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Rescaled bootstrap for stratified multistage sampling 

John Preston 1 

Abstract 

In large scaled sample surveys it is common practice to employ stratified multistage designs where units are selected using 

simple random sampling without replacement at each stage. Variance estimation for these types of designs can be quite 

cumbersome to implement, particularly for non-linear estimators. Various bootstrap methods for variance estimation have 

been proposed, but most of these are restricted to single-stage designs or two-stage cluster designs. An extension of the 

rescaled bootstrap method (Rao and Wu 1988) to stratified multistage designs is proposed which can easily be extended to 

any number of stages. The proposed method is suitable for a wide range of reweighting techniques, including the general 

class of calibration estimators. A Monte Carlo simulation study was conducted to examine the performance of the proposed 

multistage rescaled bootstrap variance estimator. 
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1. Introduction 

 
Stratified multistage sampling designs are especially 

suited to large scaled sampled surveys because of the 

advantage of clustering collection effort. Various methods 

exist for variance estimation for these complex survey de-

signs. The most commonly used methods are the linearization 

(or Taylor) method, and resampling methods, such as the 

jackknife, balance repeated replication and the bootstrap. The 

linearization method can be quite cumbersome to implement 

for complex survey designs as it requires the derivation of 

separate variance formulae for each non-linear estimator. 

Some approximations are normally required for the variance 

of non-linear functions, such as ratios and correlation and 

regression coefficients, and functionals, such as quantiles. 

On the other hand, the various resampling methods 

employ a single variance formulae for all estimators. The 

replication methods can reflect the effects of a wide range of 

reweighting techniques, including calibration, and adjust-

ments due to provider non-response and population under- 

coverage. The jackknife and balance repeated replication 

methods are only applicable to stratified multistage designs 

where the clusters are sampled with replacement or the first-

stage sampling fractions are negligible. A number of 

different bootstrap methods for finite population sampling 

have been proposed in the literature, including the with-

replacement bootstrap (McCarthy and Snowden 1985), the 

rescaled bootstrap (Rao and Wu 1988), the mirror match 

bootstrap (Sitter 1992a), and the without-replacement 

bootstrap (Gross 1980; Bickel and Freedman 1984; Sitter 

1992b). A summary of these bootstrap methods can be found 

in Shao and Tu (1995).  

Most of these bootstrap methods are restricted to single-

stage designs or multistage designs where the first-stage 

sampling units are selected with replacement or the 

first-stage sampling fractions are small in most strata. 

However, in many large scaled sample surveys it is common 

practice to employ highly stratified multistage designs where 

units are selected using simple random sampling without 

replacement at each stage. Some typical examples of these 

types of surveys are employer-employee surveys, such as the 

Survey of Employee Earnings and Hours (ABS 2008), and 

school-student surveys, such as the National Survey on the 

Use of Tobacco by Australian Secondary School Students 

(White and Hayman 2006). 

McCarthy and Snowden (1985) proposed an extension of 

their with-replacement bootstrap to two-stage sampling in 

the special case of equal cluster sizes and equal within cluster 

sample sizes, while Rao and Wu (1988) and Sitter (1992a) 

have given extensions of their rescaled bootstrap and mirror 

match bootstrap methods to two-stage cluster sampling. 

More recently, Funaoka, Saigo, Sitter and Toida (2006) 

proposed two Bernoulli-type bootstrap methods, the general 

Bernoulli bootstrap and the short cut Bernoulli bootstrap, 

which can easily handle multistage stratified designs where 

units are selected using simple random sampling without 

replacement at each stage. The general Bernoulli bootstrap 

has the advantage that it can handle any combination of 

sample sizes, but it requires a much larger number of random 

number generations than the short cut Bernoulli bootstrap. 

