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Nonparametric propensity weighting for survey  
nonresponse through local polynomial regression 

Damião N. da Silva and Jean D. Opsomer 1 

Abstract 

Propensity weighting is a procedure to adjust for unit nonresponse in surveys. A form of implementing this procedure 

consists of dividing the sampling weights by estimates of the probabilities that the sampled units respond to the survey. 

Typically, these estimates are obtained by fitting parametric models, such as logistic regression. The resulting adjusted 

estimators may become biased when the specified parametric models are incorrect. To avoid misspecifying such a model, 

we consider nonparametric estimation of the response probabilities by local polynomial regression. We study the asymptotic 

properties of the resulting estimator under quasi-randomization. The practical behavior of the proposed nonresponse 

adjustment approach is evaluated on NHANES data. 
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1. Introduction 
 

Propensity weighting is a procedure that is often applied 

in sampling surveys to compensate for unit nonresponse. 

Under this type of nonresponse, complete data collection is 

accomplished at only a part of the units selected to the 

sample, which are termed as the respondents. The 

propensity weighting procedure operates by increasing the 

sampling weights of the respondents in the sample using 

estimates of the probabilities that they responded to the 

survey. These probabilities are also referred to as response 

propensities in virtue of their analogy with the propensity 

score theory of Rosenbaum and Rubin (1983) for 

observational studies, incorporated into survey nonresponse 

problems by David, Little, Samuhel and Triest (1983). 

General descriptions of propensity weighting to adjust 

classical survey estimators for nonresponse can be seen, for 

example, in Nargundkar and Joshi (1975), Cassel, Särndal 

and Wretman (1983) and Groves, Dillman, Eltinge and Little 

(2002). Traditionally, the way the procedure is implemented 

estimates the response probabilities with parametric regres-

sion curves, such as logistic, probit or exponential models. 

See Alho (1990), Folsom (1991), Ekholm and Laaksonen 

(1991) and Iannacchione, Milne and Folsom (1991) for 

earlier references. A recent theoretical account of the 

statistical properties of the procedure is given in Kim and 

Kim (2007). These parametric models are readily fitted as 

generalized linear models. However, an important and 

sometimes overlooked part of this procedure is the specifica-

tion of the form of the link function to relate the response 

propensities and a linear predictor of the auxiliary informa-

tion. If this function, which we shall refer to as the response 

propensity function, is misspecified, the resulting adjusted 

estimators of the population quantities are likely to be biased.  

Another approach to estimate the response propensities is 

through nonparametric methods. The main motivation to 

use such methods is that the parametric form for the 

response propensity function need not be specified. In this 

sense, these methods offer an appealing alternative to the 

choice of a link function, as raised by Laaksonen (2006), or 

when a parametric model is difficult to specify a priori. In 

this context, Giommi (1984) proposed using kernel 

smoothing, in the form of the Nadaraya-Watson estimator, 

to estimate the response probabilities. Da Silva and 

Opsomer (2006) established the consistency of Giommi’s 

estimator for the population mean and derived rates for the 

asymptotic bias and the variance. Theoretical properties of a 

Jackknife variance estimator were also studied. 

In this article, we extend the results of Da Silva and 

Opsomer (2006) in two directions. First, we consider the 

estimation of the response propensities by local polynomial 

regression, a nonparametric technique described, for 

instance, in Wand and Jones (1995). Compared to kernel 

smoothing, local polynomial regression improves the local 

approximation to the unknown propensity function, which 

results in better practical and theoretical properties. It is also 

much more prevalent as a smoothing method in practice, 

with implementations available in most major statistical 

programs. Second, we apply the nonparametric propensity 

score estimation approach to data from the National Health 

and Nutrition Examination Survey (NHANES), which 

makes it possible to compare several nonresponse 

adjustment methods, both parametric and nonparametric, in 

a realistic setting.  

In Section 2, we introduce the weighting procedure and 

the estimation of the response propensities. The theoretical 

properties of the adjusted estimators are discussed in Section 

3. In section 4, we describe how to adapt a replication 
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variance procedure to estimate the variance of the proposed 

adjusted estimators. Finally, in Section 5, we demonstrate 

the finite sample properties of the estimators by means of a 

simulation experiment using data from NHANES.  

