and the value of RDF is reduced, but by successively 

smaller amounts. Step six, where Marital status is selected, 

brings about a turning point, indicated by the double line in 

Table 9.1: The value of 1H  then starts to decline, and CALYɶ  

and RDF start to increase. At step 6, RDF is at its lowest 

value, 0.5, then starts to rise, illustrating that inclusion of all 

available x-variables may not be best. The turning point of 

1H  and the point at which RDF is closest to zero happen to 

agree in this example. This is not generally the case. 

Moreover, in a real survey setting, RDF is unknown, as is 

the step at which RDF is closest to zero. 

Table 9.2 shows the stepwise selection with indicator 

3.H  Its value increases at every step, but at a rate that levels 

off, and successive changes in CALYɶ  become negligible. 

This suggests to stop after six steps, at which point RDF = 

2.8. In none of the 12 steps does RDF come as close to zero 

as the value RDF = 0.5 obtained with 1H  after six steps. In 

this respect 1H  is better than 3 ,H  in this example. With all 

12 x-variables selected, RDF attains in both tables the final 

value 2.6.  
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Table 9.1 

Stepwise forward selection, indicator 1 ,H  dichotomous study 

variable Employed. Successive values of × 3
1 10 ,H  of CAL

ɶY  in 

thousands, and of − 2
CAL FUL FULRDF ( )/ 10 .ɶ ɶ ɶY Y Y= ×= ×= ×= ×  For compar-

ison, = =-3 -3
EXP FUL10 4,719; 10 4,265ɶ ɶY Y× ×× ×× ×× ×   

 

Auxiliary variable entered × 3
1 10H  × -3

CAL 10ɶY  RDF 

Income class (3) 76 4,458 4.5 
Education level (3) 107 4,350 2.0 
Presence of children (2) 114 4,326 1.4 
Urban centre dwelling (2) 118 4,310 1.1 
Sex (2) 123 4,296 0.7 
Marital status (2) 125 4,286 0.5 

Days unemployed (3) 121 4,301 0.9 
Months with sickness benefits (3) 120 4,305 1.0 
Level of debt (3) 115 4,322 1.3 
Cluster of postal codes (6) 109 4,343 1.8 
Country of birth (2) 103 4,363 2.3 
Age class (4) 99 4,377 2.6  
Table 9.2 

Stepwise forward selection, indicator 3 ,H  dichotomous study 
variable Employed. Successive values of × 3

3 10 ,H  of CAL
ɶY  in 

thousands, of − 2
CAL FUL FULRDF ( )/ 10 .ɶ ɶ ɶY Y Y= ×= ×= ×= ×  For comparison, 

= =-3 -3
EXP FUL10 4,719; 10 4,265ɶ ɶY Y× ×× ×× ×× ×  

 

Auxiliary variable entered × 3
3 10H  × 3

CAL 10ɶY  RDF 

Education level (3) 186 4,520 6.0 
Cluster of postcode areas (6) 250 4,505 5.6 
Country of birth (2) 281 4,498 5.5 
Income Class (3) 298 4,369 2.4 
Age class (4) 354 4,399 3.1 
Sex (2) 364 4,384 2.8 
Urban centre dwelling (2) 374 4,378 2.6 
Level of debt (3) 381 4,364 2.3 
Months with sickness benefits (3) 384 4,380 2.7 
Presence of children (2) 387 4,379 2.7 
Marital status (2) 388 4,379 2.7 
Days unemployed (3)  388 4,377 2.6 

 
The set of the first six variables to enter with 3H  has 

three in common with the corresponding set of six with 1.H  

There is no contradiction in the quite different selection 

patterns, because 1H  is geared to the specific y-variable 

Employed, while 3H  is a compromise indicator, indepen-

dent of any y-variable. To save space, the step-by-step 

results for indicator 2H  are not shown. Its selection pattern 

resembles more that of 3H  than that of 1.H  Out of the first 

six variables to enter with 2,H  four are among the first six 

with 3.H  As a general comment, we believe that in many 

practical situations the use of more than six variables is 

unnecessary, and the selection of the first few becomes 

crucially important. 

 
10. Empirical validation by simulation for a 

       constructed population 
 

The theory presented in earlier sections makes no 

assumptions on the response distribution. It is unknown. 