In this paper, an extension of the rescaled bootstrap 

procedure to stratified multistage sampling where units are 

selected using simple random sampling without replacement 

at each stage is proposed. In Section 2, the notation for 

stratified multistage sampling is introduced. In Section 3, the 

extension of the rescaled bootstrap estimator to multistage 

sampling is described. The main findings of a simulation 

study are reported in Section 4. Some concluding remarks 

are provided in Section 5. 
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2. Stratified multistage sampling 
 

For simplicity, the case of stratified three-stage sampling 

is presented. Consider a finite population U  divided into 

H  nonoverlapping strata 1{ , ..., },HU U U=  where hU  is 

comprised of 1hN  primary sampling units (PSU’s). At the 

first-stage, a simple random sample without replacement 

(SRSWOR) of 1hn  PSU’s are selected with selection 

probabilities 1 1 1/hi h hn Nπ =  within each stratum .h  

Suppose selected PSU i  in stratum h  is comprised of 2hiN  

secondary sampling units (SSU’s). At the second-stage, a 

SRSWOR of size 2hin  SSU’s are selected with selection 

probabilities 2 2 2/hij hi hin Nπ =  within each selected PSU. 

Suppose selected SSU j  in selected PSU i  in stratum h  is 

comprised of 3hijN  ultimate sampling units (USU’s). At the 

third-stage, a SRSWOR of size 3hijn  USU’s are selected 

with selection probabilities 3 3 3/hijk hij hijn Nπ =  within each 

selected SSU. 

The objective is to estimate the population total Y =  
31 2

1 1 1 1 ,hijh hi
NN NH

h i j k hijky= = = =∑ ∑ ∑ ∑  where hijky  is the value for the 

variable of interest y  for USU k  in SSU j  in PSU i  in 

stratum .h  An unbiased estimate of Y  is given by: 

31 2
31 2

1 1 1 1 11 2 3

ˆ ˆ
hijh hi

nn nH H
hijh hi

h hijk
h h i j kh hi hij

NN N
Y Y y

n n n= = = = =

= =∑ ∑ ∑ ∑ ∑  

where 1

11 1
ˆ ˆ( / ) ,hn

ih h h hiY N n Y=∑= 2

12 2
ˆ ˆ( / ) hin

jhi hi hi hijY N n Y=∑=  

and 3

13 3
ˆ ( / ) .hijn

khij hij hij hijkY N n y=∑=  This estimator can also 

be written as 31 2

1 1 1 1
ˆ ,hijh hi

nn nH
h i j k hijk hijkY w y= = = =∑ ∑ ∑ ∑=  where hijkw =  

1 2 3 1 1 2 2 3 3( / ) ( / ) ( / )hi hij hijk h h hi hi hij hijw w w N n N n N n=  is the 

sampling weight for USU k  in SSU j  in PSU i  in 

stratum .h  

An unbiased estimate of ˆVar ( )Y  is given by (Särndal, 

Swensson and Wretman 1992): 

1

1 2

2
21

1 1
1 1

2
21 2

2 2
1 11 2

2
3 21 2

3 3
1 1 11 2 3

ˆ ˆVar ( ) (1 )

(1 )

(1 )

h

h hi

H
h

h h
h h

nH
h hi

hi hi
h ih hi

n nH
hijh hi

hij hij
h i jh hi hij

N
Y f s

n

N N
f s

n n

NN N
f s

n n n

=

= =

= = =

= −

+ −

+ −

∑

∑ ∑

∑ ∑ ∑  (2.1)

 

where 1 1 1( / ),h h hf n N= 2 2 2( / ),hi hi hif n N= 3 3 3( / ),hij hij hijf n N=  

1

1 1
ˆ ˆ / ,hn

ih hi hY Y n=∑= 2

1 2
ˆ ˆ / ,hin

jhi hij hiY Y n=∑= 3

1 3/ ,hijn

khij hijk hijy y n=∑=  

12 2
11 1

ˆ ˆ( ) /( 1),hn
ih hi h hs Y Y n=∑= − −  22 2

12 2
ˆ ˆ( ) /( 1)hin

jhi hij hi his Y Y n=∑= − −  

and 32 2
13 3( ) / ( 1).hijn

khij hijk hij hijs y y n=∑= − −  

 

 

3. Rescaled bootstrap for stratified  

       multistage sampling 
 

Rao and Wu (1988) proposed a rescaling of the standard 

bootstrap method for various sampling designs including 

stratified sampling. Since the rescaling factors are applied to 

the survey data values, this method is only applicable to 

smooth statistics. Rao, Wu and Yue (1992) presented a 

modification to this rescaled bootstrap method where the 

rescaling factors are applied to the survey weights, rather 

than the survey data values. This modified rescaled 

bootstrap method is equivalent to the original rescaled 

bootstrap method, but has the added advantage that it is 

applicable to non-smooth statistics as well as smooth 

statistics. Kovar, Rao and Wu (1988) showed that when 

using a bootstrap sample size of * 1h hn n= −  the rescaled 

bootstrap estimator performed well for smooth statistics. 