 
2. Weighting by local polynomial regression 

 
Consider a population of Nν  units, denoted by Uν =  

{1 2 }.… Nν, , ,  Suppose that a sample sν  is drawn from 

,Uν  according to some probabilistic sampling design 

( ).p sν  Let nν  be the size of sν  and i iνπ = π =  

Pr{ } ( )s i si s p s
ν ν: ∈ν ν∑∈ =  be the inclusion probability of 

unit ,i  for all .i Uν∈  It is of interest to estimate the 

population mean of a study variable ,y  namely 
1 ,i U iN N yy

νν

−
∈ν ∑=  where iy  denotes the value of y  for 

the thi  unit of .Uν  We assume that the values ix  of an 

auxiliary variable x  are fully observed throughout the 

sample. Let 1( , , ),Ny … y
νν =y  and similarly for .vx  

When the sample contains unit nonresponse, we only 

observe the values of the study variables for the units in a 

subset .r sν ν⊂  To account for the information lost in the 

estimation of the parameters of interest, it becomes 

necessary to model the response process. To define this 

response model, let iR  be an indicator variable assuming 

the value one if the unit i  respond to the survey, and the 
value zero otherwise, for all .i sν∈  We assume that, given 

the sample, the response indicators are independent 

Bernouilli random variables with  

Pr{ 1 } ( ) for alli i iR i s x i sνν νν= | ∈ , , = φ ≡ φ , ∈ ,y x  (1) 

where the exact form of the response propensity function 
( )φ ⋅  is unspecified, but it is assumed to be a smooth 

function of ix  with ( ) (0 1].φ ⋅ ∈ ,  The relationship in (1) 

defines a nonresponse process said to be ignorable, in the 

sense that the response propensities are independent of the 

values of any study variable, conditional on the covariate x  

(see Lohr 1999, page 265). The theory developed here, 

therefore, does not intend to handle non-ignorable response 

mechanisms.  

If all response propensities were known, resulting 

weighting adjustments could be obtained by applying a two-

phase estimation approach. For instance, two possible 

estimators of the population mean Ny ν
 would be given by  

1 11
i i i i

i s

y Ry
N

ν

− −
πφν

∈ν

= π φ∑  (2) 

and 

1 1 1 1

rat i i i i i i i
i s i s

y R Ry
ν ν

− − − −
, πφν

∈ ∈

= π φ π φ ,∑ ∑  (3) 

which are forms of adjustments for the Horvitz-Thompson 

and the Hájek estimators to compensate for the unit non-

response. The same ideas can be used to obtain propensity 

weighting adjustments for the generalized regression esti-

mator for estimation in the presence of nonresponse (Cassel 

et al. 1983).  
Estimators (2) and (3) are unbiased and nearly unbiased 

for Ny ν
 respectively, under the quasi-randomization 

approach of Oh and Scheuren (1983), where the statistical 

properties are evaluated using the joint distribution of the 

sampling design and the response model. However, the 

response propensities are usually unknown in practice and 

we need to replace the iφ  in (2) and (3) by estimates ˆ ,iφ  

satisfying ˆ0 1.i< φ ≤  The resulting propensity weighting 

estimators are therefore  

1 1
ˆ

1 ˆ
i i i i

i s

y Ry
N

ν

− −
πφν

∈ν

= π φ∑  (4) 

and  

1 1 1 1
ˆrat

ˆ ˆ
i i i i i i i

i s i s

y R Ry
ν ν

− − − −
, πφν

∈ ∈

= π φ π φ .∑ ∑  (5) 

The latter formula has the advantage of being location-scale 

invariant, because the summation of its adjusted weights 
1 1 1 1ˆ ˆ

i si i i i i iR R
ν

− − − −
∈∑π φ / π φ  is equal to one, and does not 

require the population size Nν  to be known.  

In order to implement the propensity weighting esti-

mators (4) and (5), it is necessary to estimate the response 

propensities ˆ .iφ  Da Silva and Opsomer (2006) used kernel 

regression for this purpose. The procedure we consider here 

is local polynomial regression, which can be described as 

follows. Let ( )K ⋅  be a continuous and positive kernel 

function and hν  be its bandwidth. Define the ( 1)N kν × +  

matrix  

1 11 ( ) ( )

1 ( ) ( )

k
i i

Ui

k
N i N i

x x x x

x x x x
ν ν

 
 
 
 
 
 
 
 
 
  

− −

= ,

− −

X

⋯

⋮ ⋮ ⋮

⋯

 

the N Nν ν×  matrix  

1
diag 1

j i
Ui

x x
K j N

h h

 
  
 ν 

ν ν  

− 
= : ≤ ≤ . 