The sampling design is arbitrary; its known inclusion 

probabilities are taken into account. For the experiment in 

this section, we specify several different response distribu-

tions with a specified positive value for the response proba-

bility θk  for every .k U∈  That is, with specified proba-

bility θ ,k  the value ky  gets recorded in the experiment; 

with probability 1 θ ,k−  it goes missing. We find that the 

indicators 0H  (or 1 0| |H H= ) defined in (5.11) ranks the 

different x-vectors in the correct order of preference for all 

participating response distributions, consistent with the 

theoretical results (8.3) and (8.4). We confirm that, over a 

long run of outcomes ( , ),s r  the average of 0H =  

,/ cvA y y m mS R∆ = − ×  tracks the bias of the calibration 

estimator, measured by the average of CAL ,Y Y−ɶ  in an 

essentially perfectly linear manner, when the x-vector 

moves through 16 different formulations. We also examine 

the indicators 2H  and 3H  defined in (5.12), and find in this 

experiment that they also have strong relationship to the bias 

of CAL .Yɶ  

We experimented with several created populations; the 

conclusions were similar. We report here results for one 

constructed population of size 6,000,� =  with created 

values ( , , θ )k k ky x  for 1, 2, , 6,000,k �= =…  for 16 

alternative categorical formulations of ,kx  and four 

different ways to assign the θ .k  

The 16 alternative categorical auxiliary x-vectors were 

obtained by grouping the generated values 1kx  and 2kx  of 

two continuous auxiliary variables, 1x  and 2 .x  The values 

1 2( , , )k k ky x x  for 1, 2, ..., 6,000k =  were created in three 

steps as follows. Step 1 (the variable 1):x  The 6,000 values 

1kx  were obtained as independent outcomes of the gamma 

distributed random variable ( , )a bΓ  with parameter values 

a = 2, b = 5. The mean and variance of the 6,000 realized 

values 1kx  was 10.0 and 49.9, respectively. Step 2 (the 

variable 2x ): For unit k, with value 1kx  fixed by Step 1, a 

value 2kx  is realized as an outcome of the gamma random 

variable with parameters such that the conditional expec-

tation and variance of 2kx  are 1 1( )k kx K h xα + β +  and 
2

1 ,kxσ  respectively, where 
11 1 1( ) ( )k k k xh x x x= − µ  

11( 3 )k xx − µ  with 
1

10.xµ =  We used the values 1,α =  

1, 0.001kβ = =  and 2 25.σ =  The polynomial term 

1( )kK h x  gives a mild non-linear shape to the plot of 

2 1( , ),k kx x  to avoid an exactly linear relationship. The mean 

and variance of the 6,000 realized values 2kx  were 11.0 and 

210.0, respectively. The correlation coefficient between 1x  

and 2,x  computed on the 6,000 couples  1 2( , ),k kx x  was 

0.48. Step 3 (the study variable y): For unit k, with values 

1kx  and 2kx  fixed by Steps 1 and 2, a value ky  is realized 

as an outcome of the gamma random variable with 

parameters such that the conditional expectation and 

variance of ky  are 0 1 1 2 2k kc c x c x+ +  and 2

0 1 1( kc xσ +  

2 2 ),kc x  respectively. We used 0 11, 0.7,c c= = 2 0.3c =  and 
2

0 2.σ =  The mean and the variance of the 6,000 realized 
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values ky  were 11.4 and 86.5, respectively. The correlation 

coefficient between y and 1,x  computed on the 6,000 

couples 1( , ),k ky x  was 0.76; that between y and 2,x  

computed on the 6,000 couples 2( , ),k ky x  was 0.73. 

Each of the two x-variables was then transformed into 

four alternative group modes, denoted 8G, 4G, 2G and 1G, 

yielding 4 × 4 = 16 different auxiliary vectors .kx  The 

6,000 values 1kx  of variable 1x  were size ordered; eight 

equal-sized groups were formed. Group 1 consists of the 

units with the 750 largest values 1 ,kx  group 2 consists of the 

next 750 units in the size ordering, and so on, ending with 

group 8. In this mode 8G of 1,x  unit k is assigned the vector 

value 
1( ;8) ,x kγ  of dimension eight with seven entries “0” and 

a single entry “1” to code the group membership of  k. Next, 

successive group mergers are carried out, so that two 

adjoining groups always define a new group, every time 

doubling the group size. Thus for mode 4G, the merger of 

groups 1 and 2 puts the units with the 1,500 largest 1kx -

values into a first new group; groups 3 and 4 merge to form 

the second new group of 1,500, and so on; the vector value 

associated with unit k is 
1( ;4) .x kγ  In mode 2G, unit k has the 

vector value 
1( ;2) (1,0)x k

′=γ  for the 3,000 largest 1x -value 

units and 
1( ;2) (0,1)x k

′=γ  for the rest. In the ultimate mode, 

1G, all 6,000 units are put together, all 1x -information is 

relinquished, and 
1( ; 1) 1x k =γ  for all k. The 6,000 values 2kx  

were transformed by the same procedure into the group 

modes 8G, 4G, 2G and 1G. Corresponding group member-

ship of unit k is coded by the vectors 
2 2 2( ;8) ( ;4) ( ;2), ,x k x k x kγ γ γ  

