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Abstract 

This paper proposes an approach for small area prediction based on data obtained from periodic surveys and censuses. We 

apply our approach to obtain population predictions for the municipalities not sampled in the Brazilian annual Household 

Survey (PNAD), as well as to increase the precision of the design-based estimates obtained for the sampled municipalities. 

In addition to the data provided by the PNAD, we use census demographic data from 1991 and 2000, as well as a complete 

population count conducted in 1996. Hierarchically non-structured and spatially structured growth models that gain strength 

from all the sampled municipalities are proposed and compared. 
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1. Introduction 
 
Like many other countries, the demand for detailed and 

updated small area statistics has been steadily growing in 

Brazil. This increasing demand is motivated by the need to 

have a more precise picture of subregions and has been 

driven by issues of distribution, equity and disparity. For 

instance, there may exist subregions or subgroups that are 

not keeping up with the overall average in certain respects. 

Therefore, there is a need to identify such regions and to 

have statistical information at that geographical level before 

taking any possible remedial action. Besides these national 

requirements, local authorities are faced with the need of 

having reliable estimates, such as demographic charac-

teristics, for analysis, planning and administration purposes.  

In Brazil, one important example of the demand for 

reliable estimates is related to how constitutionally mandated 

federal revenue sharing is apportioned annually to the 

various municipalities (Brazil is a federated republic made 

up of states and the Federal District. The states are divided 

into municipalities, which share characteristics of cities and 

counties - they can contain more than one urban area, but 

they have a single mayor and municipal council). The 

predicted number of inhabitants in a municipality is used by 

the federal government as a criterion to distribute funding. 

Hence, there is a need to obtain reliable municipal popu-

lation forecasts in order to fairly apply this criterion, 

regulated by federal law.  

An important source of demographic data is the annual 

Household Survey (PNAD). However, this survey is not 

designed to produce estimates at the municipal level. In 

other words, apart from a few municipalities, the municipal 

sample sizes are not large enough to yield acceptable 

standard errors when the direct survey estimates are used. 

Furthermore, a considerable number of municipalities are 

not sampled at all.  

The current approach to obtain municipal population 

estimates is based on making prediction for a larger area at 

first, and then using some auxiliary information to allocate 

the total predicted population to the municipalities. In turn, 

prediction for a larger area is done by assuming that birth, 

mortality and migration rates are the same for all 

municipalities. The major drawback of this approach is that 

it relies on the assumed model evolution. It does not take 

into account all uncertainties and does not provide, in 

general, error measures of the estimates.  

The small area estimation problem has received attention 

in the statistical literature due to the growing demand for 

detailed statistical information from the public and private 

sectors. An excellent and updated account of methods and 

applications of small area estimation can be found in Rao 

(2003). The main source of small area data is provided by 

periodic surveys whose sample sizes are not large enough to 

provide reliable estimates for the areas. One way of tackling 

this problem is to gain strength from all areas and through 

other sources of related data. As stated in Pfeffermann 

(2002), the sources of data suitable for this task can be 

classified into two categories: data obtained from other 

similar areas with respect to the characteristic of interest and 

past data obtained for the characteristic of interest and 

auxiliary information. In our demographic context, the main 

source of related data is provided by the 1991 and 2000 

censuses and a complete count of the population carried out 

in 1996.  

The aim of this work is to obtain estimates of the 

municipal populations based on survey data provided by the 

PNAD and census data. A non-structured hierarchical 

model is proposed and its fitness and predictive power are 
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evaluated. We also consider a spatially structured hier-

archical model, in the spirit of Moura and Migon (2002), 

since the population per area and its growth pattern might be 

related to the development of its neighboring areas. For the 

sake of simplicity, from now on we respectively call the 

non-structured hierarchical and spatially structured hier-

archical models as the Hierarchical model and Spatial 

model.  

In Section 2 the main data sources used in this work are 

described. In Section 3, the proposed models and a model 

selection criteria are presented. Applications with real and a 

simulated data are presented in Section 4. Finally, Section 5 

contains a brief summary with an outline for future research. 

 
2. Data set 

 
The input data for the models introduced in Section 3 are 

taken from the annual Household Surveys (PNADs) from 

1992 to 1999, the 1991 and 2000 census data and a complete 

enumeration of the population carried out in 1996. In order to 

evaluate the proposed approach, the municipalities of São 

Paulo State are considered as the areas of interest.  

In this section we present a brief description of these data 

sources, reporting their main advantages and limitations. The 

population direct estimates of sampled municipalities were 

obtained from the PNAD. As explained in Section 3, these 

estimates are regarded as the input data for making inference 

about our target parameters. The two censuses and the 1996 

population count are also utilized in our application.  

