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Use of within-primary-sample-unit variances to assess  
the stability of a standard design-based variance estimator 

Donsig Jang and John L. Eltinge 1 

Abstract 

In analysis of sample survey data, degrees-of-freedom quantities are often used to assess the stability of design-based 

variance estimators. For example, these degrees-of-freedom values are used in construction of confidence intervals based on 

t distribution approximations; and of related t tests. In addition, a small degrees-of-freedom term provides a qualitative 

indication of the possible limitations of a given variance estimator in a specific application. Degrees-of-freedom calculations 

sometimes are based on forms of the Satterthwaite approximation. These Satterthwaite-based calculations depend primarily 

on the relative magnitudes of stratum-level variances. However, for designs involving a small number of primary units 

selected per stratum, standard stratum-level variance estimators provide limited information on the true stratum variances. 

For such cases, customary Satterthwaite-based calculations can be problematic, especially in analyses for subpopulations 

that are concentrated in a relatively small number of strata. To address this problem, this paper uses estimated within-

primary-sample-unit (within PSU) variances to provide auxiliary information regarding the relative magnitudes of the 

overall stratum-level variances. Analytic results indicate that the resulting degrees-of-freedom estimator will be better than 

modified Satterthwaite-type estimators provided: (a) the overall stratum-level variances are approximately proportional to 

the corresponding within-stratum variances; and (b) the variances of the within-PSU variance estimators are relatively small. 

In addition, this paper develops errors-in-variables methods that can be used to check conditions (a) and (b) empirically. For 

these model checks, we develop simulation-based reference distributions, which differ substantially from reference 

distributions based on customary large-sample normal approximations. The proposed methods are applied to four variables 

from the U.S. Third National Health and Nutrition Examination Survey (NHANES III). 
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1. Introduction 
 
1.1 Motivating example: Inference for special 

subpopulations in NHANES III  
This work arose from a study of inference for geograph-

ically concentrated subpopulations in the U.S. Third National 

Health and Nutrition Examination Survey (NHANES III). 

For some general background on NHANES III, see National 

Center for Health Statistics (1996). In many analyses, 

NHANES III data are treated as arising from a stratified 

multistage sample design that uses 49 strata and two primary 

sample units (PSUs) per stratum. Consequently, formal 

inferences from NHANES III data (e.g., construction of 

confidence intervals) often use the assumption that the 

associated variance estimators are based on approximately 

49 degrees of freedom and are thus relatively stable. 

However, the Mexican-American subpopulation is 

concentrated in a relatively small number of strata, so 

associated variance estimators may be less stable (i.e., have 

greater sampling variability) than would be indicated by the 

nominal 49 degrees of freedom term. Consequently, it is 

important to use an appropriate estimator of the true degrees 

of freedom associated with variance estimators for such 

subpopulations, and to modify confidence interval calcu-

lations accordingly. Development of an appropriate degrees-

of-freedom estimator can be complicated by moderate or 

severe heterogeneity in the underlying stratum-level 

variances. Such complications arose in the analysis of the 

four NHANES III variables listed in Table 1.1. Section 5 will 

consider inference for the means of these four variables for 

the subpopulation of Mexican-Americans aged 20-29. 

 
Table 1.1 
Four NHANES III variables 
 

Variable Name Description 

BMPWT 
 

HAR3 
 

TCRESULT 
 

HDRESULT 

Weight (kg) 
 

Do you smoke cigarettes now? (0/1) 
 

Serum total cholesterol (mg/dL) 
 

HDL cholesterol (mg/dL) 

 
1.2 Stability of design-based variance estimators  
Suppose we have a population partitioned into L strata, 

with hN  PSUs in stratum h  for 1, 2, ..., .h L=  Under a 
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stratified multistage sampling design, we select hn  PSUs, 

with replacement, and with per-draw selection probability 

hip  for PSU i  within stratum h  where 1 1.hN
i hip=∑ =  Thus, 

a total of 1
L
h hn n=∑=  PSUs are selected. Within selected 

PSU ( , ), hih i n  secondary sample units (SSUs) are selected 

with replacement and with per-draw selection probabilities 

,hijp  where 1 1hiN
j hijp=∑ =  and hiN  is the number of SSUs in 

PSU ( , ).h i  For a given survey item, let hY  be the 

population total for stratum ,h  and define the overall 

population total 1 .L
h hY Y=∑=  The total Y  may correspond 

to a total either for the full population or for a specified 

subpopulation.  

Our goal is to construct a confidence interval for the total 

.Y  Let ˆhijY  be an unbiased estimator of ,hijY  the population 

total for secondary unit j  in primary unit i  in stratum .h  

Then a customary design-based estimator of Y  is Ŷ =  

1
ˆ ,L

h hY=∑  where 1 1
1

ˆ ˆ ;hn
ih h hi hiY n p Y− −
=∑= 1 ˆ

hi hip Y−  is a design 

unbiased estimator of hY  based on data obtained from PSU 

i  in stratum ;h  and 1 1
1

ˆ ˆhin
jhi hi hij hijY n p Y− −
=∑=  is an unbiased 

estimator of ,hiY  the population total for PSU i  in 

stratum .h  

Under the standard condition that sampling is inde-

pendent across strata, the variance of Ŷ  can be written, 

1
ˆ( ) L

h hV Y V=∑=  where ˆVar( ).h hV Y=  Throughout the 

remainder of this paper, we will call the hV  terms the 

stratum-level variances, and we will assume that 2hn ≥  for 

all 1, 2, ..., .h L=  Note that hV  depends on the sample 

design used within stratum ,h  and is distinct from the 

within-stratum variance of element-level Y  values. A 

simple unbiased estimator for ˆ( )V Y  is 1
ˆ ˆ ˆ( ) L

h hV Y V=∑=  

where 1 1 1 2
1

ˆ ˆ ˆ( 1) ( ) ;hn

hh h h hi hi hV n n p Y Y− − −
=∑= − −  see, e.g., 

Wolter (1985, page 44). Note that the estimator ˆhV  is a 

multiple of a sum of squared differences among the terms 
1 ˆ .hi hip Y−  In addition, under regularity conditions the random 

variables 1 ˆ
hi hip Y−  will be approximately normally distributed 

for a given stratum .h  Consequently, the overall stratum-

level variance estimators ˆhV  generally will approximately 

satisfy the following condition.  
(C.1) For 1, 2, ..., ,h L=  the terms 1 ˆ( 1)h h hV n V− −  are 