and 
2( ;1) 1.x k =γ  The 4 × 4 = 16 different auxiliary vectors 

kx  take into account both kinds of group information; the 

two γ -vectors are placed side by side (as opposed to 

crossed), the result being a calibration on two margins, as 

indicated by the “+” sign. Thus for the case denoted 

8G + 8G, unit k has the auxiliary vector value k =x  

1 2( ;8) ( ;8) ( 1)( , ) ,x k x k −′ ′ ′γ γ  where ( 1)−  indicates that one category 

is excluded in either 
1( ;8)x kγ  or 

2( ;8)x kγ  to avoid a singular 

matrix in the computation, giving kx  the dimension 8 + 8 –

1 = 15. The case 8G + 8G has the highest information 

content. At the other extreme, the case 1G + 1G disregards 

all the x-information and 1k =x  for all k. There are 14 

intermediate cases of information content. For example, 

4G + 2G has 
1 2( ;4) ( ;2) ( 1)( , )k x k x k −′ ′ ′=x γ γ  of dimension 4 + 2 –

1 = 5; 4G + 1G has 
1 1( ;4) ( 1) ( ;4)( ,1)k x k x k−′ ′= =x γ γ  of dimen-

sion 4 (there is non-negligible interaction between 1x  and 

2x  in this experiment, but we restrict the experiment to x-

vectors without interactions, causing no risk of small group 

counts). 

We discuss here the results for four response distri-

butions. Their response probabilities θ ,k 1, 2, ...,k �= =  

6,000, were specified as follows:  
IncExp(10 + 1x + 2x ),  with 1 2(10 )

θ 1 k kc x x

k e
− + += −   

where 0.04599c =  

IncExp(10 + y),  with 
(10 )

θ 1 kc y

k e
− += −   

where 0.06217c =  

DecExp( 1x + 2x ),  with 1 2( )
θ k kc x x

k e
− +=   

where 0.01937c =  

DecExp( y),   with θ kcy

k e
−=   

where 0.03534.c =   
The constant c was adjusted in all four cases to give a 

mean response probability of θ θ / 0.70.UU k �∑= =  In the 

first two, the value 10 (rather than 0) was used to avoid a 

high incidence of small response probabilities θ .k  These 

four options represent contrasting features for the response 

probabilities: increasing as opposed to decreasing, de- 

pendent on x-values only as opposed to dependent on y-

values only. In the second and fourth option, the response is 

directly y-variable dependent, and could hence be called 

“purely non-ignorable”.  

We generated 5,000J =  outcomes ( , ),s r  where s of 

size 1,000n =  is drawn from � = 6,000 by simple random 

sampling and, for every given s, the response set r is 

realized by each of the four response distributions. That is, 

for ,k s∈  a Bernoulli trial was carried out with the 

specified probability kθ  of inclusion in the response set r. 

The Bernoulli trials are independent.  

For each response distribution, for each of the 16 x-

vectors, and for every outcome ( , ),s r  we computed the 

relative deviation CAL
ˆRD ( ) / ,Y Y Y= −  where CALŶ  is given 

by (2.4) and U kY y∑=  is the targeted y-total, known in this 

experimental setting (alternatively, we used CALYɶ  given by 

(2.5) but, as expected, the difference in bias compared with 

CALŶ  is negligible). We also computed the indicators 

, 0,1, 2, 3,iH i =  given by (5.11) and (5.12). Summary 

measures were computed as 

1

1

1
relbias Av(RD) RD ;

1
Av( ) for 0,1,2, 3

J

j

j

J

i ij
j

J

H H i
J

=

=

= =

= =

∑

∑

 

where j indicates the value computed for the thj  outcome, 

1, 2, , 5,000 .j J= =…  For each response distribution, we 

thus obtain the value relbias (which is the Monte Carlo 

measure of the relative bias CAL
ˆ( ( ) ) / )pqE Y Y Y−  and 16 

values of Av( )iH  (which is the Monte Carlo measure of 

( )),pq iE H 0,1, 2, 3,i =  where p stands for simple random 

sampling, and q stands for one of the four response 

distributions. 