The Brazilian Demographic Census is the main source of 

information about the population. It is carried out every ten 

years, usually in the beginning of the decade. Although the 

objective is to count all the population, some enumeration 

errors are found. The magnitude of the errors is evaluated 

through a post enumeration survey carried out soon after the 

completion of the census.  

The annual Household Survey (PNAD) is designed to 

produce basic information about the socioeconomic 

situation of the country. The investigation unit is the 

household, for which yearly information about the number 

of dwellers, their gender, education level, employment, etc. 

is collected. The survey is not carried out in a census year, 

and was also not conducted in 1994 for administrative 

reasons. The sample is selected by a three-stage cluster 

sampling design. The primary and secondary units are 

respectively the municipality and enumeration areas (with 

250 households on average). The municipalities are 

stratified according to their population sizes as obtained 

from the last census. In the first stage, all municipalities 

belonging to the metropolitan regions and the state capitals 

(which in Brazil are normally the largest cities in the 

respective states) are sampled. The municipalities whose 

populations are greater than some cutoff value are also 

included in the sample with probability one. The ones left are 

stratified and two of them are sampled from each stratum 

with probability proportional to their population sizes.  

The enumeration areas are sampled with probability 

proportional to the number of households residing in the 

area in the last census. Finally, in the last stage the house-

holds are sampled systematically with equal probability 

from a list, which is updated at the beginning of the survey. 

The municipalities and enumeration districts are kept the 

same in all the surveys carried out in the same decade, while 

households are sampled every year.  

Since each area is sampled with probability proportional 

to its respective number of households, it could be argued 

that the sampling mechanism is informative with respect to 

the population of the area. However, since the response 

variable actually used in this work is the area density, it is 

reasonable to assume that the sample selection mechanism is 

not relevant. Thus, this issue is not exploited in this work. A 

good reference about how to make small area inference 

under informative sampling is Pfeffermann and Sverchkov 

(2007). We also recommend Pfeffermann, Moura and Silva 

(2006) for readers interested in how to employ a Bayesian 

approach to hierarchically modeling under informative 

sampling.  

 
3. Model specification 

 
3.1 Exponential growth model 
 
Let ty  be sample values of a distribution belonging to an 

exponential family with expected value given by tπ =  
( )t tE y | θ  where tθ  is a vector of unknown parameters.  
An important and wide class of exponential growth 

models parameterized by ( )α, β, γ, φ  is defined as:  

1[ exp( )]t t /φπ = α + β γ .  (1) 

Some special well-known cases in the literature are: 
 
(1) Logistic: with 1,φ = − 1 exp( );t t−π = α + β γ  

 

(2) Gompertz: with 0,φ =  defining (1) as log( )tπ =  
exp( );tα + β γ  

 

(3) Modified exponential: with 1, exp( ).t tφ = π =α+β γ  

 

The main advantage of using model (1) is the possibility 

of keeping the observations ty  in the original scale, 

changing only the trajectory of ,tπ  making interpretation 

easy. Furthermore, the time intervals do not need to be of 

the same length, allowing the data to come from different 

reference sources (see Section 4 for further details).  

When exp( ) 1,ψ = γ <  the process is non-explosive, 

implying that tπ  converges to 
1/φα  when ,t → ∞  with the 
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convention that for 0,φ =  this quantity is equal to log( ).α  

When 1,ψ >  the curves are concave for 0φ ≥  and 

0,β >  leading to an explosive process. This class of 

models is called the generalized exponential growth model. 

Migon and Gamerman (1993) show how the exponential 

growth model can be viewed as a particular case of a 

general dynamic model.  

 
3.2 Hierarchical growth models  
In this paper our main parameters of interest itπ  are 

nonlinear exponential growth functions with some parameters 

that are hierarchically or spatially structured. Spatially 

structured models provide alternative ways for connecting 

similar neighboring areas. We further assume that the 

sampling variance 2

itσ  follows a model that depends on the 

sample size in the respective municipality. In this work, 

hierarchical and spatial models are fitted and compared.  

We assume that the population sizes are available for all 

the m  municipalities of São Paulo State for the census 

years of 1991 and 2000, as well as the complete population 

count in 1996. From now on, we simply refer to them as the 

census data. In order to improve the hypothesis of 

exchangeability of the parameters describing the mean of 

the process, our response variables are set as the sampled 

municipal density estimates instead of the municipal 

population estimates. See also the end of Section 2 for 

further reasons for using the densities.  

For each period, estimates of these quantities are 

available only for k m<  first-stage units municipalities of 

the PNAD sample. In order to estimate the municipal 

density, we simply divide the total population estimate by 

the respective municipal area.  