distributed as independent chi-square random 

variables with 1hn −  degrees of freedom, 

respectively, where 2.hn ≥   
Under condition (C.1), 1ˆ ˆ ˆ{ ( )} ( )V Y dV Y−  has the same 

first and second moments as a chi-square random variable 

with d  degrees of freedom, where d  is the solution to the 

equation,  
2ˆ ˆ ˆ2{ ( )} { ( )}  0V Y V V Y d− =  (1.1) 

or equivalently 

1
def

1 2 2

1

ˆ  ( 1) { ( )}=
L

h h
h

d n V V Y

−

−

=

 
− 

 
∑  (1.2) 

where 1 2
1

ˆ ˆ{ ( )} 2( 1) .L
h h hV V Y n V−
=∑= −  Direct substitution 

of ˆhV  for hV  and ˆ ˆ( )V Y  for ˆ( )V Y  in expression (1.2) leads 

to the Satterthwaite (1946)-type degrees-of-freedom 

estimator, 
1

1 2 2

1

ˆ ˆ ˆ ˆ( 1) { ( )} .
L

S h h

h

d n V V Y

−

−

=

 
= − 

 
∑  (1.3) 

For some general background on ˆSd  and related estimators, 

see, e.g., Smith (1936), Satterthwaite (1941, 1946), Cochran 

(1977, page 96) and Kendall, Stuart and Ord (1983, pages 

91-92). In constructing confidence intervals for a 

subpopulation parameter, Casady, Dorfman and Wang 

(1998) use Bayesian ideas to develop related degrees-of-

freedom measures for a Student’s t - statistic. 

For designs in which hn  is large for all ,h  the error in 

estimation of hV  is relatively small, and ˆSd  can provide a 

satisfactory estimator of expression (1.2). However, many 

large-scale surveys use small ,hn  e.g., 2.hn =  For small-

hn  cases, condition (C.1) and routine algebra lead to the 

expectation result 2 1 2ˆ( ) ( 1) ( 1) .h h h hE V n n V−= − +  This 

implies that the standard Satterthwaite degrees-of-freedom 

estimator ˆSd  can severely underestimate d, and that the cor-

responding confidence interval 1/ 2
ˆ ,1 / 2

ˆ ˆ ˆ{ ( )}
Sd

Y t V Y
−α

±  may 

have a true coverage rate substantially below the nominal 

rate 1 .− α  Consequently, Jang (1996) considered an 

alternative degrees-of-freedom estimator, 

1ˆ ˆ(3 14) (9 ) .mS Sd L L d−= +  (1.4) 

for the two-PSUs-per-stratum design. 
 
1.3 Use of auxiliary stratum-level data  
For cases in which there is moderate heterogeneity 

among the hV  terms, simulation work by Jang (1996) 

indicated that ˆmSd  performs relatively well. However, if 

there is substantial heterogeneity among the stratum 

variances (i.e., if 1L d−  is relatively small), then ˆmSd  may be 

unsatisfactory. The fundamental problem is that when the 

hn  values are relatively small, the estimators 
ˆ ,hV  by 

themselves, do not provide sufficient information regarding 

the relative magnitudes of the true stratum-level variances 

.hV  In some cases, a variance estimator based on auxiliary 

data is expected to be more stable than the customary 

design-based estimator; see e.g., Isaki (1983). Similarly, 

auxiliary sources of information can be used to evaluate the 

relative magnitudes of the variances .hV  

The remainder of this paper will focus on auxiliary 

information provided by relationships between the overall 

stratum-level variances hV  and associated within-PSU 

variances. Recall from Wolter (1985, page 41) the 

decomposition, 

ˆVar( ) ,h Bh WhY V V= +  (1.5) 
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where 1
1Var{ ( ) }hn

iBh h hi hiV n p Y−
=∑=  is the between-PSU vari-

ance, 1 2
1 2( )hN

iWh h hi hiV n p −
=∑= σ  is the within-PSU variance, 

ˆ( PSU , stratum )hi hiY E Y i h= |  and 2

2
ˆVar( PSU ,hi hiY iσ = |  

stratum  ).h  In addition, define 1
1 .L

W h WhV VL
−

=∑=  

Estimators of WhV  can provide useful auxiliary 

information on the relative magnitudes of hV  for two 

reasons. First, for designs with a small hn  and relatively 

large ,hin  the within-PSU variance estimators ˆWhV  may be 

considerably more stable than ˆ .hV  Second, in some 

applications (e.g., some of the examples presented in 

Section 5 below), observed variance estimates are consistent 

with a model under which hV  is proportional to ,WhV  i.e.,  

1h WhV V= β  for all 1, ..., ,h L=  (1.6) 

where 1β  is a fixed constant. The proportionality 

relationship (1.6) would arise if both BhV  and WhV  are 

proportional to a common scale factor, e.g., ( )hY
α  for some 

power .α  Under relationship (1.6), expression (1.2) may be 
rewritten,  

1 2

1 2

1 1

( 1) .
L L

h Wh Wh
h h

d n V V

−

−

= =

   
= −   

   
∑ ∑  (1.7) 

Consequently, given a set of stable within-PSU variance 

estimators ˆ
WhV  and associated variance-of-variance-

estimators � ˆVar( ),WhV  

�{ } ( )1 2
1 2

1 1
ˆ ˆ ˆ ˆ( 1) [ Var( )]

L L

WS h Wh Wh Whh h
d n V V V

−
−

= =
= − −∑ ∑  (1.8) 

is an alternative estimator of .d  

Section 2 considers some of the properties of ˆ .WSd  

Section 3.1 uses errors-in-variables tests to check the 

adequacy of the proportionality condition (1.6). Section 3.2 

presents two related diagnostics for the relationship between 

hV  and auxiliary variables, and for the magnitude of the 

error in the observed auxiliary variables ˆWhV . 

A simulation study in Section 4 explores conditions 

under which the proposed new estimator ˆWSd  may perform 

better than ˆ .mSd  This assessment considers both the 

estimation of d as such, and the performance of confidence 

intervals for .Y  Section 5 applies the proposed estimator to 

four variables from NHANES III, with emphasis on cases 

for which differences between the proposed estimators ˆWSd  

and ˆmSd  have a substantial practical effect on assessment of 

the stability of the variance estimator ˆ ˆ( ).V Y  Section 6 

reviews the methods developed in this paper and considers 

some possible extensions. 