Although bootstrap samples are usually selected with 

replacement, Chipperfield and Preston (2007) modified the 

rescaled bootstrap method to the situation where the 

bootstrap samples are selected without replacement. Under 

this without replacement rescaled bootstrap method it can be 

shown that the choice of either * / 2h hn n=     or *

hn =  

/ 2hn    is optimal, where the operators  x  and  x  

round the argument x  down and up respectively to the 

nearest integer. The choice of * / 2h hn n=     has the 

desirable property that the bootstrap weights will never be 

negative. 

For simplicity, the case of stratified three-stage sampling 

is presented, but the proposed procedure can easily be 

extended to any number of stages. The without replacement 

rescaled bootstrap procedure for stratified three-stage 

sampling is as follows:  
(a) Draw a simple random sample of *

1hn  PSU’s without 

replacement from the 1hn  PSU’s in the sample. Let 1hiδ  be 

equal to 1 if PSU i  in stratum h  is selected and 0 

otherwise. Calculate the PSU bootstrap weights: 

* 1
1 1 1 1 1*

1

1 h
hi hi h h hi

h

n
w w

n

 
= − λ + λ δ 

 
 

where * *

1 1 1 1 1(1 ) /( ).h h h h hn f n nλ = − −   
(b) Within each of the PSU’s in the sample, draw a simple 

random sample of *

2hin  SSU’s without replacement from the 

2hin  SSU’s in the sample. Let 2hiδ  be equal to 1 if SSU j  

in PSU i  in stratum h  is selected and 0 otherwise. 

Calculate the conditional SSU bootstrap weights: 
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*

2

1 1
2 1 1 1* *

1 1

1 1 2
2 1 2 1 2* * *

1 1 2

1

hij

hi h
hij h h hi

hi h

h h hi
hi hi hi hi hij

h h hi

w
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w

w n

n n n

n n n
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− λ + λ δ




− λ δ +λ δ δ 


 

 

where * *

2 2 1 2 2 2(1 ) /( ).hi hi h hi hi hin f f n nλ = − −   
(c) Within each of the SSU’s in the sample, draw a simple 

random sample of *
3hijn  USU’s without replacement from 

the 3hijn  USU’s in the sample. Let 3hijkδ  be equal to 1 if 

USU k  in SSU j  in PSU i  in stratum h  is selected and 0 

otherwise. Calculate the conditional USU bootstrap weights: 

*

3

21 1
3 1 1 1* * *

1 2 1

1 1 2
2 1 2 1 2* * *

1 1 2

1 2
3 1 2* *

1 2
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3 1 2 3* * *
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where 
* *

3 3 1 2 3 3 3(1 ) / ( ).hij hij h hi hij hij hijn f f f n nλ = − −   
(d) Calculate the bootstrap estimates: 

31 2
* * *

1 1 1 1

ˆˆ ˆ, ( )
hijh hi

nn nH

hijk hijk
h i j k

Y w y g Y
= = = =

= θ =∑∑∑ ∑  

where * * * *
1 2 3 .hijk hi hij hijkw w w w=   

(e) Independently repeat steps (a) to (d) a large number of 

times, ,B  and calculate the bootstrap estimates, (1)ˆ ,θ  
(2) ( )ˆ ˆ, ..., .Bθ θ   

(f) The bootstrap variance estimator of θ̂  is given by: 

2

* *
ˆ ˆ ˆVar ( ) ( ( ))E Eθ = θ − θ  (3.1) 

or the Monte Carlo approximation: 

( ) 2

1

1ˆ ˆ ˆVar ( ) ( )
1

B
b

bB =

θ = θ − θ
−
∑  

where ( )
1

ˆ ˆ / .B b
b B=∑θ = θ  

It is shown in the Appendix that the multistage rescaled 

bootstrap variance estimator for stratified three-stage 

sampling as defined by (3.1) reduces to the standard 

unbiased three-stage variance estimator (2.1) in the case of 

θ̂  being a linear estimator. The choice of *

1 1 / 2 ,h hn n=     

*

2 2 / 2hi hin n=     and *
33

/ 2hijhij
nn =     will be optimal and 

will have the desirable property that the bootstrap weights 

will never be negative. 