 
W  

and population vector of response indicators U =R  

1 2( , , , ) .NR R … R
ν
′  The vector UR  would be known if, 

instead of the sample ,sν  a census was considered from the 

population .Uν  In that case, the local polynomial regression 

estimator of degree k  of ( ),i ixφ = φ  based on the whole 

population, would be given by the fit  
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1

1
ˆ ( )Ui Ui Ui Ui Ui Ui U

−′ ′ ′φ = ,X W X X W Re  (6) 

where je  denotes the thj  column of the identity matrix of 

order 1k +  and it is assumed that Ui Ui Ui′X W X  is non-

singular.  

Since the values of the response indicators are only 

observed for those units selected into the sample, the 

population fit (6) is unfeasible. However, defining siX  as 

the ( 1)n kν × +  matrix formed with the rows of UiX  

corresponding to the units ,j sν∈  

1
diag

j i
si

j

x x
K j s

h h

 
  
 ν 

ν ν  

− 
= : ∈ 

π  
W  

and ( ) ,s jR j sν ′= : ∈R  then a sample-based local 

polynomial regression estimator of degree k  of ( )i ixφ = φ  

is given by  

1

1
ˆ ˆ ˆo
i si sie −′φ = T t  (7) 

where  

( )1 1

1 1
ˆ ˆˆ ˆ( , ) { } , ( )

( )

k k
si si si pq p q si p p

si si si si si s

T t+ +
, , = , =≡

′ ′= ,

T t

X W X X W R

 

and it is assumed that ˆ
siT  is invertible. An special case of 

(7) is obtained by considering 0,k =  which corresponds to 

the kernel regression estimator of Da Silva and Opsomer 

(2006). Other special cases from (7) are the local linear, the 

local quadratic and the local cubic response propensity 

estimators, which result from the local fit of polynomials of 

degree one, two and three, respectively.  

In practice, when ˆ
siT  happens to be singular, a simple 

procedure to insure that ˆ o
iφ  is well defined is choosing a 

bandwidth large enough to guarantee at least 1k +  values 

of jR  in the window [ ],i ix h x hν ν− , +  for all .i sν∈  If 

this window does not contain enough responses indicators 

and the bandwidth has to remain fixed, another approach 

has to be considered. To this purpose, we adopt here the 

adjustment made by Breidt and Opsomer (2000) and define 

the sample-based local polynomial regression estimator of 

degree k  of ( )i ixφ = φ  by  

1

1
1

ˆ ˆ ˆ( ) diagi si six k h i s
N

−

ν ν
ν

  δ
′φ , , = + , ∈ .     
T te  (8) 

where 1δ  is some small positive constant. The smaller order 

terms 1 Nνδ /  added to the main diagonal of ˆ
siT  are 

sufficient to make the resulting adjusted matrix invertible 

for any .hν  As a consequence, ɵ ( )ix k hνφ , ,  will be well 

defined, for all .i sν∈  However, another technical 

difficulty to use ˆ ( )ix k hνφ , ,  as a propensity weighting 

adjustment arises because the response propensity estimator 

(8) can indeed become arbitrarily close to zero. To tackle 

this problem, we bound ˆ ( )ix k hνφ , ,  away from zero by 

considering the estimator  

1

2
ˆ ˆmax{ ( ) ( ) }i ix k h N h −

ν ν νφ = φ , , , δ ,  (9) 

for some constant 2 0.δ >  This idea is related to the 

adjustment made by Da Silva and Opsomer (2006) for the 

kernel regression estimator.  

 
3. Asymptotic properties 

 
In this section, we present the properties of the propensity 

weighting estimators (4) and (5) under estimation of the 

response propensities by the local polynomial estimator (9). 

The assumptions, lemmas and outlines of the proofs for the 

following results are given in the Appendix, and a complete 

theoretical investigation can be found in Da Silva and 

Opsomer (2008). The full derivations are not reported in this 

article, because they follow the general approach described 

in Da Silva and Opsomer (2006). We consider an 

asymptotic framework by which the population Uν  is 

embedded into the increasing sequence of populations 

1 1{ } .U N N ∞
ν ν ν+ ν=: <  From each ,Uν  a sample sν  of size 

1( )n n nν ν ν−≥  is selected according to a sampling design 

( ).pν ⋅  This framework is commonly adopted in asymptotic 

studies of survey estimators. See Isaki and Fuller (1982) for 

an early reference.  