 

 

 

2. An estimator based on auxiliary information 
 
2.1 A within-PSU variance estimator  
A simple estimator of WhV  is 

2 2 2

2
1

ˆ ,ˆ
hn

Wh h hi hi
i

V n p− −

=

= σ∑  (2.1) 

where 1 1 1 2
12

ˆ ˆ( 1) ( ) .ˆ hin
jhi hi hi hij hij hin n p Y Y− − −
=∑σ = − −  Note that 

2

2ˆ hiσ  is approximately unbiased for 2

2hiσ  under a with-

replacement sampling design within PSU i  in stratum ;h  

or under simple random sampling without replacement and 

with a small sampling fraction, 1 .hi hi hif N n−=  Standard sam-

pling theory shows that ˆWhV  is approximately unbiased for 

.WhV  Then an approximately unbiased estimator of 
ˆVar( )WhV  is 

� 1 1 2

1

ˆ ˆ ˆVar( ) ( 1) ( ) ,
hn

Wh h h Whi Wh
i

V n n V V− −

=

= − −∑  (2.2) 

where 1 2 2

2
ˆ ;ˆWhi h hi hiV n p− −= σ  see, e.g., Eltinge and Jang (1996) 

and references cited therein. Note that the overall stratum-

level variance estimators ˆhV  are functions of the sample 

means of  1 ˆ
hij hijp Y−  over PSUs in stratum .h  In addition, the 

estimators ˆWhV  are functions of sample variances of the 
1 ˆ

hij hijp Y−  within the PSU ( , ).h i  Thus, for variables Y  for 

which 1 ˆ
hij hijp Y−  are approximately normally distributed 

within stratum ,h  the estimators ˆhV  and ˆWhV  are approxi-

mately independent. 
 
2.2 Properties of ˆWSd   
In the remainder of this paper, the estimator ˆWSd  defined 

in expression (1.8) will use � ˆVar( )WhV as defined in 

expression (2.2). Also, the remainder of this paper will use 

several asymptotic results. These results will use the 

condition that the number of strata, ,L  is increasing, while 

stratum-level PSU and SSU sample sizes hn  and hm  are 

allowed to remain small. This is in keeping with many 

practical multi-stage designs that use 2hn =  and moderate 

values of .hm  See, e.g., Krewski and Rao (1981) for a 

detailed development of large - L  asymptotic results. The 

proof of Result 2.1 is routine and is thus omitted.  
 
Result 2.1. Assume that ˆ( ) (1)  for  1, 2, 3, 4r

WhE V O r= =  

and define 

1

1

ˆ ˆ
L

W Wh
h

V L V−

=

= ∑  

and (2.3) 

�1 1 2

(2)
1

ˆ ˆ ˆ( 1) { Var( )}.
L

w h Wh Wh
h

V L n V V− −

=

= − −∑  
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Then ˆWV  and (2)
ˆ
WV  are consistent estimators of WV  and 

1 1 2
1( 1) ,L

h h WhL n V− −
=∑ −  respectively. In addition, 1 ˆ

WSL d−  is a 

consistent estimator of 1 .WSL d−  

Section 1 suggested that in some cases, the auxiliary-data 

based estimator ˆWSd  might be more stable than the modified 

Satterthwaite estimator ˆ .mSd  To examine this idea, we will 

compare the variances of ˆWSd  and ˆmSd  under condition 

(C.1) and the following additional assumptions.  
(C.2) For 1,  2,  ..., ,h L= 1 ˆ( 1)Wh h WhV m V− −  are distri-

buted as independent chi-square random vari-

ables with 1hm −  degrees of freedom, respect-

tively, where hm  is the number of SSUs in 

stratum ;h  and are mutually independent of ˆ .hV   
(C.3) For all 1,  2,  ..., ,h L= 2;hn =  and 0hm m=  for 

some fixed positive integer 0 2.m ≥  
 
Arguments similar to those for condition (C.1) indicate that 

condition (C.2) may be satisfied approximately if within a 

given PSU ( , ),h i  the hm  random variables 1 ˆ
hij hijp Y−  are 

approximately independent and identically distributed 

normal random variables. Condition (C.3) restricts attention 

to the common case 2.hn =  In addition, condition (C.3) 

requires that an equal number, 0,m  of secondary units be 

selected within each selected PSU. This allows 

simplification of the resulting approximations for the 

variances of ˆ ,WSd  as presented in Result 2.2. 

 

Result 2.2. Assume conditions (C.1), (C.2), (C.3), and (1.6), 

and define 
2 2

2 2
24 Var( ),A Ba A−= µ µ

2 2

3 3
2 24 Cov( , ),A Bb A B−= µ µ  

and 
2 2

4 4
2Var( ),A Bc B−=µ µ  where 1

12
ˆ ,L

h WhA L V−
=∑= 2B =  

�1 2
1
ˆ ˆ{ Var( )},L

h Wh WhL V V−
=∑ − 2A WVµ =  and 1 2

12 .L
hB WhL V−
=∑µ =  

Then   
(i) the variances of the leading terms in Taylor expansions 

of 1 ˆ( )WSL d d− −  and 1 ˆ( )mSL d d− −  are, respectively, 

VLW a b c= − +  

 and 

( )
2

0
0

0

4( 1)1 9
V 1 .

9 3 14 3( 2)
Lm

mL
m a b c

L m

   −
= − − +  + +   

 

(ii) for all 0 lim ( , , ),Lm g a b c→∞≥ lim limL Lm L LWV V→∞ →∞≥  

where  

{ }
1

2 2 2

( , , ) {2(3 3 4 )}

11 144 144 153 288 216 216 .

g a b c a b c

c a b c ab ac bc

−= − +

+ + + − + −

 

 

 

(iii) for 0 10,m ≥ lim limL Lm L LWV V→∞ →∞≥  regardless of 

the values of the limiting moments 
2 2

lim ( , ,L A B→∞ µ µ  
1 3 1 4

1 1, ).L L
h hWh WhL V L V− −
= =∑ ∑   

Result 2.2 indicates that for large ˆ, WSL d  may be 

preferable to ˆ ,mSd  provided: (1) the proportionality 

condition (1.6) is satisfied; and (2) the secondary unit 

sample size 0m  exceeds the lower bound given by 

( , , )g a b c  (thus ensuring relatively small variances of the 
ˆ ).WhV  This motivates the use of within-PSU variances to 

assess the stability of survey variance estimators, especially 

under sample designs with small numbers of PSUs per 

stratum. For some additional discussion of this point, and 

some specific diagnostics to check the stability of ˆ ,WhV  see 

Eltinge and Jang (1996) and references cited therein. For the 

four cases considered in Table 1.1 and studied further in 

Section 4 below, ( , , )g a b c  is equal to 4.7, 4.3, 4.6, and 4.8 

respectively, while the NHANES III application had the 

mean of the hm  values approximately equal to 22. In 

addition, we are treating WhV  values as fixed, and Result 2.2 

depends on the limiting moments of these WhV  terms. 