Table 10.1 shows, for IncExp(10 + 1x + 2 ),x  relbias in % 

and 3

1Av( ) 10H ×  for the 16 x-vectors. For the cell 1G + 

1G, with vector 1,k =x  all four Av-quantities are zero, and 

relbias is at its highest level, 13.2%. At the opposite 

extreme, the cell 8G + 8G represents the highest level of 
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information; it gives the highest value for 1Av( ),H  and 

relbias is at its lowest value, 0.2%; virtually all bias is 

removed (except for a possible sign difference, 0Av( )H  

and 1Av( )H  were equal for all cells). 

The result (8.4), holding for any response distribution 

and any sampling design, states that the indicator 0H  will 

rank the 4 4 16× =  auxiliary vectors correctly for any 

response distribution (with response probabilities not all 

constant, as noted below). Table 10.1 illustrates (8.4) in 

terms of 1 0| | :H H=  The change, from any one cell to any 

other, in the value of 1Av( )H  (the Monte-Carlo estimate of 

the expected value of 1( )H  is accompanied by a pro-

portional change in the value of relbias. The same 

proportionality was noted for the other three response 

distributions. We could have chosen other response 

distributions to illustrate the same property. 
 
Table 10.1 

Relbias in % and, within parenthesis, the value of 3
1Av( ) 10H ××××  

for 16 auxiliary vectors x .k  Response distribution IncExp (10 +  

1 2 )x + x  
 

Groups 

based on 

1kx  

Groups based on 2kx  

8G 4G 2G 1G 

8G 0.2 (101) 0.5 (99) 1.3 (93) 3.4 (76) 
4G 0.5 (98) 0.9 (96) 1.8 (89) 4.1 (70) 
2G 1.5 (91) 1.9 (88) 3.2 (78) 6.5 (52) 
1G 4.1 (70) 5.0 (64) 7.3 (46) 13.2 (0) 

 

The response distribution with a constant response 

probability kθ  for all k is a special case. The calibration 

estimator CALYɶ  based on any vector kx  then has zero bias 

(very nearly), and this includes the primitive estimator EXPYɶ  

with 1.k =x  Result 8.3 continues to be valid, stating in that 

case that 0 CAL EXP( ) bias( ) bias( ) 0.pqE H Y Y≈ ≈ ≈ɶ ɶ  In the 

context of the simulation in this section, if θ 0.70k =  for all 

k is taken to be an additional response distribution, Table 

10.1 will in all 16 cells show nearly zero values of both 

relbias in % and 3

1Av( ) 10 ,H ×  from the weakest cell 

(1G + 1G) all the way to the cell of the most powerful x-

vector (8G + 8G). There is no bias to be removed by an 

improvement of the x-vector. If in practice the indicator 

1( )H  does not react to an enlargement of the x-vector, there 

is no incentive to seek beyond the simplest vector 

formulation. It could signify one of three possibilities: The 

y-variable in question is not subject to nonresponse bias, or 

that the response probability is almost constant, or that none 

of the available x-vectors is capable of reducing an existing 

bias. 

To save space we do not show the corresponding tables 

for 2Av( )H  and 3Av( ).H  By mathematical necessity, both 

quantities increase in the nested transitions. Not shown 

either are the counterparts of Table 10.1 for the other three 

response distributions. The patterns are similar. 

Table 10.2 for IncExp(10 + 1x + 2 )x  and Table 10.3 for 

IncExp(10 + y) show how 1Av( ),H 2Av( )H  and 3Av( )H  

rank the 16 x-vectors, represented by their value of relbias. 

To measure the success of ranking, we computed the 

Spearman rank correlation coefficient, denoted rancor, 

between relbias and the value of the indicator, based on the 

16 values of each. For 1Av( ),H  the bottom line of the two 

tables shows | | 1,rancor =  for perfect ranking. For these 

data, | |rancor  is near one also for 2Av( )H  and 3Av( )H  

(more generally, the ranking obtained with 2H  and 3H  

may be good, but is data dependent).  