As a population-based approximation for ( ),i ixφ ≡ φ  we 

shall consider in the derivation of most results in this section 

the population fit by local polynomial regression  

1

1 1( )i i i i ix k h i U−
ν ν′ ′φ ≡ φ , , = ≡ , ∈ ,B T tɶ ɶ e e  (10) 

where  

1 1

11
{ }( ) ( ( ) )

ˆ ˆE( , ) ( )

k k
i pqi i i p pp q

si si Ui Ui Ui Ui Ui U

T t
+ +

, , =, =
, ≡ ,

′ ′≡ = , ,

T t

T t X W X X W φφφφ
 

the matrices UiX  and UiW  are as in (6) and U =φφφφ  

1 2( ( ), ( ), , ( )) .Nx x … x
ν

′φ φ φ  The following theorem states the 

asymptotic properties of ˆy πφν  under a set of assumptions in 

the Appendix. These assumptions are regularity conditions 

on the sampling design and the finite population, both of 

which are standard infinite population asymptotics, 

ignorability conditions on the nonresponse mechanism, and 

a set of standard regularity conditions related to the local 

polynomial regression of the response propensity function.  
 
Theorem 1. Assume the assumptions (A1)-(A4), (B1)-(B3) 

and (C1)-(C5) in the Appendix hold. Consider the 
estimation of the population mean Ny ν

 by the propensity 
weighting estimator ˆy πφν  defined in (4), and suppose the 
response propensities are estimated by ˆ ,iφ  the local 
polynomial regression estimator of degree k  in (9). Let  
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1 1

ˆ

1
ˆi i i i

i s

y Ry
N

ν

− −
πψν

∈ν

= π ψ ,∑  (11) 

where  

1 1 2 1

1
ˆˆˆ ( )i i i i si si i

− − − −′ψ = φ − φ − ,T t T Bɶ ɶ e  

ˆ
sit  and ˆ

siT  are given in (7) and ,iφɶ ,iB iT  are defined in 
(10). Then,  

2
ˆ ˆ 2 2

1
E[( ) ]y y O

n h
πψνπφν

ν ν

 
− =  

 
 (12) 

and the bias and variance of ˆyπψν  satisfy  

ˆ

(3 2)

1

E[ ]

1

1

N

k

k

B y y

O h O k even
n h

O h O k odd
n h

νν πψν

+ / 
 ν 

ν ν

+ 
 ν 

ν ν

≡ −

  
+ ,  

 
= 
  

+ ,  
  

 (13)
 

and  

ˆ

1
Var[ ] Oy

n hπψν
ν ν

 
= . 

 
 (14) 

Results (12) and (13) imply that the propensity weighting 

estimator ˆ ,y πφν  using a response propensity estimator based 

on local polynomial regression, is asymptotically unbiased 

for the population mean Ny ν
 under the joint distribution of 

the sampling design and the response model (1). Combining 

this result with (14), then we obtain that  

ˆ

1
ˆ pNy Oy

n hνπφν
ν ν

 
= + ,  

 
 (15) 

when the bandwidth satisfies  

( )
( )

1

2 4

1

2 3

, even,

, odd.

k
v

v

k
v

O n k
h

O n k

−
+

−
+




= 



 (16) 

Hence, without assuming a parametric form for the response 

propensity function ( ),φ ⋅ ˆy πφν  is consistent for the popula-

tion mean with respect to the sampling design and the 

response model, as long as the response propensities are a 

smooth function of the covariate .x  As a price paid for this 

robustness, the rate of convergence is of order n hν ν  

instead of the usual parametric rate .nν  However, as the 

degree of the local polynomial k  increases, the rate of 

convergence improves. Since the kernel regression esti-

mator in Da Silva and Opsomer (2006) is equivalent to the 

case 0,k =  local polynomial regression with higher degree 

is asymptotically superior to kernel regression in the context 

of a nonresponse adjustment. This theoretical finding is 

consistent with that in other contexts (see e.g., Wand and 

Jones 1995, page 130). 

Expression (11) on Theorem 1 generalizes another 

finding from Da Silva and Opsomer (2006) to the case of 

local polynomial regression, which is that the asymptotic 

weights 1ˆ i
−ψ  cannot be approximated by the inverse of 

response propensities 1

i
−φ  (or their population-level esti-

mators 1).i
−φɶ  One immediate consequence is that the esti-

mator ˆy πφν  is not asymptotically equivalent to y πφν  in (2).  