Suppose that /Wh WV V  had the same moments as / ,F f  

where F  follows a chi-square distribution on f  degrees of 

freedom. Then f = ∞  corresponds to the case in which 

Wh WV V=  for all ,h  which corresponds to the case in 

which the true d  in (1.1) equals the customary value of 

.n L−  

 
3. Testing the proportionality condition  

3.1 An errors-in-variables model for hV  and WhV   
Development of the alternative estimator ˆWSd  in Section 

1, and evaluation of its properties in Section 2, depended 

heavily on the proportionality condition (1.6). One may test 

the adequacy of this condition through the following steps. 

First, note that condition (1.6) is a special case of the 

following model,  
(C.4) For all 1, 2, ..., ,h L=  

0 1h Wh hV V q= β + β +  (3.1) 

 where 0 1 and β β  are constants, and hq  is an 

equation error with mean zero and variance 

.qqhσ   
Second, recall that hV  and WhV  are unknown quantities, for 

which we have the unbiased estimators ˆhV  and ˆ ,WhV  

respectively. Using the errors-in-variables model notation in 

Fuller (1987), define the estimation errors 

ˆ ˆ        and        .h h h h Wh Whe V V u V V= − = −  (3.2) 
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Under conditions (C.1) and (C.2), the vector ( , )h he u ′  is 
distributed with a mean vector equal to (0,0)′  and a 
variance-covariance matrix equal to diag( , )eeh uuhσ σ  where 

1 2( 1) 2eeh h hn V−σ = −  and 1 2( 1) 2 .uuh h whm V−σ = −  Under 

the additional condition (C.3), these variance terms simplify 

to 22eeh hVσ =  and ( ) 1 2

0 1 2 .uuh Whm V
−

σ = −  

Expressions (3.1) and (3.2) define an errors-in-variables 

regression model with heterogeneous measurement error 

variances and non-normal errors. In addition � ˆVar( )WhV  

defined in expression (2.2) is an unbiased estimator of ,uuhσ  

and thus provides identifying information for the parameters 

0 1,β β  and qqhσ  in model (3.1) – (3.2). A direct application 

of Fuller (1987, pages 187-189) with equal weights then 

gives the consistent estimators (for increasing ),L  

1

0 1
1

1

2

1 .
1 1

ˆˆ ˆˆ ,

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ,ˆ

L

h W
h

L L

Wh W uu Wh W h
h h

L V V

V V V V V

−

=

−

= =

β = − β

 
β = − − σ − 

 

∑

∑ ∑  (3.3)

 

and  

1 1

.
1

1 2

0 1

2

1

ˆ max 0, ( 1)

ˆ ˆˆ ˆ{( 2) ( )

ˆ( )} ,ˆ ˆ

L

qq h
h

h Wh

eeh uuh

L n

L L V V

− −

=

−


σ = −



− − β − β


− σ + β σ 

∑

 (3.4)

 

where  

�
. 1

ˆVar( ),ˆ
L

uu Whh
V

=
σ = ∑ 1

1

ˆ ˆ ,
L

W Whh
V L V

−
=

= ∑  

and (3.5) 

1 2ˆ2( 1)ˆ eeh h hn V−σ = +  

from condition (C.1). In addition, direct application of Fuller 

(1987, page 188) leads to variance estimators 0
ˆˆ ( )V β  and 

1
ˆˆ ( ),V β  say; details are available from the authors. 
 
3.2 Two related diagnostics  
In keeping with condition (C.4), the proposed estimator 

ˆ
WSd  is intended for cases in which the ˆWhV  provide useful 

auxiliary information on the relative magnitudes of the 

overall stratum-level variances .hV  To identify such cases, 

one simple diagnostic is the ratio 1 2

1
ˆˆ ˆ ˆ ˆ{ ( )} { ( )h WhV V V V− β +  

},ˆ qqhσ  i.e., the ratio of estimators of the variances of the 

approximate distributions of ˆ
h hV V−  and 1

ˆ ,Wh hV Vβ −  

respectively, under model (3.1) – (3.2). If this ratio is 

substantially less than unity, then use of ˆWSd  may be 

indicated. 

 

In addition, the performance of the estimator ˆWSd  

depends heavily on the magnitude of .ˆ uuσ  relative to the 

variability of the true within-PSU variances .WhV  Define an 

estimator of the reliability ratio (Fuller 1987, page 3) 

1

2 2

.
1 1

ˆ ˆˆ ˆˆ max 0, ( ) ( ) ˆ
L L

xx Wh W Wh W uu
h h

V V V V

−

= =

     
κ = − − −σ    

     
∑ ∑ . 

The values of ˆ xxκ  are between 0 and 1; and values of 

ˆ xxκ  close to unity indicate relatively small errors in the 

estimation of within-PSU variances. Conversely, small 

values of ˆ xxκ  (e.g., ˆ 0.7)xxκ <  may indicate that the 

methods of Sections 3.1 – 3.2 may not perform well, due to 

the relatively large sampling errors in the auxiliary 

information ˆ .WhV  The numerical work in Sections 4 and 5 

below will consider these diagnostics further. 

The work in this section is based on the assumption that 

. 0.qqσ >  One may develop related diagnostics applicable 

to the case of no equation errors, i.e., . 0;qqσ =  details are 

available from the authors.  
4. A simulation study  

4.1 Design of the study  
We now use a simulation study to evaluate the properties 

of our degrees-of-freedom estimators, and related variates, 

under moderate-sample-size conditions. We set up the 

simulation procedure as follows. 