Let ity  be the population density obtained from the 

census data or estimated by the PNAD at time 1t t …n, = ,  

for the thi  municipality, 1 .i … m= , ,  Our aim is to make 

inferences about the true population density itπ  for the 

population of all municipalities, including those that are not 

sampled. In the next section, true municipal population 

densities itπ  are modeled via a stochastic nonlinear hier-

archical growth function. We assume that the random 

quantities ity  are normally distributed with mean itπ  and 

variance 2.itσ  

We use a Bayesian approach in this work. Therefore, 

predictions are described by probability distributions, giving 

the opportunity for users to analyze the uncertainties 

involved in the decision process. This fact is one of the 

advantages, among many others, of using this kind of 

approach.  

Only in the census years are the ity  obtained for all the 

municipalities of São Paulo State. Although the census 

attempts to obtain complete enumeration of the whole 

population, coverage errors can occur. The following model 

is assumed therefore for the census data and the data 

obtained from the PNAD, with exception that the variances 
2

itσ  are set to be smaller for the census data (see Section 3.4 

and also the final remarks in Section 5): 

2
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γ = γ + ξ , ξ , σ

∼

∼

∼

 (2) 

where the prior distributions of ,α β  and γ  are given by: 
2( ),N α αα µ , σ∼

2( ),N β ββ µ , σ∼

2( ).N γ γγ µ , σ∼  It should 

be noted that information from all areas is obtained through 

the hierarchical structure of the parameters ,iα  and .iγ  

Another way of borrowing information between munic-

ipalities is to assume that iα  are spatially structured (see 

Section 3.3). Supposing that the mean itπ  is non-explosive, 

the parameter 1/φα  can be regarded as the value at which the 

mean municipal population stabilizes. The parameters β  
and γ  affect the evolution of the density over time. The 
prior distributions of ,α β  and γ  can be chosen by taking 
advantage of some prior demographic knowledge of the 

expected population evolution. In our application, we set 

1,φ =  implying that for 0t =  the true value density in 

each municipality is given by .iα + β  The hierarchical 
structure imposed on the parameters ,iα  implies that the 

expected value of the true density for any municipality at 

0t =  is .α + β  To assume that the growth parameters, ,iγ  

have a hierarchical structure means that the densities have 

different growth rates but share the same mean. A small 

simulation study (see Section 4.1) guides us to keep the β  
parameter fixed for all areas, without any loss of generality, 

since the levels are still different for different municipalities. 

In all models considered in our application, we assume that 
2 2 ( ),G a b−
α α α ατ = σ ,∼

2 2 ( ).G a b−
γ γ γ γτ = σ ,∼  In order to 

assign vague priors, in Section 4.2 we set small values for 

the parameters related to these precision prior distributions.  

The assumption that the mean function itπ  is given by an 

exponential growth curve allows adjusting for increasing or 

decreasing population density. The sources of data used 

have different reference data and are not equally spaced in 

time. In this case, the use of an exponential growth curve 

yields an extra advantage, since we can simply make a scale 

of time in order to conform with the different data sources, 

as explained in the application section 4.  
3.3 Spatial model  
In the Hierarchical model presented in the previous 

section, the information from all areas is combined in order 

to predict the population of a particular area. However, it is 

reasonable to assume that two or more neighboring 

municipalities have more similar demographic densities 
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than two other arbitrarily chosen ones. The regional 

structure is represented in the joint prior distribution of the 

random spatial effects. We consider that two areas are 

neighbors if they share a border.  

In our proposed model, the demographic density in an 

area i  at time ,t ,itπ  is affected by its neighboring areas by 

adding random spatial effects 
iα

δ  to the parameters ,iα  

that is, ,
ii αα = α + δ  where α  is a term representing the 

intercept. Therefore, iα  vary only with the spatial effect, 

representing a local effect, while the growth parameters 

iγ ’s are regarded as similar among all areas (overall effect).  
The relationship between neighboring areas is defined in 

the prior distributions of .
iα

δ  The prior joint distribution of 

1
( )

mα α α
′δ = δ , ..., δ  given the hyperparameter 2 ,ασ  is 

defined as in Mollié (1996):  

2 2

2 2
1

1 1
( ) exp ( )

2 i k

m

ikm
i k i

p w
 
 
 α α α α/  

= <α α 

δ | σ ∝ − δ − δ
σ σ

∑∑  (3) 

where ikw  are the weights associated with the regional 

structure. The weights were chosen such that 1,ikw =  if i  

and k  are contiguous, and 0,ikw =  otherwise. The 

distribution of 2

α αδ | σ  is evidently improper, since we can 

add any constant to all of the 
iα

δ  and 2( )p α αδ | σ  is not 

affected. Thus, we must impose a constraint to ensure that 

the model is identifiable. We set 1 0
i

m
i= α∑ δ =  and assign a 

uniform prior distribution on the whole real line to the 

intercept .α  It is not difficult to see that this procedure leads 
to a proper ( 1)m −  dimensional likelihood density, see 

Besag and Kooperang (1995) for further details.  