The following corollary provides an asymptotic distribu-

tion for ˆ ,y πφν  assuming the asymptotic normality of ˆ .y πψν   
Corollary 1. Assume the conditions of Theorem 1 hold. 
Suppose that the sampling design and the response model 
are such that  

ˆ

1 2

ˆ

(0 1)
[Var( )]

N By y
as

y
ν νπψν

/
πψν

− −
→ , ν → ∞,L

N  

where Bν  is defined in (13). If additionally  

ˆlim ( )Var( ) (0 )n h yν ν πψνν→∞
∈ , ∞ ,  

then  

ˆ

1 2

ˆ

(0 1)
[Var( )]

N By y

y
ν νπφν

/
πψν

− −
→ , .L

N  

We now discuss the properties of the ratio-based version 

of propensity weighting estimator given in (5). Based on the 

results for ˆ ,y πφν  standard ratio estimation theory can be 

used to derive asymptotic results for ˆrat
.y , πφν  In particular, 

under the same assumptions the asymptotic rates for the 

approximate bias and variance of ˆraty , πφν  are the same as 

those in Theorem 1, and the asymptotic distribution of 

ˆraty , πφν  is given in the following result.   
Theorem 2. Assume the conditions of Theorem 1 hold. 
Suppose the population mean is to be estimated by the 
propensity weighted estimator ˆraty , πφν  of (5) and the 
response propensities are estimated by ˆ ,iφ  the local 
polynomial regression estimator of degree k  defined in (8). 
Let  

1 1
ˆ

1
ˆ ( )i i i iN

i s

e y Ry
N ν

ν

− −
πψν

∈ν

= π ψ − ,∑  

where the weights 1ˆ i
−ψ  are given in Theorem 1. Suppose 

that  

ˆ ˆ

1 2

ˆ

E( )
(0 1)

[Var( )]

e e
as

e

πψν πψν

/
πψν

−
→ , ν → ∞,L

N  
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and  

ˆlim ( )Var( ) (0 )n h eν ν πψν
ν→∞

∈ , ∞ .  

Then,  

ˆ ratrat

1 2

ˆ

(0 1)
[Var( )]

N By y

e
ν , ν, πφν

/
πψν

− −
→ ,L

N  

as ,ν → ∞  where 1
rat ( ),kB O h +
, ν ν=  if k  is odd, and 

(3 2)
rat ( ),kB O h + /
, ν ν=  if k  is even. 

 
4. Variance estimation 

 
As noted in Section 3, the estimator ˆy πφν  is not 

asymptotically equivalent to ,y πφν  so that approximating 

the asymptotic variance of the former by that of the latter is 

typically incorrect. In fact, a proof that the asymptotic 

variance of y πφν  overestimates the variance of ˆy πφν  is 

given by Kim and Kim (2007) when the response 

propensities are assumed to follow a parametric model. In 

the present context, the asymptotic variance of ˆy πφν  is  

1 1

ˆ

1
ˆVar[ ] Var i i i i

i s

R yy
N

ν

 
 − −
 πψν   ∈ν 

= π ψ ,∑  

with 1ˆ i
−ψ  given in Theorem 1. As was previously noted in 

Da Silva and Opsomer (2006) for the simpler case of a zero 

degree polynomial, the high level of complexity in the 

expression makes direct estimation of this variance 

impractical, and a replication method was proposed instead. 

We briefly outline the procedure here, which is extended to 

local polynomials of degree .k  We omit the theoretical 

derivations. 

We start from a set of replicate weights in the absence of 

nonresponse, defined for estimating the variance of a linear 

estimator  

ɵ 1
i i

i s

w y
N

ν∈ν

θ = .∑  

The replicate variance estimator for ɵθ  is defined as  

� ɵ ɵ ɵ( ) 2

1

V( ) ( )
L

c
ν

=

θ = − θ ,θ∑ ℓ

ℓ

ℓ

 (17) 

where  

ɵ
( ) ( )1

1, 2, ,i i
i s

w y … L
N

ν

ν
∈ν

= , = ,θ ∑ℓ ℓ
ℓ  

denotes a set of Lν  replicates for ɵ,θ ( )

iw
ℓ  are sampling 

weights associated with the th
ℓ  replicate and c

ℓ
 is factor 

that depends on the replication procedure. Examples of 

replication procedures satisfying (17) use variants of the 

Jackknife method or the Balanced Repeated Replication 

technique. The process to adapt the replication procedure to 

estimating the variance of ˆy πφν  and ˆraty , πφν  is straight-

forward. The needed replicates of these adjusted estimators, 

namely 
( )