We considered four sets of hV  values from the NHANES 

III example for the Mexican-American subpopulation 

introduced in Section 1.1. Those four sets of hV  are the 

estimated ˆhV  values from the variables BMPWT, HAR3, 

TCRESULT and HDRESULT, respectively, and are listed 

in Table 4.1. For each case, we used 0 1( , ) (0, 1)β β =  and 

0,qqσ =  in keeping with the results of Section 3, and thus 

.Wh hV V=  Then, for each 1,  ...,  ,h L=  we obtained 

10,000 realizations of the initial estimators 1 2 1
ˆ ˆ ˆ( , , ,h h WhY Y V  

2
ˆ )WhV  by assuming that the ˆhiY  are distributed as a normal 

random variable with mean zero and variance 2
-1

;hV  that 
1 ˆ( 1)Wh hi WhiV m V− −  is distributed as a chi-square random 

variable with 1him −  degrees of freedom, where 11him =  

for all h  and ;i  and the ˆhiY  and ˆWhiV  are mutually 

independent. Note that in our data from NHANES III, the 

average number of secondary units for each PSU i  in 

stratum h  is about 11. For each replication, we computed 
2

1 2
ˆ ˆ ˆ( )h h hV Y Y= −  and 1

1 2
ˆ ˆ ˆ2 ( ),Wh Wh WhV V V−= +  and then 

carried out an errors-in-variables regression of ˆhV  on ˆWhV  

with measurement error variance � ˆVar( )ˆ uuh WhVσ =  using 

formula (2.2). This produced the coefficient estimators 

0 1
ˆ ˆ( , ),β β  and the degrees-of-freedom estimators ˆ

mSd  

and ˆWSd . 
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Table 4.1 
“True” variances hV  used in simulation studies 
 

Stratum Case 1 Case 2 Case 3 Case 4 

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

3 1.56E-04 7.67E-05 1.45E-02 1.76E-02 

4 2.01E-04 3.57E-06 5.60E-02 4.55E-03 

5 2.82E-04 4.88E-07 1.54E-03 2.91E-03 

6 4.36E-04 0.00E+00 3.73E-03 8.60E-04 

7 7.30E-04 2.14E-06 1.69E-02 1.13E-05 

8 8.80E-04 1.30E-05 2.72E-02 1.40E-03 

9 1.65E-03 1.16E-06 9.24E-03 1.35E-04 

10 1.70E-03 9.46E-07 2.24E-03 1.77E-03 

11 2.73E-03 0.00E+00 2.54E-04 1.32E-03 

12 2.91E-03 5.40E-06 2.75E-02 6.40E-03 

13 4.95E-03 3.73E-07 1.15E-02 5.38E-03 

14 7.25E-03 2.90E-04 3.75E-02 6.97E-02 

15 9.06E-03 9.81E-05 3.46E-01 7.58E-01 

16 1.14E-02 7.47E-06 1.54E-02 4.75E-03 

17 2.69E-02 9.65E-05 7.99E-02 1.01E-03 

18 4.00E-02 1.12E-04 1.44E-01 1.77E-01 

19 4.27E-02 2.68E-06 8.59E-02 3.88E-02 

20 6.05E-02 7.57E-06 2.68E+00 7.18E-02 

21 6.45E-02 1.17E-04 1.65E-01 4.52E-04 

22 1.08E-01 1.05E-04 5.41E-01 1.98E-03 

 

 

4.2 Coverage rates of t-based confidence intervals  
For the four specified cases, Table 4.2 presents the 

simulated non-coverage probabilities obtained for t - based 

confidence intervals for the population mean Y  that used 

the corresponding ˆ.d  For the severely heterogeneous cases 

(Cases 3 and 4), none of the degrees of freedom measures 

(not even the true )d  leads to confidence intervals with 

coverage rates meeting the nominal rates 1 .− α  That is, in 

extreme cases, the general Satterthwaite approach can be 

problematic for construction of confidence intervals, 

regardless of whether ˆ, ,mSd d  or ˆWSd  is used to determine 

the t  multiplier. 

For Cases 1 and 2, the hV  values display less severe 

heterogeneity than in Cases 3 and 4. Table 4.2 shows that 

the simulated coverage probabilities with the true d  for 

these two cases are slightly above 0.95. This overcoverage 

may be attributable to the fact that the variance estimator 
ˆ ˆ( )V Y  is not distributed exactly as a multiple of a 2

dχ  

random variable, due to the heterogeneity of the .hV  Use of 

the standard degrees-of-freedom term n L−  or the 

modified estimator ˆmSd  produces confidence intervals with 

coverage rates below the nominal level of 95%. On the 

other hand, use of our auxiliary-data-based term ˆWSd  gives 

simulation based coverage rates close to the nominal 0.95 

level. 

Tables 4.3a and 4.3b display the empirical distributions of 

d̂  and ˆ2 d
t  for the estimators ˆmSd  and ˆ .WSd  The simulated 

standard deviation of ˆ
WSd

t  is smaller than that of ˆ .
mSd

t  In 

addition, the mean and median of ˆ
WSd

t  are slightly larger than 

those of ˆ .
mSd

t  This is consistent with the undercoverage of 

the intervals based on ˆ .
mSd

t  Thus, under conditions similar to 

those for Cases 1 and 2 (or under conditions with less 

heterogeneity of ),hV  it is worthwhile to consider the use of 
ˆ
WSd  as a degrees-of-freedom estimator. 

 
5. Application to a health survey 

 
5.1 Preliminary model checks  
We applied our proposed methods to the NHANES III 

data described in Section 1. It is important to check the 

modeling assumptions before we apply the proposed 

stability measures. First, for the Mexican-American sub-

population described in Section 1, Table 5.1 gives values of 

ˆ xxκ  for the four variables which all have ˆ xxκ  values greater 

than 0.7. 