The proposed procedure can easily be extended to   

any number of stages by adding terms of the form 
1 1* * *
1 1( ( / ) ) ( ( / ) ) ( / )R R

r rR r r r R r r r R R Rn n n n n n− −
= =∏ ∏−λ δ + λ δ δ  

at each stage, ,R  to the bootstrap weight adjustments, where 
1* *
1( ) (1 ) / ( ).R

rR R r R R Rn f f n n−
=∏λ = − −  

Yeo, Mantel and Liu (1999) presented an enhancement 

to the rescaled bootstrap which accounted for adjustments 

made to the design weights, such as post-stratification. For 

example, consider a simple case of non-integrated cali-

bration using auxiliary information for two-stage stratified 

sampling (Estevao and Särndal 2006), which has the dual 

objectives of producing estimates for both a first-stage 

variable of interest ( )1 1hi U hiY y∈∑=  as well as a second-

stage variable of interest, ( )2 2 .hij U hijY y∈∑=  Assume there 

exists:  
(i) a set of p  first-stage auxiliary variables 1hix  for which 

the population totals ( )1 1hi U hi∈∑=X x  are known, and 

where the population totals are generated from a list frame 

of PSU’s for which the 1hix  are known for every PSU in the 

population; and 
 

(ii) a set of q  second-stage auxiliary variables 2hijx  for 

which the population totals ( )2 2hij U hij∈∑=X x  are known, 

where the population totals are acquired from an external 

source.  
The auxiliary variables can be used to form the first-stage 

and second-stage calibration estimators: 

 
1

CAL1 1 1
( )

ˆ
hi hi

hi s

Y w y
∈

= ∑ ɶ    

2

CAL2 12 2
( )

ˆ
hij hij

hij s

Y w y
∈

= ∑ ɶ    

where the first-stage calibration weights, 1 ,hiwɶ  and the 

combined first-stage and second-stage calibration weights, 

12 ,hijwɶ  are given by: 

    
1

1

1 1 1 1 1
( )

1

1 1 1 1

( )

1

T

hi hi hi hi
hi s

T

hi hi hi hi

hi s

w w w

w

∈

−
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∑

∑

ɶ X x

x x x  

 

2

2
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−
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ɶ X x
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Then the multistage rescaled bootstrap method can easily 

be modified in a similar manner to handle these calibration 

estimators by replacing step (d) in the procedure as follows:  
(d) Calculate the first-stage and second-stage calibrated 

bootstrap weights in the same manner as the first-stage and 

second-stage calibrated weights: 

  
( )

( )

1

1

* * *

1 1 1 1 1

1

*

1 1 1 1

1

T

hi hi hi hi
hi s

T

hi hi hi hi

hi s

w w w

w

∈

−

∈

  
= + −    

 
     

∑

∑

ɶ X x

x x x

  

( )

( )

2

2

* * * * *

12 1 2 2 1 2 2

1

* *

1 2 2 2 2

1

.

T

hij hi hij hi hij hij
hij s

T

hi hij hij hij hij

hij s

w w w w w

w w

∈

−

∈

  
= + −    

 
     

∑

∑

ɶ X x

x x x

  

The first-stage and second-stage calibrated bootstrap 

estimates are calculated as: 

 

1

* *

CAL1 1 1
( )

ˆ
hi hi

hi s

Y w y
∈

= ∑ ɶ    

2

* *

CAL2 12 2
( )

ˆ .hij hij
hij s

Y w y
∈

= ∑ ɶ    

This procedure can easily be modified to any type of 

calibration and extended to any number of stages. This 

modification of the rescaled bootstrap takes into account 

adjustments made to the design weights due to calibration. 

Ideally all adjustments made to the design weights, 

including adjustments due to provider non- response and 

population under-coverage should also be made to the 

bootstrap weights. 