The prior conditional distribution of ,
iα

δ  given the 

effects 
kα

δ  of the remaining areas and the hyperparameter 
2 ,ασ  is normal with mean and variance given by:  

2

2
2

[ ]

Var[ ]

i k i

i k

i

E k i

k i
w

α α α α

α
α α α

+

δ | δ , ∈ ∂ , σ = δ

σ
δ | δ , ∈ ∂ , σ =

 

where 
iα

δ  denotes the arithmetic mean of the 
jαδ  for 

k i∈ ∂  (the contiguous areas of ),i  and 1
m
ki ikw w=+ ∑=  is 

the number of neighboring municipalities of .i  

Figure 1 shows the demographic densities of São Paulo 

municipalities in 1991. These municipalities tend to be 

concentrated geographically according to density classes. 

This suggests that the spatial model can be usefully applied. 
 
3.4 Modeling the sampling variances  
Since we use data from two different sources, it makes 

sense to assume that the sampling variances vary over time. 

Furthermore, we can also consider that the variances change 

with the areas.  

For the years in which the data are provided by the 

PNAD, we assume the following model for the sampling 

variances:  

2
0 1log( ) (1 )it inσ = η + η . /  (4) 

with in  representing the number of enumeration areas 

sampled in the thi  area. This model captures the expectation 

that the variance gets smaller as the sample size increases.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Population densities of São Paulo municipalities in 1991 
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For the years that the censuses were carried out, we 

assumed that 2

itσ  is known and 2log( ) log( )it itvσ =  where 

itv  is calculated in such a way that the census coverage error 

is 5% for all areas. This hypothesis implies that the true 

population in each area for census years lies in the interval 

given by the observed population in the census plus or 

minus 5% of this value. Therefore, for the census years we 

set the standard deviation as: 0 05 ( 2).it ityσ = . ∗ /  Assum-

ing known variance in the census years is a way of giving 

more weight to census data, since one would expect a 

complete census to provide more reliable information than 

survey data. Independent normal distributions are assumed 

for the parameters 0η  and 1:η ( ) 0 1.
k kk N kη ηη µ , φ ; = ,∼  

In order to assign vague priors to the η ’s, we set both prior 
means as zero and large values for the ηφ ’s. See Section 4.2 

for details.  
 
3.5 Summary of the models  
The prior distributions of the common parameters of the 

Spatial and Hierarchical models are the same as already 

described for the former. The distributions of the random 

spatial effects are specified in Section 3.3. The variance 2

itσ  

in the Spatial model was stated as in the Hierarchical model. 

A summary of the models in Section 4 is presented in Table 

1. For the sake of simplicity, the application was carried out 

by fixing 1φ =  in both models.   
 
3.6 Computational issues  
The posterior distributions of the parameters for the 

models proposed cannot be obtained in closed forms. 

Therefore, it is necessary to use numerical approximation 

methods. One alternative, often used and easy to implement, 

is to generate samples of these distributions based on the 

Markov Chain Monte Carlo (MCMC) algorithm. Since the 

full conditional distributions of all the model parameters 

have closed form, except for the vector 1( ),k= γ , ..., γγγγγ  we 

employed the Gibbs sampler algorithm with one acceptance/ 

rejection algorithm step for sampling from the vector .γγγγ  Let 

itπ  be the population density in the thi  area at time .t  The 

following steps summarize how to sample from the 

posterior distribution of :itπ   

1. Generate ( ) ( ) ( ) ( ) ( ) 2( ) 2( ) ( )
0

l l l l l l l l
i i α γα , β , γ , α , γ , τ , τ , η  and 

( )

1

lη  for 1 ,l M= , ...,  where M  is the number of 

MCMC samples generated from the full conditional 

distributions of all model parameters including the 

random effects;  
 

2. Calculate ( ) ( ) ( ) ( )exp( );l l l l

it i i tπ = α + β γ   
 
Three informal checks for convergence, based on 

graphical techniques, were applied for assessing the 

convergence when fitting our proposed models. They 

consist of observing the histogram, the trace and the 

autocorrelation function for each of the sampled values 

calculated. The histogram analysis allows us to identify 

possible departures from convergence, such as the presence 

of multiple modes. The trace of the multiple chains 

simulated in parallel, each one with different starting points 

and overdispersed with respect to the target distribution, 

provides a rough indication of stationary behavior when the 

sequences of values tend to oscillate in the same region. The 

plot of the autocorrelation function allows identifying 

whether the sampling can be regarded as independent. 