Second, Figure 5.1 displays the scatter plots of ˆhV  

against ˆWhV  for the four variables with equal scales used for 

the horizontal and vertical axes. It shows that a linear 

relationship for the corresponding variables is plausible 

even if the relation would not be perfect and there are some 

outliers. Consequently, those four variables might be appro-

priate for the auxiliary-data-based method developed in 

Sections 2 and 3. 
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Table 4.2 

Observed non-coverage rates for nominal 95% confidence intervals with =h WhV V  in simulation study 
 

 Case 1 Case 2 Case 3 Case 4 

             True dS 6.26 6.04 2.38 2.20 

Non-Coverage with 
sd

t  0.0428 0.0443 0.0162 0.0164 

Non-Coverage with n Lt −  0.0744 0.0788 0.1220 0.1263 

Non-Coverage with ˆ
mSd

t  0.0552 0.0567 0.0911 0.0905 

Non-Coverage with ˆ
WSd

t  0.0428 0.0466 0.0224 0.0220 

 

 

 
Table 4.3a 
Means and quantiles of degrees-of-freedom estimators ˆmSd  and ˆ :WSd  Cases 1 and 2 
 

Cases True d Est. 1Mean d̂  SD( d̂ ) 2Q(0.05) Q(0.25) Q(0.50) Q(0.75) Q(0.95) 

1 6.26 ˆ
mSd  9.33 3.33 4.45 6.86 9.01 11.41 15.30 

  ˆ
WSd  6.52 0.82 5.06 5.99 6.57 7.10 7.78 

2 6.04 ˆ
mSd  8.87 2.95 4.35 6.69 8.72 10.97 13.99 

  ˆ
WSd  6.34 0.96 4.67 5.69 6.42 7.06 7.80 

 

1 Mean denotes the average of the estimates, taken across all 10,000 replications. 
2 Q

.
( )  indicates the quantile of the estimator, taken across all 10,000 replications. 

 

 

 
Table 4.3b 
Simulated non-coverage probabilities; and means and quantiles of t-multipliers for nominal 95% confidence intervals: 
Unequal true variances, cases 1 and 2 
 

Cases Est. 1 ˆ1 − α− α− α− α  2
M(2 )ααααt  (2 )ααααSD t  3Q(0.05) Q(0.25) Q(0.50) Q(0.75) Q(0.95) 

1 ˆ
mSd  0.0552 4.62 0.36 4.26 4.38 4.52 4.75 5.37 

 ˆ
WSd  0.0428 4.83 0.16 4.64 4.72 4.80 4.90 5.13 

 n - L 0.0744 4.15       

 True dS 0.0428 4.85       

2 ˆ
mSd  0.0567 4.66 0.36 4.29 4.41 4.55 4.78 5.41 

 ˆ
WSd  0.0466 4.87 0.21 4.64 4.72 4.83 4.97 5.28 

 n - L 0.0788 4.15       

 True dS 0.0443 4.89       
1 ˆ1− α  is the simulated non-coverage probability of confidence intervals computed using estimated d.f.’s 
2 

0.975M(2 )t  is the average of twice of the 97.5% t-percentile value 
3 Q (.)  indicates the quantile of ˆ0.975,

2 ,
d

t  taken across all replications. 

 

 

 
Table 5.1 

,κ̂κκκ xx  estimates of model parameters, model diagnostics, and degrees of freedom estimates for four NHANES III variables 
(Mexican-American (Age 20-29) subgroup) 
 

Variables κ̂κκκ xx  
0
ɶββββ  se(

0
ɶββββ ) 

1
ɶββββ  se(

1
ɶββββ ) Simulation based 

p-value for 

0 0: 0β =β =β =β =H  

Simulation based  

p-value for 

0 1: 1β =β =β =β =H  

σ̂σσσqq.  ˆqqr  ˆ
mSd  ˆ

WSd  

BMPWT 0.75 -0.0013 0.0039 1.135 0.5429 0.3815 0.3541 -0.000 -0.43 15.49 10.04 

HAR3 0.75 -0.000009 0.000012 1.095 0.3991 0.4229 0.3400 0.000 -0.83 14.94 8.30 

TCRESULT 0.88 -0.146 0.0493 2.879 0.6252 0.0606 0.2259 -0.178 -0.77 5.88 6.59 

HDRESULT 0.90 -0.042 0.0098 6.650 0.9988 <0.0001 0.1506 -0.017 -0.91 5.45 5.93 
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           Figure 5.1 Plot of ˆWhV  vs. ˆhV  for M-A (Age 20-29), Variable = BMPWT 

 

5.2 An ad hoc test of 0σ =σ =σ =σ =qq.  under condition (C.1)  
For all four variables considered in Table 5.1, the direct 

estimates ˆ qqσ  of equation error variance (3.4) were negative 

or close to zero. That suggests that our 2χ -based estimator 

of eehσ  as given in Section 3.1 might be too conservative or 

that .qqσ  is indeed close to zero. This suggests that we need 

to re-examine the distributional assumption (C.1) in the 

NHANES III example. To do this, we considered the 

simulated distribution of q̂qr
def

= ˆ / ,ˆqq eeσ σ  where division by 

ˆ eeσ  is used to avoid scale problems. The conditions and 

simulation design were as described in Section 4.1.  

Table 5.2 reports results for ˆ eeσ  from expression (3.5), 

and ˆ qqσ  computed from expression (3.4) with 0β̂  set equal 

to zero and with 1
ˆ ,β  computed from expression (3.3). Table 

5.2 reports the mean, standard deviation and selected 

quantiles of the simulated distribution of .q̂qr  for the four 

variables. Table 5.3 reports the corresponding quantities for 

,q̂qr  computed from ˆ qqσ  given by expression (3.4) and with 

0β̂  and 1β̂  computed from expression (3.3). 

The results reported in Tables 5.2 and 5.3 lead to an ad 

hoc test of 0: 0.qqH σ =  Specifically, if the observed ratio 

q̂qr  falls above the upper 0.95 simulated quantile, then the 

assumption that 0qqσ =  may be problematic. Conversely, 

an observed q̂qr  below the .05 simulated quantiles in Tables 

5.2 or 5.3 might indicate that ˆ eehσ  is conservative, or may 

indicate violation of other parts of condition (C.1). 

From Table 5.1, the values of q̂qr  for the variables are 

between -0.91 to -0.43. Except for HDRESULT, we do not 

have any strong evidence of violation of the model 

assumptions. However, for HDRESULT, the ratio q̂qr =  
-0.91 falls between the 0.01 and 0.05 quantiles reported in 

Table 5.2 and 5.3 for case 4. In general, values of q̂qr  that 

fall above the 0.95 or 0.99 quantiles of Tables 5.2 or 5.3 

would be consistent with values of .qqσ  greater than zero. 