 
4. Simulation study 

 
A Monte Carlo simulation study was conducted to 

examine the performance of the multistage rescaled 

bootstrap variance estimator. The study was restricted to 

stratified two-stage sampling. The simulation study was 

based on ten artificial populations, each of which was 

stratified into H = 5 strata, with 1hN = 50 first-stage units 

within each stratum, and 2hiN = 40 second-stage units 

within each first-stage unit.  

Firstly, the first-stage auxiliary variable 1hix  for each 

first-stage unit i  in stratum h  was generated from the 

normal distribution 2

1 1 1 1( , (1 ) / ).x h x b x b x bN µ − ρ σ ρ  Sec-

ondly, the second-stage auxiliary variable, 2 ,hijx  and the 

second-stage target variables, 2hijy  and 2 ,hijz  for each 

second-stage unit j  within first-stage unit i  in stratum h  

were then generated from the multivariate normal 

distribution 3 2 2( , )hi hiN µ Σµ Σµ Σµ Σ  where 2hiµµµµ  is the mean vector: 

2

2 2

2

x hi

hi y hi

z hi

µ 
 
 = µ
 
 µ 

µµµµ  

with 2 2 2 1 ,x hi y hi z hi hixµ = µ = µ =  and 2hiΣΣΣΣ  is the 

variance-covariance matrix: 

2

2 2 2 2 2 2 2

2
2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2

x hi xy hi x hi y hi xz hi x hi z hi

hi xy hi x hi y hi y hi yz hi y hi z hi

xz hi x hi z hi yz hi y hi z hi z hi

 σ ρ σ σ ρ σ σ
 
 = ρ σ σ σ ρ σ σ
 
 
ρ σ σ ρ σ σ σ  

ΣΣΣΣ

 

with 2 2 2 2
2 2 2 2 2 2(1 ) / .x hi y hi z hi w hi w hi w hiσ = σ = σ = − ρ σ ρ  

The parameter values that were kept stable across all ten 

populations were 1 25 ( 1),x h hµ = × + 2

1b hσ = 10, 2

2w hiσ =  

100, 2 2xy hi xz hiρ = ρ = 0.75 and 2yz hiρ = 0.50. The para-

meter values that were varied across the ten populations 

were 1 ,hf  the first-stage sampling fractions, 2 ,hif  the 

second-stage sampling fractions, 1b hρ  and 2 .w hiρ  These 

parameter values are presented in Table 1.  

 
Table 1 
Characteristics of simulation populations 
 

 1hf  2hif  bρρρρ  wρρρρ  

Pop I 0.1 0.1 0.75 0.75 

Pop II 0.1 0.1 0.25 0.75 

Pop III 0.1 0.5 0.75 0.75 

Pop IV 0.1 0.5 0.25 0.75 

Pop V 0.1 0.5 0.25 0.25 

Pop VI 0.5 0.1 0.75 0.75 

Pop VII 0.5 0.1 0.75 0.25 

Pop VIII 0.5 0.1 0.25 0.25 

Pop IX 0.3 0.3 0.75 0.25 

Pop X 0.3 0.3 0.25 0.25 

 
The parameters of interest used in the simulation study 

were the population mean, ,yµ  the population ratio, yzR =  

/ ,y zµ µ  the population correlation coefficient, yzρ =  

/ ,yz y zσ σ σ  the population regression coefficient, yzβ =  
2/ ,yz yσ σ  and the population median, .yM  

In order to estimate these parameters of interest using the 

multistage bootstrap variance estimators, a total of S =  

20,000 independent two-stage simple random samples were 

selected without replacement from each of the ten artificial 

populations. In addition, a grand total of T = 100,000 

independent two-stage simple random samples were selected 

without replacement from each of the ten artificial 
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populations in order to estimate the true population variances 

for the parameters of interest. The multistage bootstrap 

variance estimators were calculated using B = 100 bootstrap 

samples. 

The accuracy of the multistage bootstrap variance 

estimators were compared using the relative biases (RB) and 

the relative root mean square error (RRMSE). These 

measures were calculated as: 

        
*

1

1 1 ˆ ˆ ˆRB (Var ( ) Var ( ))
ˆ ˆVar ( )

S

s
s

Y Y
Y S =

 
= − 

 
∑  

2

*

1

1 1 ˆ ˆ ˆRRMSE (Var ( ) Var ( ))
ˆ ˆVar ( )

S

s

s

Y Y
SY =

= −∑  

where 1 2
1

ˆ ˆ ˆVar ( ) ( )T
t tY T Y Y−
=∑= −  is the estimated true 

population variance, and *
ˆVar ( )sY  are the multistage 

bootstrap variance estimators for the ths  simulation sample. 