In addition to these informal checks, other more formal 

criteria were applied. The criteria introduced by Brooks and 

Gelman (1998) and implemented in WinBugs 1.4 

(Spiegelhalter, Thomas, Best and Lunn 2004) permit 

diagnosing whether dispersion within chains is larger than 

dispersion between chains. Consider I  parallel chain and a 

parameter of interest .λ  Let j

iλ  be the thj  value of the thi  

chain, for 1i K= , ...,  and 1 .j J= , ...,  Then the 

variances between chains B̂  and within chains Ŵ  are 

given by  

1 2

1

ˆ ( 1) ( )
K

i
i

B J K −

=

= − λ − λ∑  

and 

{ } 1 2

1 1

ˆ ( )( 1)
K J

j

i i
i j

W K J
−

= =

= λ − λ− ∑∑  

where iλ  and λ  respectively are the average of obser-
vations of chain , 1i i K= , ...,  and the global average. 

Under convergence, all these K J  values are drawn from 

the posterior of λ  and the variance of λ  can be consistently 
estimated by ˆ ˆ,B W  and the weighted average 2

ˆ λσ =  
ˆ ˆ(1 1 ) (1 ) .J W J B− / + /  

 

Table 1 
Summary of the models employed  
 

model  parameters  variance  prior distribution   

Hierarchical  
ii αα = α + ξ   2

0 1log( ) (1 ),it inσ = η + η /   
0 00 ( )N η ηη µ , φ∼    

 β   for survey data  
1 11 ( )N η ηη µ , φ∼    

 
ii γγ = γ + ξ   2

itσ  is assumed to be   

  known for census data   

Spatial  
ii αα = α + δ   2

0 1log( ) (1 )it inσ = η + η /   2 2( , )
i ii iN wα α,− α α α +δ | δ , τ δ τ /∼    

 β   in the survey  
1

0
i

m
i α= δ =∑    

 
ii γγ = γ + ξ   2

itσ  is assumed to be  
0 00 ( )N η ηη µ , φ∼    

  known for census data  
1 11 ( )N η ηη µ , φ∼    
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If the chains have not yet converged, then initial values 

will still be influencing the trajectories and 2
ˆ λσ  will 

overestimate 2

λσ  until stationarity be reached. On the other 

hand, before convergence, Ŵ  will tend to underestimate 
2.λσ  Following these reasoning, Brooks and Gelman (1998) 

proposed an iterated graphical approach, which is 

implemented in WinBugs 1.4. It allows to check if: (i) the 

weighted posterior variance estimated 2
ˆ λσ  and the within-

chain variance Ŵ  stabilize as a function of ,J  and (ii) the 

variance reduction factor, 2ˆ ˆ/ ,ˆR Wλ= σ  approaches 1.  
 

4. Application  
In this section we present two applications of our 

approach, the first one with a simulated data set and the 

second one with the real data set that motivated this work. 

The simulation study aims to check if the parameters of 

interest are being properly estimated, as well as to perform 

some sensitivity analysis with respect to the form of the 

prior distributions used for fitting the model.   
4.1 Application to simulated data  
We carried out a small simulation study fitting the 

Hierarchical and Spatial models presented in Section 3. The 

true model hyperparameters related to the growth curve 

were fixed as 40,α = 25,β = 0 05.γ = .  Thus, we are 

considering a situation where the population size approxi-

mately doubles in 25 years. The parameters related to the 

sampling variance model were fixed as 0 6 5,η = . 1η = 0.5. 
Finally, the precision parameters were respectively set as 
2

ατ = 0.0001 and 2
γτ = 400. The precision 2

ατ  and 2
γτ  were 

fixed to be in agreement with the scales of the quantities 

they respectively measure. The intercept presents more 

relative variation between areas than the growth parameter, 

which is expected in practical situations.  

Since it is well recognized that the form of the priors has 

more impact on the component of variance parameters than 

the fixed parameters, we fitted the simulated data using two 

different vague priors for the parameters related to the 

variances: uniform for the standard deviation, which is one 

of the priors recommended by Gelman (2006) for linear hier-

archical models, and gamma for the precision, commonly 

used as the default in some computational packages. In the 

first case, we assigned (0 1,000)Uασ ,∼  and γσ ∼  
(0 100),U ,  where 1α ασ = / τ  and 1 .γ γσ = / τ  In the 

second case, we considered 2 (0 001 0 001)Gατ . , .∼  and 
2 (0 001 0 001).Gγτ . , .∼  For the other parameters, we set 

( ),Uα −∞, +∞∼  for the Spatial Model (see Section 3.3 

for further details) and 6(0 10 )Nα ,∼  for the Hierarchical 

model. For the others parameters we set 6(0 10 ),Nβ ,∼  
2(0 10 ),Nγ ,∼

4

0 (0 10 )Nη ,∼  and 4

1 (0 10 )Nη ,∼  for 

both models. The effect of the number of small areas is also 

investigated. We simulated separate data from the Hier-

archical and Spatial models with 60m =  and m = 100 

areas in each case. For each combination of the number of 

areas and the model employed we generated 200 data sets. 

Therefore, a total of 800 sets of artificial data was simulated. 