ˆy
πφν
ℓ

 and 
( )

ˆrat
,y

, πφν
ℓ

 are obtained by replacing the 
1

i iw −= π  by ( )

iw
ℓ  in (4) and (5), respectively, and also in 

the computations needed to produce the ˆ
iφ  in (9). In section 

5.4 below, we evaluate the practical performance of the 

replication variance procedure on NHANES data.  

 
5. Application to NHANES data 

 
5.1 The NHANES design  

We evaluate the performance of the local polynomial 

adjusted estimators on real data. We consider the 2005-2006 

release of the National Health and Nutrition Examination 

Survey (NHANES), which is conducted by the National 

Center for Health Statistics, Centers for Disease Control and 

Prevention (NCHS/CDC), of the U.S. Department of Health 

and Human Services. This survey consists of a stratified, 

multistage sample of the U.S. civilian non-institutionalized 

population. A general overview of the sample formation is 

as follows:   
(i) within each stratum, primary sampling units 

(PSUs) consisting of counties or grouped smaller 

counties are selected by sampling with probabilities 

proportional to a measure of size;  

(ii) from the sampled PSUs, groups of city blocks 

(segments) containing clusters of households are 

selected also by sampling with probability 

proportional to size;  

(iii) in the selected segments, clusters of households are 

randomly selected with varying selection 

probabilities to oversample groups of age, ethnic, 

or income in certain geographic areas; and  

(iv) in the selected households, one or more participants 

are selected randomly.  
 

The public release of NHANES data has two important 

aspects. First, to reduce disclosure risks, the stratified, four-

stage survey is condensed in a stratified one-stage design, 

with neither the new stratum variable nor the new PSU 

variable corresponding to the same variables in the original 

design. Secondly, the base sampling weights, obtained by 

reciprocal of the inclusion probabilities of the survey 

participants, are not released. The weights provided reflect 

adjustments made to the base weights to account for unit 

nonresponse, in the interview and exam portions of the 

survey, and to produce estimates satisfying known 

population controls.  
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5.2 The simulation experiment  
In order to empirically evaluate the local polynomial 

estimators as adjustments for nonresponse in complex 

surveys, we will apply an artificially generated source of 

unit nonresponse to the public-release NHANES dataset. 

The nonresponse mechanism will be taken as a smooth 

function of the age in years of the survey participant (AGE). 

For this comparison, we chose as study variables four 

characteristics related to heart diseases, namely the systolic 

blood pressure (SBP), the diastolic blood pressure (DBP), 

the indicator of hypertension (HTN) and the indicator of 

high serum total cholesterol (HTC). All of these were 

measured on survey participants who were 18 years or 

older. The systolic and diastolic variables were obtained as 

the average of the corresponding measurements in a set of 

up to four readings. Hypertension was defined for 

individuals having systolic blood pressure of 140 mm Hg or 

higher or a mean diastolic blood pressure of 90 mm Hg or 

higher or currently taking medication to lower high blood 

pressure. High serum total cholesterol was considered when 

the individual had a total serum cholesterol greater than or 

equal to 240 mg/dL. The unweighted sample correlations 

among these and the AGE variable are 0.481 (SBP), 0.118 

(DBP), 0.552 (HTN) and 0.060 (HTC), respectively. Hence, 

it is reasonable to postulate that unit nonresponse related to 

age is likely to have different effects on survey estimators 

for these four variables.  

The total number of eligible individuals in the NHANES 

dataset is 4,727. We generated unit nonresponse for the four 

variables of interest according to two logistic response 

propensity functions of the auxiliary variable x  taken by the 

age (in years) of the survey participant minus 18. These 

functions consider a linear and a nonlinear predictor of x  as 

follows   
Linear predictor: 

1

0 1( ) {1 exp[ ( )]}I x x −φ = + − β + β  

Nonlinear predictor: 

12 2

0 1 2 3 4 5

( )

{1 exp[ ( cos( )sin( ))]}

II x

x x x x
−

φ =

,+ − β +β +β +β β /π β /π
 

 
where the regression coefficients 0 5, ...,β β  were chosen so 

that the response propensity functions give an overall 

nonresponse rate of about 30% when applied to the sample 

values of .x  In both cases, we kept the NHANES sample 

fixed and generated B = 1,000 independent response 

indicator vectors by Poisson sampling.  