The observed value q̂qr = -0.91 is not necessarily consistent 
with . 0,qqσ >  but may indicate violation of one or more 

conditions in (C.1)-(C.4). 
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Table 5.2 

Means and quantiles of ˆ ˆ ˆ= -1σ σσ σσ σσ σqq ee qq.r ˆ
0
( 0)ββββ =  

 

Cases 1M( ˆqqr ) SD( ˆqqr ) 2Q(0.01) Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) Q(0.99) 

 

1 

 

2 

 

3 

 

4 

 

-0.50 

 

-0.48 

 

-0.19 

 

-0.20 

 

0.66 

 

0.68 

 

0.42 

 

0.39 

 

   -1.71   -1.30    -1.15    -0.99   -0.79     0.16     0.54     0.60    0.65 

 

   -1.72   -1.32    -1.16    -0.99   -0.76     0.23     0.57     0.62    0.66 

 

   -1.01   -0.84    -0.74    -0.53   -0.20     0.17     0.38     0.46    0.55 

 

   -1.00   -0.82    -0.72    -0.51   -0.20     0.11     0.34     0.44    0.56 
 

1 M denotes the average of the estimates, taken across all 10,000 replications. 
2 Q(.) indicates the quantile of the estimator, taken across all 10,000 replications. 

 
Table 5.3 

Means and quantiles of ˆˆ ˆ
-1 σσσσσσσσqq ee qq.=r  

 

Cases 1M( ˆqqr ) SD( ˆqqr ) 2Q(0.01) Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) Q(0.99) 

 

1 

 

2 

 

3 

 

4 

 

-0.56 

 

-0.56 

 

-0.24 

 

-0.24 

 

0.62 

 

0.62 

 

0.42 

 

0.38 

 

   -1.85   -1.34   -1.17   -1.00   -0.80       0.05    0.38     0.44    0.52 

 

   -1.91   -1.37   -1.18   -1.00   -0.78     0.06    0.35     0.42    0.50 

 

   -1.16   -0.90   -0.79   -0.57   -0.22     0.12    0.29     0.36    0.45 

 

   -1.09   -0.87   -0.75   -0.53   -0.22     0.06    0.25     0.33    0.44 
 

1 M denotes the average of the estimates, taken across all 10,000 replications. 
2 Q(.) indicates the quantile of the estimator, taken across all 10,000 replications. 

 

 

 
5.3 Coefficient estimates and degrees-of-freedom 

estimates  
Because our data were consistent with . 0qqσ =  for all 

four cases, we used the methods of Fuller (1987, page 124) 

to produce estimates of 0β  and 1β  appropriate for a model 

(3.1) – (3.2) with no equation error; details are available 

from the authors. Table 5.1 also reports the resulting 

coefficient estimates 0βɶ  and 1,βɶ  and their standard errors, 

0( )se βɶ  and 1( ).se βɶ  Recall from Section 3.1 that under 

model (3.1) – (3.2), if 0 0β =  and 1 0,β ≠  then each 

stratum variance hV  is a constant multiple of the within-

PSU variance ,WhV  and ˆWSd  in (1.8) may be an appropriate 

estimator of d. Section 5.2 already considered the condition 

. 0.qqσ =  To test the null hypothesis 0 0: 0,H β =  we use 

the test statistic, 0 0 0/ ( ).t se= β βɶ ɶ  In some practical errors-

in-variables work, quantities like 0t  are compared with a 

standard normal or t  reference distribution. However, 

simulation work based on the four cases from Section 4.1 

indicated that the null distribution of 0t  deviated 

substantially from these customary reference distributions. 

This is due to the very skewed distributions of the response 

variables ˆhV  used in the errors-in-variables regression. 

Consequently, we used standard methods to develop a 

simulation-based reference distribution for 0.t  Column 7 of 

Table 5.1 reports the resulting left-tailed p - value. (Due to 

negative point estimates 0,βɶ  we have chosen to report the 

left-tailed p - values here. In other cases, it may be of 

interest to report right-tailed or two-tailed p - values for 

0 ).β  There is strong evidence against 0 0: 0H β =  for the 

variable HDRESULT, and the moderate evidence against 

0 0: 0H β =  for TCRESULT. Thus, it may not be appro-

priate to use ˆWSd  for these two variables. Now consider the 

slope coefficient 1,β  and suppose that 0qqhσ =  so 0hq =  

with probability one. Then expressions (1.5) and (3.1), and 

the nonnegativity of BhV  implies that 0 Bh h WhV V V≤ = − =  

0 1( 1) .WhVβ + β −  Consequently, if 0 0,β =  then 1 1β ≥  

and 1 1β =  is equivalent to .h WhV V=  This final condition 

is of practical interest because some authors have noted 

cases in which BhV  is small relative to ,WhV  or equivalently, 

.h WhV V≐  See for example, Wolter (1985, page 46). To test 

0 1: 1H β =  against the one-sided alternative 1 1: 1,H β >  

we used the statistic 1 1 1( 1) / ( )t se= β − βɶ ɶ . For reasons 

similar to those for 0,t  we developed simulation-based 

reference distributions for 1t  under each of Cases 1 through 

4. Column 8 of Table 5.1 reports the resulting one-tailed 

p -values. 

The last two columns of Table 5.1 report the degree-of-

freedom estimators ˆmSd  and ˆ .WSd  For HAR3 and BMPWT, 
ˆ
mSd  gives substantially larger values than ˆ .WSd  
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6. Discussion 
 
This paper has considered estimation of a degrees-of-

freedom term d used to quantify the variability of a standard 

design based variance estimator ˆ ˆ( ).V Y  The fundamental 

issue is that under a design involving heterogeneous 

stratum-level variances and small numbers of primary 

sample units selected per stratum, the Satterthwaite-type 

estimator ˆmSd  may perform poorly. We developed an 

alternative estimator ˆWSd  based on within-primary-sample 

unit variance estimators ˆ .WhV  This alternative estimator is a 

solution to an unbiased estimating equation (1.1) for ,d  

provided the proportionality condition (1.6) is satisfied. 

Also, the variance of the approximate distribution of ˆWSd  is 

smaller than that of ˆ ,mSd  provided the number of secondary 

sample units selected within each primary unit is large, in 

the sense defined by Result 2.2. 