The distribution of the sample sizes within the areas is the 

same for the simulated data sets with 60 and 100 areas. 

Table 2 presents the relative frequencies of the small areas 

sample sizes for the both simulated data sets. These sample 

sizes are very similar to the sample sizes in the real data that 

underlines this simulation study. The number of neighbors 

employed in the spatial model varies from 1 to 12 and each 

area has on average 5 neighbors. We considered a total 

period of 9n =  years. 
 
Table 2  

Relative frequencies of the small area samples sizes for both 
simulated data sets 
 

Sample size  Relative frequency   

2  0.05   

5  0.20   

8  0.25   

10  0.25   

12  0.20   

15  0.05    
In order to get rid of chain correlation, we generated 

20,000 samples after discarding the first 10,000. There is no 

evidence for non-convergence of the Hierarchical and the 

Spatial model parameters. A careful analysis of some outputs 

obtained from the MCMC samples for some simulation sets 

suggests that convergence was achieved for all model 

parameters. We assessed the statistical properties of the 

population density ( )itπ  estimates by investigating the 

average of the absolute relative error of the estimates (ARE) 

and the mean square error (MSE), respectively given by:  
( ) ( )200

( )
1

ˆ1
ARE

200

l l

i t i t

i t l
l i t

, ,
,

= ,

|π − π |
=

π
∑  

and 
200

2( ) ( )

1

1
MSE ,( )ˆ

200

l l
i t i t i t

l
, , ,

=

= π − π∑  

1 ,i m= , ..., 1 .t n= , ...,  There is no much variation, as 

far as the ARE values are concerned. For the two models 

fitted and both small area sample sizes tried, the ARE values 

are around 1.5%. 

Table 3 shows a summary of the MSE values obtained 

from the simulations carried out under the Spatial and 

Hierarchical models with 60 and 100 areas and respectively 

assigning gamma and uniform priors to the precision and to 

the standard deviation of the parameters related to the 

variance. It can be seen from Table 3 that the MSEs are not 

affected by the use of different vague priors. It is noteworthy 

that increasing the number of areas from 60 to 100 results in 

a small decrease of 6% in the median of the MSE for the 

Spatial model. However, for the case of the Hierarchical 

model, the decrease is about 13%.  
 
 

 
 

 
 
 



Survey Methodology, December 2009 209 
 

 

Statistics Canada, Catalogue No. 12-001-X 

 

Table 3 

Summary of mean square error distribution for the spatial and hierarchical models 
 

Gamma prior Uniform prior Model Num. of areas  

1st Qu. Median  3rd Qu. 1st Qu. Median  3rd Qu. 

60  0.398  1.741  3.574  0.394  1.737  3.595   Spatial  

100  0.525  1.637  3.538  0.524  1.641  3.517   

60  0.542  2.218  6.262  0.646  2.223  6.278   Hierarchical  

100  0.594  1.959  5.593  0.596  1.960  5.619            
 

We also investigated the percentage coverage of nominal 

95% credible intervals. The results are presented in Table 4. 

As far as this simulation study is concerned, the intervals for 

the parameters of interest have in general the correct 

coverage percentages for both models investigated and these 

results do not depend on wether we have 60 or 100 areas. 

However, with a small number of areas we could face 

convergence problems unless we tighten the priors for the 

hyperparameters. The simulation study reveals that the 

population prediction is not affected by the forms of the 

vague priors assigned to the variance of the intercept term.  

 
Table 4 
The coverage rates of nominal 95% credible intervals for the 

population densities 
 

Gamma prior Uniform prior Model  Num. of 

Areas  coverage(%) coverage(%) 

60  96  96   Spatial  

100  96  96   

60  94  94   Hierarchical  

100  95  95   
    

 
We analyzed the model fit when data generated from a 

model were fitted by the correct and the wrong models. 

Figure 2 presents the mean square error for the following 

situations: (a) data generated from the Spatial model and 

fitted by the Spatial and Hierarchical models and (b) data 

generated from the Hierarchical model and fitted by the 

Spatial and Hierarchical models. Since the form of the 

priors assigned to the parameters related to the variance 

does not affect the inference, we set uniform priors for both 

models. The ARE measures are shown in Figure 3.  

It can be seen from Figure 2 that when the data are 

generated from the simpler model (Hierarchical) the more 

complex estimation procedures (Spatial) do not suffer any 

appreciable worsening of efficiency. On the other hand 

when the data are generated from the more complex model 

(Spatial) the simpler estimator (Hierarchical) has some 

inferior properties. However, this result does not hold for the 

ARE measurements. Figure 3 shows that fitting the model 

not used for generating the data results in appreciable 

increase in the relative bias. As it might be expected, model 

fitting and diagnostics are crucial in order to get suitable 

prediction of the small area population.  