The multistage rescaled bootstrap variance estimator 

(MRBE) was compared against the single-stage rescaled 

bootstrap variance estimator (SRBE) and the multistage 

general Bernoulli bootstrap variance estimator (BBE) 

proposed by Funaoka et al. (2006), with bootstrap samples 

using the non-calibration estimation weights, hijw =  

1 2 .hi hijw w  The relative biases and relative root mean square 

errors of MRBE, SRBE and BBE using the non-calibration 

estimation weights for the ten artificial populations are 

given in Tables 2 and 3. 

In the case of linear functions, such as means, and non-

linear functions, such as ratios, correlation coefficients and 

regression coefficients, the MRBE performed better than the 

SRBE and BBE with respect to relative bias and relative 

root mean square error. While the MRBE performed 

consistently well across all ten artificial populations, the 

SRBE only performed well for artificial populations III, IV 

and V, where the first-stage sampling fractions were small 

1( hf = 0.1) and the second-stage sampling fractions were 

large 2( hif = 0.5), and the BBE only performed well for 

artificial populations VI, VII and VIII, where the first-stage 

sampling fractions were large 1( hf = 0.5) and the second-

stage sampling fractions were small 2( hif = 0.1). These 

sampling fractions were similar to the first-stage and 

second-stage sampling fractions used in the simulation 

study presented in Funaoka et al. (2006). The different 

levels of correlation between the first-stage units, and 

between the second-stage units within the first-stage units, 

controlled by varying the parameters bρ  and ,wρ  had little 

impact on the performance of the variance estimators. 
 

 
 
 

 
Table 2 
Relative bias (%) of variance estimators 
 

 Mean ( )yµµµµ  Mean ( )zµµµµ  Ratio ( )yzR  

 MRBE SRBE BBE MRBE SRBE BBE MRBE SRBE BBE 

Pop I -0.28 -6.73 27.10 0.42 -6.63 27.32 0.00 -9.07 36.22 

Pop II -0.05 -2.21 11.83 0.59 -1.64 12.54 -0.43 -9.26 36.40 

Pop III -0.79 -2.63 3.62 -0.93 -2.66 3.40 -0.17 -5.30 5.19 
Pop IV -0.23 -0.52 3.60 -0.18 -0.46 3.61 0.53 -4.65 5.98 

Pop V 0.15 -1.60 4.55 0.15 -1.64 4.54 0.52 -4.85 6.41 

Pop VI 0.70 -39.18 -0.34 0.65 -39.36 -0.28 1.57 -46.40 1.30 
Pop VII 0.19 -46.19 -0.26 -0.06 -46.48 -0.57 -0.27 -48.19 -0.73 

Pop VIII 0.37 -38.62 -0.41 0.23 -39.36 -0.46 -0.26 -47.93 -0.62 

Pop IX 0.42 -20.85 -7.76 -0.51 -20.03 -8.41 0.13 -23.13 -8.87 
Pop X -0.56 -12.35 -6.08 0.70 -10.87 -6.93 -0.72 -23.70 -9.51 

 Correlation 

Coefficient ( )yzρρρρ  

Regression 

Coefficient ( )yzββββ  

 

Median ( )yM  

 MRBE SRBE BBE MRBE SRBE BBE MRBE SRBE BBE 

Pop I -2.31 -10.23 32.17 -0.08 -9.05 36.41 19.04 -19.86 33.21 

Pop II -1.51 -8.41 29.65 0.05 -8.74 36.41 19.29 2.42 40.85 

Pop III 0.36 -4.37 5.69 0.05 -5.12 5.42 7.50 4.28 9.72 
Pop IV 2.18 -0.60 7.17 0.28 -5.05 5.70 17.40 16.17 34.37 

Pop V 0.79 -2.71 5.95 0.26 -5.40 6.34 8.29 4.78 11.49 

Pop VI 0.32 -46.67 0.14 0.89 -46.59 0.69 13.57 -33.56 9.15 
Pop VII -0.07 -46.78 -0.39 -0.21 -47.85 -0.60 14.68 -38.16 11.86 

Pop VIII 0.31 -44.25 -0.27 -0.09 -47.54 -0.55 2.09 -38.90 -0.64 

Pop IX -0.93 -23.02 -9.30 -0.20 -23.48 -9.20 8.08 -17.23 -1.97 
Pop X -0.82 -19.35 -8.24 -1.02 -23.89 -9.75 2.10 -13.84 -5.46 

 

Note: The largest simulation error on the relative biases was less than 0.7%. 
 