Section 3 developed errors-in-variables methods for 

testing the adequacy of the proportionality condition (1.6), 

and suggested some related diagnostics. The simulation 

study in Section 4, in conjunction with the data analysis in 

Section 5, indicated that under moderate amounts of 

heterogeneity, ˆWSd  can perform better than ˆ ,mSd  in terms of 

the distributional properties of these estimators of ,d  and in 

terms of the coverage rates and widths of associated 

confidence intervals for the population totals .Y  However, 

as one would expect from standard large-sample theory, 

neither estimator performs well under severe heterogeneity. 

One could in principle consider use of the errors-in-

variables estimators 0 1 .
ˆ ˆ ˆ( ,  ,  ),qqβ β σ  in conjunction with the 

ˆ
hV  and ˆ ,WhV  to construct an alternative estimator of d  that 

will be consistent under the general errors-in-variables 

model (3.1) - (3.2), and will not require the restrictive 

condition (1.6). However, simulation results in Jang (1996) 

indicated that the resulting estimator ˆ ,EIVd  say, did not 

perform well under the design conditions used in Section 5. 

The principal results of Sections 1 through 3 extend 

readily from the within-primary-unit variances WhV  to more 

general auxiliary variables .hX  For such extensions, the 

principal issues remain the adequacy of the proportionality 

approximation (1.6); and the amount of sampling error in 

the auxiliary estimators ˆ ,hX  say, relative to the error in the 

basic stratum-level variance estimator ˆ .hV  
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Appendix A 

 
Proof of result 2.2 
 
Consider a nonlinear function 1 2B A−  of two estimators 

A  and B  with means Aµ  and ,Bµ  respectively. Then, the 

variance of the leading term of a Taylor expansion of 
1 2B A−  is 

2 3 4

2 3 4

4
Var( ) 4 Cov( , ) Var( )A A A

B B B

A A B B
µ µ µ

− +
µ µ µ

.(A.1) 

Now we define the following two estimators: 1

1
ˆ
SL d− =  

1 2
1 1B A−  and 1 1 2

2 2 2
ˆ ,SL d B A− −=  where 1

11
ˆ ,L

h hA L V−
=∑= 1B =  

1 2
1
ˆ ,L

h hL V−
=∑  1

12
ˆ ,L

h WhA L V−
=∑=  and 1 2

12
ˆ{L

h WhB L V−
=∑= −  

� ˆVar( )}.WhV  

Assume conditions (C.1), (C.2) and (C.3). In addition, 

define  
1

ˆ
ˆ

SLd
F   and  

2
ˆ

ˆ
SLd

F  to be the leading terms of Taylor 

expansions of 
1 1

1 1 2

1
ˆ
S B AL d− −− µ µ  and 

2 2

1 1 2
2

ˆ ,S B AL d− −− µ µ  

respectively. Also, recall that if D  is distributed as a chi-

square random variable on d  degrees of freedom, then 

( ) 2 ,V D d= 3( ) ( 2)( 4),E D d d d= + +  and 2( )V D =  
8 ( 2) ( 3).d d d+ +  Then the corresponding components of 

1
ˆ

ˆVar( )
SLd

F  and 
2

ˆ
ˆVar( )

SLd
F  in (A.1) are 

2 2

1
1

1 2 2

2 0
1

2 4

1
1

2 2 4

2 0 0
1

2 3

1 1

1

Var( ) 2 ,

Var( ) 2( 1)

Var( ) 96 ,

Var( ) 8( 1) ( 1)

Cov( , ) 12 ,

L

h
h

L

Wh
h

L

h
h

L

Wh
h

L

h

h

A L V

A m L V

B L V

B m m L V

A B L V

−

=

− −

=

−

=

− −

=

−

=

=

= −

=

= − +

=

∑

∑

∑

∑

∑

 

and (A.2) 

1 2 3

2 2 0
1

Cov( , ) 4( 1) .
L

Wh
h

A B m L V− −

=

= − ∑  

Since we assume 2hn =  and 0hm m=  for all h =  
1, 2, ..., ,L  we have 

1 1 1

1
ˆ ˆ(3 14) (9 )mS SL d L L L d− − −= +  (A.3) 

and 

1 1

2
ˆ ˆ
WS SL d L d− −= . (A.4) 
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Under condition (1.6), 1 1 2,A Aµ = β µ  

2

1 1 2

2

1 0 1 2

1 2 4

1 0 0 1 2

3 ,

Var( ) ( 1) Var( ),

Var( ) 12( 1) ( 1) Var( )

B B

A m A

B m m B
−

µ = β µ

= − β

= + − β

 

and 

3

1 1 0 1 2 2Cov( , ) 3( 1) Cov( , )A B m A B= − β  (A.5) 

Substituting (A.5) into (A.1) leads to, 

1

2

2

2

2

2

2

ˆ

2

0 22

3

0 2 23

42

0
24

0

2

0
0 0

0

ˆVar( )

4
( 1) Var( )
9

4
( 1)Cov( , )

9

4( 1)
Var( )

27( 1)

4( 1)1 1
( 1) ( 1)
9 9 27( 2)

SLd

A

B

A

B

A

B

F

m A

m A B

m
B

m

m
m a m b c

m

µ
= −

µ

µ
− −

µ

µ−
+

+ µ

−
= − − − +

+

 

(A.6)

 

where 1 ˆVar( ) .WSL d a b c− = − +  With large ˆ
ˆ,Var(F )

mSLd
L =  

1 2

0 0 0 0( 1) ( 1) {3( 2)} 4( 1) .m a m b m m c−− − − + + −  Thus for 

large ˆ ˆ 0 0
ˆ ˆ, ( ) ( ) ( 2) ( 2)

mS WSLd Ld
L V F V F m a m b− − − − +≐  

1 2

0 0 0{3( 2)} (4 11 2) .m m m c−+ − −  Therefore, limL LmV→∞ −  
lim 0L LWV→∞ ≥  if 1

0 lim {2(3 3 4 )} {11Lm a b c c−
→∞≥ − + +  

2 2 2144 144 153 288 216 216 }.a b c ab ac bc+ + − + −  In 

particular, lim limL Lm L LWV V→∞ →∞−  becomes greater than 

or equal to zero when 0 10m =  regardless of values of a, b, 

and c. Because it is an increasing function in 0,m  for all 

values of 0 10,m ≥ lim lim .L Lm L LWV V→∞ →∞≥  
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