 

4.2 Application to real data  
The PNAD data sets from 1992 to 1999, (excluding 1994 

and 1996) and the population census data of 1991, 1996 and 

2001 were used in our application. Our areas of interest are 

all the municipalities in São Paulo State, a total of 572 areas, 

of which 111 areas were sampled by the PNAD survey. 

Figure 4 shows the areas sampled by the PNAD, classified 

by the sampling definition: areas belong to metropolitan 

regions and self-representing areas (sampled with probability 

equal to 1) and non-self-representing areas. It should be 

noted that the census and PNAD have different periods of 

reference. We set 0t =  for the 1991 census. Thus, the 

values of t  for the data provided by the PNAD are equal to 

the number of years between the reference period of the 

1991 census and the respective PNAD. For instance, a 

survey datum provided by the PNAD 18 months after the 

1991 census corresponds to 1 5.t = .  

Figure 5 shows the estimated coefficient of variation of 

the direct estimator by areas’sample sizes. These estimates 

are based on PNAD data. It can be seen that these 

coefficients of variation vary considerably with the areas 

and tend to decrease as the sample size increases. The high 

values of these coefficients show the difficulty in using only 

the direct estimator to provide municipal estimates. Further-

more, we cannot make any prediction for nonsampled areas 

by using only the direct estimators.  
4.3 Specification of the prior distributions  
The mean of the normal prior distributions of the 

parameters ,α β  and ,γ  related to the population evolution, 
were assigned by first expanding the function α +  
exp( )tβ γ  around zero in a Taylor series up to the second 

order and then equating the resulting expression to the 

values of the mean density in the 1991 and 2000 censuses 

and the 1996 population count. In the absence of prior 

information, we considered a reasonably large value 6(10 )  

for the prior variances of ,α β  and .γ  Thus, we set α ∼  
( )U −∞, +∞  (see Section 3.3 for further details), for the 

Spatial Model and 6(370 10 ),Nα ,∼  for the Hierarchical 

model and 6(726 10 ),Nβ ,∼

6(0 04 10 )Nγ . ,∼  for both 

models. The reason for this adjustment is to obtain a reason-

able value of the prior means, but one that is essentially 

vague. Regarding the precisions and 0 1, ,η η  we assigned 

relatively vague priors: 2 Ga(0 001 0 001),ατ . , .∼

2
γτ ∼  

Ga(0 001 0 001),. , . 6

0 (0 10 )Nη ,∼  and 6

1 (0 10 ).Nη ,∼  
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Figure 2 Box plots of mean square error (MSE) for the cases: (a) data generated 

from the Spatial model and respectively fitted by the Spatial and 

Hierarchical models and (b) data generated from the Hierarchical model 
and respectively fitted by the Spatial and Hierarchical models 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 Box plots of absolute relative error (ARE) for the cases: (a) data 
generated from the Spatial model and respectively fitted by the Spatial 

and Hierarchical models and (b) data generated from the Hierarchical 
model and respectively fitted by the Spatial and Hierarchical models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 São Paulo municipalities sampled by the PNAD classified by the sampling definition 
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Figure 5 Boxplot of the coefficients of variation of the direct population estimates 

 

 

 

4.4 Some results  
We generated 20,000 samples after discarding the first 

5,000. There is no evidence for non-convergence of the 

Hierarchical and the Spatial model parameters. A careful 

analysis of the MCMC outputs suggests that convergence 

was achieved for all model parameters. We summarize the 

results obtained by fitting the Hierarchical model (3) to the 

data provided by the PNAD survey. The posterior means of 

the model parameters were used as the point estimates. 

Table 5 presents these estimates together with the respective 

square root of the posterior variance. It can be seen from 

Table 5 that the estimate of 1η  is significantly positive, 
which agrees with what is expected by equation 4: the 

greater the sample size, the smaller 2.itσ  

 
Table 5 
Summary of the model (2) parameter posterior distributions 
 

parameter  posterior mean  posterior std   

α  892.500 202.000 

β  105.700 1.278 

γ  0.072 0.008 

0η  10.620 0.133 

1η  3.185 0.484 

2
ατ  2.174E-7 2.961E-8 

2
γτ  139.000 19.560 

 

Figure 6 shows that the posterior means of the 

parameters αααα  and γγγγ  that index the hierarchical model seem 
to be spatially distributed. The parameters of neighboring 

areas seem more alike than those of distant areas, which 

suggests applying the Spatial model. 
 
4.5 Model selection  
The Expected Prediction Deviance (EPD) (Gelfand and 

Ghosh 1998) measure was applied to help choose the most 

suitable model. The EPD measure is the sum of two terms. 

The first term, denoted by ,G  can be interpreted as a 

goodness-of-fit measure and the second term, denoted by ,P  

as a penalty term for underfitted as well as overfitted models. 