 
Table 10.2 

Value, in ascending order, of relbias in %, and corresponding 
value and rank of 3 3

1 2Av( ) 10 , Av( ) 10H H× ×× ×× ×× ×  and 
3

3Av( ) 10 ,H ××××  for 16 auxiliary vectors. Bottom line: Value of 

Spearman rank correlations, rancor. Response distribution 
IncExp 1 2(10 + )x + x  
 

relbias 3
1Av( ) 10H ××××  3

2Av( ) 10H ××××  3
3Av( ) 10H ××××  

0.2 101 (1) 127 (1) 232 (1) 
0.5 99 (2) 119 (2) 225 (2) 
0.5 98 (3) 118 (3) 224 (3) 
0.8 96 (4) 109 (4) 217 (4) 
1.3 93 (5) 109 (5) 216 (5) 
1.5 91 (6) 105 (6) 213 (6) 
1.8 89 (7) 98 (7) 207 (7) 
1.9 88 (8) 94 (8) 205 (8) 
3.2 78 (9) 80 (11) 192 (9) 
3.4 76 (10) 90 (9) 188 (11) 
4.1 70 (11) 84 (10) 190 (10) 
4.1 70 (12) 77 (12) 175 (13) 
5.0 64 (13) 70 (13) 179 (12) 
6.4 52 (14) 52 (14) 146 (15) 
7.3 46 (15) 46 (15) 156 (14) 
13.2 0 (16) 0 (16) 0 (16) 

Rancor  -1.00  -0.99  -0.99 

 
There is one notable contrast between the results on 

relbias for the two response distributions in Tables 10.2 and 

10.3. The best among the auxiliary vectors leave consid-

erably more bias for the non-ignorable IncExp(10 + y) than 

for IncExp(10 + 1x + 2 ).x  This is not unexpected, and it is 

important to note that considerable bias reduction is 

obtained for the non-ignorable case as well. 

In the simulation, the over-adjustment mentioned in 

Section 4, 0A T∆ > ∆ >  (when EXP( )Yɶ  has positive bias) or 

< < 0A T∆ ∆  (when EXPYɶ  has negative bias), happens for 

some outcomes ( , ).s r  The frequency varies with the 

strength of the auxiliary vector and is different for different 

response distributions. The cell for which this over-

adjustment is most likely to occur is 8G + 8G, the most 

powerful of the 16 auxiliary vectors. For IncExp(10 + 1x  + 

2 ),x  the bias is almost completely removed for cell 

8G + 8G; relbias is only 0.2%. Hence CALYɶ  is close to the 

unbiased FUL , AY ∆ɶ  is near ,T∆  and A T∆ > ∆  happened for 

45.6% of all outcome ( , ).s r  By contrast, for the non-

ignorable case IncExp(10 + y), the incidence of A T∆ > ∆  
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was only 0.1% for the cell 8G + 8G. Although that cell 

brings considerable bias reduction (compared to the 

primitive 1G + 1G), there is bias remaining, and as a 

consequence, A T∆ > ∆  almost never happens. 

We do not show the corresponding tables for 

DecExp( 1x + 2 )x  and DecExp(y). The lowest value of 

rancor was 0.94, recorded for 3Av( )H  in the case of 

DecExp( 1x + 2 ).x  

A question not addressed in Tables 10.2 and 10.3 is: 

How often, over a long series of outcomes ( , ),s r  does a 

given indicator ( )kH x  succeed in pointing correctly to the 

preferred x-vector? To answer this, let 1kx  and 2kx  be two 

vectors selected for comparison. If the absolute value of the 

bias of CAL 2
ˆ ( )kY x  is smaller than that of CAL 1

ˆ ( ),kY x  we 

would like to see that 2 1( ) ( )k kH H≥x x  holds for a vast 

majority of all outcomes ( , ),s r  because then the indicator 

( )H ⋅  delivers with high probability the correct decision to 

prefer 2 .kx  Because ( )kH x  has sampling variability, its 

success rate (the rate of correct indication) depends on the 

sample size, and we expect it to increase with sample size. 

 
Table 10.3 
Value, in ascending order, of relbias in %, and corresponding 

value and rank of 3 3
1 2Av( ) 10 , Av( ) 10H H× ×× ×× ×× ×  and 3Av( )H ××××  

310 ,  for 16 auxiliary vectors. Bottom line: Value of Spearman 
rank correlations, rancor. Response distribution IncExp (10 + )y  
 

relbias 3
1Av( ) 10H ××××  3

2Av( ) 10H ××××  3
3Av( ) 10H ××××  

3.6 74 (1) 91 (1) 165 (1) 
3.9 71 (2) 84 (2) 158 (2) 
4.0 71 (3) 83 (3) 156 (3) 
4.3 68 (4) 76 (5) 149 (5) 
4.4 68 (5) 78 (4) 153 (4) 
4.9 64 (6) 68 (8) 142 (3) 
4.9 63 (7) 72 (6) 146 (6) 
5.3 60 (8) 69 (7) 143 (7) 
5.4 60 (9) 64 (9) 137 (9) 
6.0 55 (10) 59 (10) 132 (10) 
6.2 53 (11) 54 (11) 128 (11) 
7.2 46 (12) 54 (12) 122 (12) 
7.9 41 (13) 41 (14) 111 (13) 
7.9 40 (14) 43 (13) 109 (14) 
9.6 27 (15) 27 (15) 90 (15) 
13.1 0 (16) 0 (16) 0 (16) 