 

 

 

 



232 Preston: Rescaled bootstrap for stratified multistage sampling 

 

 

Statistics Canada, Catalogue No. 12-001-X 

In the case of non-smooth statistics, such as medians, 

both the MRBE and the BBE tended to overestimate the 

true population variances, while the SRBE tended to 

underestimate the true population variances. Furthermore, 

the relative root mean square errors for medians were up 

to 3 times larger than the relative root mean square errors 

for means. The MRBE performed better than the BBE for 

the artificial populations I to V where the first-stage 

sampling fractions were smaller 1( hf = 0.1), while the 

BBE performed slightly better than the MRBE for the 

artificial populations VI to X where the first-stage 

sampling fractions were larger 1( hf = 0.3 or 0.5). 

This overestimation of the multistage rescaled boot-

strap for medians was similar to the findings shown in the 

studies by Kovar et al. (1988) and Rao et al. (1992) for 

the single-stage rescaled bootstrap. It should be noted that 

the original rescaled bootstrap introduced by Rao and Wu 

(1988) was developed only for smooth statistics, such as 

means, ratios, and correlation and regression coefficients. 

The MRBE was examined using the calibration 

estimation weights, 1 2 ,hij hi hijw w w=ɶ ɶ  which satisfy the 

calibration constraint ( ) 2 1 2 2 2,shij hi hij hijw w x X∈∑ =ɶ  where 

( )2 2hij U hijX x∈∑=  is the population total for the second-

stage auxiliary variable. The relative biases and relative 

root mean square errors of the MRBE using the 

calibration estimation weights for the four artificial 

populations II, IV, VII and IX are given in Table 4. 

 

 
Table 3 
Relative root mean square error (%) of variance estimators 
 

 Mean ( )yµµµµ  Mean ( )zµµµµ  Ratio ( )yzR  

 MRBE SRBE BBE MRBE SRBE BBE MRBE SRBE BBE 

Pop I 31.9 32.1 44.6 31.7 31.8 44.4 31.8 32.3 51.4 

Pop II 33.9 33.8 38.2 33.4 33.3 38.1 32.2 32.9 51.7 

Pop III 33.8 33.8 35.9 33.0 33.0 35.0 33.0 33.1 35.1 
Pop IV 35.3 35.3 37.4 35.2 35.2 37.3 32.8 32.8 35.0 

Pop V 32.0 31.9 34.2 34.3 34.2 36.5 33.0 33.1 35.6 

Pop VI 16.4 40.7 16.5 16.4 40.9 16.5 16.5 47.5 16.5 
Pop VII 16.1 47.4 16.4 16.1 47.8 16.4 16.1 49.0 16.1 

Pop VIII 16.3 40.3 16.5 16.7 40.9 16.3 16.2 48.8 16.1 

Pop IX 19.2 26.7 20.0 19.3 26.3 20.0 19.2 28.6 20.2 
Pop X 19.8 22.4 20.2 19.9 21.6 20.3 19.1 29.0 20.6 

 Correlation 

Coefficient ( )yzρρρρ  

Regression 

Coefficient ( )yzββββ  

 

Median ( )yM  

 MRBE SRBE BBE MRBE SRBE BBE MRBE SRBE BBE 

Pop I 47.8 46.3 68.7 36.6 37.2 55.3 88.7 80.1 89.8 

Pop II 48.4 47.1 66.6 37.4 37.9 55.6 93.4 91.0 115.9 

Pop III 35.9 35.6 38.4 37.5 37.6 39.9 80.4 80.3 81.1 
Pop IV 42.6 42.2 45.4 38.0 38.0 40.3 97.5 96.6 127.3 