The following six nonresponse adjustments were evalu-

ated on these data. Note that in all cases we reported the 

ratio versions (5) of the estimators, because they were found 

to be much more precise than the Horvitz-Thompson 

versions.   
1. True response probabilities: ˆ ( ), .i ix i sνφ = φ ∈  

2. Logistic regression adjustment: ˆ
iφ  obtained as the 

estimated probabilities from a logistic regression of 

each response vector on ,x  using a polynomial in x  

of degree one as the linear predictor.  

3. Weighted local polynomial regression of degree k  

and bandwidth :hν ˆ ˆ ( )i ix k hνφ = φ , ,  given by (8), 

with ,i sν∈ k = 0, 1, 2, 3, hν = 0.15, 0.25, 0.50 and 

the Epanechnikov kernel function  

2( ) (3 4) (1 ) { 1}K t x I x= / − | | ≤ .  

4. Unweighted local polynomial regression of degree k  

and bandwidth :hν  the same as above but not 

including the sampling weights in (8) to obtain the 
ˆ ˆ ( ).i ix k hνφ = φ , ,  This might be somewhat easier to 

compute in practice and should lead to similar results, 

even if it does not, strictly speaking, follow the 

pseudo-randomization theory of Section 3.  

5. Weighting within cell: within each stratum, respon-

dents and nonrespondents were classified into four 

classes of age based on the sample quartiles of this 

variable. This procedure subdivided the sample in a 

total of 60 cells. Let gs  and rgs  denote respectively 

the set of sampled elements and the set of responding 

elements in the thg  cell. Then, the WC adjustment is 

defined by taking 

ˆ rg i

g

i s w

i
ii s
w

∈

∈

φ = ,
∑
∑

 

for all respondents .rgi s∈  

6. Naive: ˆ 1,iφ = .i sν∈  
 
5.3 Bias and robustness against a misspecified 

response propensity function  
When the full sample without artificial nonresponse is 

used, the Hájek estimated means for the four study variables 

are respectively SBP = 122.19 mm Hg, DBP = 70.29 mm Hg, 

HTN = 29.04% and HTC = 15.76%. Table 1 gives the 

percentage bias relative to those means across response sets 

obtained for every adjustment procedure in this simulation 

experiment. For both weighted and unweighted Local 

Polynomial Regression adjusted estimators, we only display 

the results for the bandwidth hν = 0.25, but those for other 

bandwidth values are similar. We instead show the results 

for different degrees of the local polynomial, so that the 

effect of moving from local constant to higher order 

polynomials can be evaluated.  
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Table 1 

Relative biases (%) of nonresponse-adjusted estimators for mean systolic blood pressure (SBP), diastolic blood pressure (DBP), 
indicator of hypertension (HTN) and indicator of high serum total cholesterol (HTC), based on 1,000 response sets for two 
propensity functions of the age of the survey participant in NHANES 2005-2006 
 

 Logistic propensity function  
(linear predictor) 

Logistic propensity function  
(nonlinear predictor) 

Type of adjustment  SBP DBP HTN HTC SBP DBP HTN HTC 

True Response Propensities 0.01 0.01 -0.01 0.04 -0.00 -0.00 0.01 -0.22 

Logistic Regression 0.01 0.00 -0.03 0.03 0.47 -1.67 6.49 -6.76 

Weighted Local Polynomial           

Regression:         

 Degree 0 0.27  0.34  3.39  2.41  -0.20  -0.39  -1.20  -2.27   

 Degree 1 0.00  0.04  -0.03  0.20  -0.01  -0.49  0.34  -2.36   

 Degree 2 0.01  0.01  0.03  0.07  0.03  -0.05  0.51  -0.27   

 Degree 3 0.01  0.01  -0.02  0.04  -0.03  -0.05  -0.24  -0.44   

Unweighted Local Polynomial         

Regression:         