The respective expressions for G  and P  are given by: 
rep 2

1 1( ( ))m n
i t it itG y E y M= =∑ ∑= − |  and rep

1 1 ( ),m n
i t itP V y M= =∑ ∑= |  

where the expectations and the variances are with respect to 

the posterior predictive distribution associated with a future 

observation rep( )ity  of ity  generated under the assumed 

model (M). According to this criterion, the smaller its value, 

the better the model. As can be seen in Table 6, the EPD 

criterion slightly favors the Spatial model.   

 

4.6 Analysis of the results  
The most disaggregated level for which the PNAD 

provides precise estimates is the metropolitan region, which 

is a set of contiguous municipalities. In order to validate the 

results obtained with the spatial model, population estimates 

for the greater São Paulo metropolitan region were 
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compared to the official statistics projections. The posterior 

distribution of 1
r
it it iA=∑µ = π ∗  is easily obtained by 

adding ( ) ( )
1

l lr
it it iA=∑µ = π ∗  to the MCMC algorithm, where 

tµ  represents the total population of the metropolitan region 
at time t  and r  is the number of municipalities belonging 

to that metropolitan region.  

 
Table 6  
Measures for selecting models for demographic density 
 

Model  G   P   EPD    

Hierarchical  1.37E+09  6.14E+09  7.51E+09   

Spatial  1.05E+09  6.19E+09  7.24E+09   

 
Figure 7 compares the population estimates ( )tµ  of the 

São Paulo metropolitan region obtained by the Spatial 

model and the official statistics. The solid lines represent the 

limits of the 95% credible intervals of ,tµ  while the dotted 

line shows the respective point estimates. The symbol (+) 

represents the observed official statistics. It is noteworthy 

that some official statistics projections are outside of the 

credibles inferior limit (including the 1991 Census). This 

indicates that further investigations should be made in order 

to find out the reasons for these discrepancies. However, 

when we compare them at municipality level, the overall 

conclusion is that the model predictions and official statistics 

reasonable agree. The 95% credible intervals contains 92.4% 

of the official statistics projections. The average of the 

absolute relative error (ARE) between the estimated popu-

lation density and the official statistics projection are 3%. 

These ARE measures are on average nearly the same for 

selected and non-selected municipalities.   

Figure 8 compares the point estimates of the population 

sizes ( )itµ  with the official projection statistics and the 

official census population sizes for a sampled municipality. 

The official projection methodology assumes that a set of 

small areas and a larger area, which contains them, have the 

same population growth rate pattern. The population of the 

larger area is projected by a component method and then 

proportionally allocated to the small areas. The component 

method uses data from the most recent census as well as the 

number of births and deaths and net migrations obtained 

from administrative records. The component method 

projects the population for a time t  by adding the 

population in a previous time with the number of births and 

net migrations and subtracting the number of deaths in the 

same time interval.  

The solid lines represent the 95% credible intervals for 

itµ  obtained by the Spatial model, while the dotted line 

shows the respective posterior means. The symbol (+) 

represents the official population projection for the inter-

census period and the observed population in the census 

years. It is noteworthy that the point estimates are relatively 

close to the official projection statistics and the population 

obtained in the census year. This indicates that the use of the 

proposed model yields reliable estimates at municipality 

levels, with the extra advantage of providing a measure of 

the respective error.  

We also analyze the estimates obtained for some 

municipalities not sampled in the PNAD. Figure 9 shows 

the model predictions, the 95% credible intervals, the 

official projection statistics and the observed population 

values in the censuses for a non-sampled municipality (+). It 

can be seen that the predictions obtained by the Spatial 

model reasonably agree with the official figures.  

 
5. Final remarks 

 
The model used in this article identifies the population 

growth trend of the municipalities. Reasonable estimates of 

the municipal populations are obtained for years with survey 

data, as well as for the years where census data are 

available. The point estimates have good precision and 

reasonably agree with estimates obtained for larger areas 

using other technique. The past information can be updated 

as soon as estimates become available from a new census or 

survey. Furthermore, the proposed approach provides the 

probability distribution of the quantity of interest, aiding the 

decision-making process.  

Further work should be done in order to allow for 

autocorrelation of the parameters of interest over time. Extra 

information about the sampling variance estimates of the 

direct estimators could also be regarded as additional data. 

The assumption that the census coverage error is distributed 

symmetrically around zero could be relaxed by assigning a 

non-symmetric distribution to it. However a good 

knowledge of the shape of the distribution is required, 

which might be difficult in practice.   
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Figure 6 Posterior means of the parameters αααα  and γγγγ  obtained by the hierarchical model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7 Comparison between the population sizes predicted by the spatial model and the 
official statistics (+) for the metropolitan region 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 Comparison between the population sizes predicted by the spatial model and the 

official statistics (+) for a sampled municipality 
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Figure 9 Population sizes predicted by the spatial model and the official statistics (+) for a 

non-sampled municipality 
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