Pop V 40.3 40.0 43.3 37.3 37.5 40.1 31.5 30.7 63.3 

Pop VI 21.6 48.4 21.7 16.9 47.8 17.0 55.3 51.4 52.0 
Pop VII 21.4 48.4 21.3 16.9 49.0 16.8 53.5 51.4 51.4 

Pop VIII 21.6 46.3 21.5 17.0 48.6 16.9 41.8 49.7 40.3 

Pop IX 21.5 29.4 22.5 20.5 29.9 21.6 46.1 42.7 42.7 
Pop X 22.7 27.8 23.4 20.6 30.2 21.9 39.7 38.9 37.9 

 
Table 4 
Relative bias (%) and relative root mean square error (%) of rescaled bootstrap variance estimator 
 

 
yµµµµ  yzR  yzρρρρ  yzββββ  yM  

Relative Bias (%) 

Pop II -0.42 -0.29 -1.51 -0.08 20.98 

Pop IV 0.40 0.49 1.83 0.08 18.28 
Pop VII -0.22 -0.24 -0.03 -0.28 12.24 

Pop IX 0.62 0.19 -1.00 -0.20 7.24 

Relative Root Mean Square Error (%) 
Pop II 32.6 32.4 48.4 37.3 97.8 

Pop IV 32.8 32.8 44.6 37.9 99.4 

Pop VII 16.2 16.1 21.5 16.9 50.0 
Pop IX 19.1 19.2 21.6 20.5 43.8 

Note: The largest simulation error on the relative biases was less than 0.6%. 
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The relative biases and relative root mean square errors of 

the MRBE using the calibration estimation weights were 

similar to those using the non-calibration estimation weights. 

 
5. Conclusion 

 
This paper extends the rescaled bootstrap procedure to 

multistage sampling where units are selected using simple 

random sampling without replacement at each stage. Under 

the proposed multistage rescaled bootstrap method, the 

bootstrap samples are selected without replacement and 

rescaling factors are applied to the survey weights. This 

proposed method is relatively simple to implement and 

requires considerably less random number generations than 

the multistage general Bernoulli bootstrap method. The 

proposed method is also suitable for a wide range of 

reweighting techniques, including calibration, and adjust-

ments due to provider non-response and population under- 

coverage. Furthermore, the results of the Monte Carlo 

simulation study indicate that the multistage rescaled boot-

strap performs much better than the single-stage rescaled 

bootstrap and the multistage Bernoulli bootstrap for smooth 

statistics, such as means, ratios, and correlation and re-

gression coefficients.  

 
Appendix 

 
In this Appendix it is shown that the multistage rescaled 

bootstrap variance estimator for stratified three-stage sam-

pling reduces to the standard unbiased three-stage variance 

estimator (2.1) in the case of θ̂  being the linear estimator, 
31 2* *

1 1 1 1
ˆ .hijh hi

nn nH
h i j k hijk hijkY w y= = = =∑ ∑ ∑ ∑=  The bootstrap variance 

estimator of *Ŷ  is given by: 

* *

1* 2* 3*
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1* 2* 3* 1* 2* 3*

ˆ ˆVar ( ) Var ( ( ( )))
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E E Y E E Y
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Using standard results on the expectation and variance 

with respect to the SRSWOR bootstrap sampling and some 

tedious but straightforward algebra, the components of 

bootstrap variance estimator are given below. The 

conditional expectation of *Ŷ  given 3s  is 
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and the conditional variance of *Ŷ  given 3s  is 
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The conditional expectation of *

3*
ˆ( )E Y  and *

3*
ˆVar ( )Y  

given 2s  are 
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and the conditional variance of *

3*
ˆ( )E Y  given 2s  is 
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Finally, the conditional expectation of *

2* 3*
ˆ(Var ( ))E Y  

and *

2* 3*
ˆVar ( ( ))E Y  given 1s  are 
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which are equal to the third and second terms of (2.1) 

respectively, and the conditional variance of *

2* 3*
ˆ( ( ))E E Y  

given 1s  is 

2
* 21

1* 2* 3* 1 1
1 1

ˆVar ( ( ( ))) (1 )
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h
h h
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E E Y f s

n=

= −∑  

which is equal to the first term of (2.1). 
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