Rancor  -1.00  -0.99  -0.99 

 
We threw some light on this question by extending the 

Monte Carlo experiment: 5,000 outcomes ( , )s r  were 

realized, first with sample size 1,000,n =  then with sample 

size 2,000n =  (the response set r is realized according to 

one of the four response distributions, declaring unit k 

“responding” as a result of a Bernoulli trial with the 

specified probability ).kθ  We computed the success rate as 

the proportion of all outcomes ( , )s r  in which the correct 

indication materializes in a confrontation of two different x-

vectors. Several pairwise comparisons of this kind were 

carried out. Typical results are shown in Table 10.4, for 

IncExp(10 + 1x + 2 ).x  The upper entry in a table cell shows 

the success rate in % for 1,000,n =  the lower entry shows 

that rate for 2,000.n =  Shown in parenthesis is the value of 

relbias for the vectors in question. 

“Severe tests” are preferred, that is, confrontations of 

vectors with a small difference in absolute relbias, because 

the correct decision is then harder to obtain. There is a priori 

no reason why one of the indicators should always 

outperform the others in this study. In the five severe tests in 

Table 10.4, 1H  has, on the whole, better success rates than 

2H  and 3.H  The success rate of 1H  improves by doubling 

the sample size, and tends as expected to be greater when 

the relbias values are further apart. The case 4G + 8G vs. 

8G + 8G compares nested x-vectors, so it is known 

beforehand that 2H  and 3H  give perfect success rates. 
 
Table 10.4 
Selected pairwise comparisons of auxiliary vectors; percentage of 
outcomes with correct indication, for the indicators 1 2H , H  and 

.3H  Within parenthesis, relbias in %. Upper entry: n = 1,000 
lower entry: n = 2,000. Response distribution IncExp (10 +  

1 2 )x + x  
 

Cells compared Percent outcomes with correct indication 

1H  2H  3H  

4G + 8G(0.5) vs. 
8G + 8G(0.2) 

90.0 
96.4 

100.0 
100.0 

100.0 
100.0 

4G + 2G(1.8) vs. 
2G + 8G(1.5) 

66.8 
74.2 

86.0 
89.0 

70.7 
67.4 

1G + 8G(4.1) vs. 
8G + 1G(3.4) 

74.3 
82.8 

70.3 
78.0 

45.0 
43.3 

4G + 1G(4.1) vs. 
2G + 2G(3.2) 

90.6 
97.0 

61.4 
68.8 

83.9 
92.3 

1G + 2G(7.3) vs. 
2G + 1G(6.5) 

77.4 
85.9 

77.4 
85.9 

34.5 
28.8 

 
 

11. Concluding remarks 
 

In this article, we address survey situations where many 

alternative auxiliary vectors (x-vectors) can be created and 

considered for use in the calibration estimator CAL .Yɶ  For any 

given x-vector, a certain unknown bias remains in CAL ;Yɶ  we 

wish by an appropriate choice of x-vector to make that bias 

as small as possible. Hence we examine the bias ratio 

defined by (4.2) and (4.3). The component A∆  of the bias 

ratio was expressed, in (5.8) to (5.10), as product of easily 

interpreted statistical measures. This led us to suggest 

several alternative bias indicators, for use in evaluating 

different x-vectors in regard to their capacity to effectively 

reduce the bias. We studied in particular the indicator 1H  

given by (5.12). It functions very well but is geared to a 

particular study variable y. However, a typical government 

survey has many study variables, and for practical reasons it 

is desirable to use the same x-vector in estimating all y-

totals. A compromise becomes necessary. We argued that 
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the indicator 3H  in (5.12) suits this purpose; it depends on 

the kx  but not on any y-data. A topic for further research is 

to develop other indicators (than 3 )H  for the “many y-

variable situation”. Another topic for further work is to 

examine algorithms for stepwise selection of x-variables 

with the indicator 1,H  other than the one used in Section 9. 
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