 Degree 0 0.11  0.24  1.34  1.53  -0.17  -0.47  -0.98  -2.70   

 Degree 1 0.01  0.05  -0.00  0.25  -0.01  -0.57  0.34  -2.69   

 Degree 2 0.01  0.01  -0.00  0.07  0.01  -0.07  0.26  -0.40   

 Degree 3 0.00  0.01  -0.06  0.03  -0.03  -0.06  -0.29  -0.48   

Weighting Within Cell 0.08  0.08  0.84  0.69  -0.11  -0.07  -0.84  -0.48   

Naive  1.62  0.80  20.49  8.04  -1.30  -1.60  -15.61  -10.77    
 

Among the estimators affected by the generated 

nonresponse, the worst bias performances are clearly for the 

unadjusted “Naive” estimator. As displayed in the last row of 

Table 1, the biases are higher in the estimation of the 

prevalence of hypertension and the mean systolic blood 

pressure, as these are the characteristics of the study 

variables with higher correlations with the AGE variable, 

and also for the prevalence of high serum total cholesterol. 

The biases of the Naive estimator can be successfully 

reduced with the true response propensity estimator, any of 

the local polynomial regression adjusted estimators, the 

weighting-within cell estimator or with the logistic adjusted 

estimator, if the model for the propensity function is 

correctly specified. The best performances in terms of small 

bias are obtained using the estimator adjusted by the true 

response propensities, because it is conditionally unbiased 

for the full sample estimates. The logistic adjustment when it 

is applied under the correct model, given by the propensity 

function with a linear predictor, also gives nearly unbiased 

estimates. For the second propensity function, where the 

form of the predictor is not well captured by the logistic 

regression fit of a regression line, this adjustment yields a 

conditionally biased estimator.  

The averages of the local polynomial regression estimates 

become generally closer to the full sample estimates by 

increasing the degree of the polynomial fitted, with the 

largest jump when moving from a local constant to a local 

linear estimator. Hence, it seems that local polynomial 

regression is indeed superior to kernel regression in this 

context. There is very little difference between the weighted 

and unweighted forms of this adjustment and both 

procedures have overall smaller conditional biases than the 

biases of the weighting-within cell estimator, when they are 

implemented by fitting locally a polynomial of order greater 

than zero to estimate the response propensities. The zero 

degree propensity weighted and unweighted adjusted 

estimators have smaller biases at smaller bandwidths, as we 

observed with the bandwidth 0.15, for instance, but smaller 

bandwidths tend to increase the variance of the estimators. 

Overall, both weighted and unweighted local polynomial 

regression adjustments outperform the parametric logistic 

adjustment when the response model is misspecified. By 

implementing the local polynomial adjustments with degrees 

above one, their performances are similar to the one of the 

logistic adjustment under the correct specification of the 

response model.   
5.4 Variance and variance estimation  

Table 2 shows the variance of the adjustment methods 

considered here across the nonresponse replicates, and we 

normalized them by the variance for the true response 

propensity adjustment for clarity. Interestingly, there appears 

to be an inverse relationship between the magnitude of the 

relative biases in Table 1 and the variances in this table. In 

those cases where the relative bias was small (the weighted 

and unweighted local polynomial regression, the weighting 

within cell as well as the logistic regression adjustment for 

the linear propensity function), all the methods appear to 

result in roughly similar variances. There is a tendency for 

higher degree local polynomials to be more variable than 

lower degree ones, and this is particularly noticeable for the 

nonlinear propensity function, where a clear jump is seen 

when one moves from degree 1 (local linear) to 2 (local 

quadratic). Overall, it seems that local linear regression, 

either weighted or unweighted, offers a good compromise 

between the bias and the variance of the nonresponse 

adjustment procedure.  
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Table 2 

Normalized Monte Carlo variances of nonresponse-adjusted estimators for mean systolic blood pressure (SBP), diastolic blood 
pressure (DBP), indicator of hypertension (HTN) and indicator of high serum total cholesterol (HTC), based on 1,000 response sets 
for two propensity functions of the age of the survey participant in NHANES 2005-2006 
 

 Logistic propensity function  
(linear predictor) 

Logistic propensity function  
(nonlinear predictor) 

Type of adjustment  SBP DBP HTN HTC SBP DBP HTN HTC 

True Response Propensities 100.0  100.0  100.0  100.0  100.0  100.0  100.0  100.0   

Logistic Regression 85.9  92.4  79.5  96.5  63.9  61.5  54.1  52.0   

Weighted Local Polynomial           

Regression:         

 Degree 0 74.9  81.2  65.7  92.1  70.3  67.0  67.4  75.0   

 Degree 1 81.8  89.5  66.2  92.7  73.6  69.8  68.9  76.0   

 Degree 2 81.3  89.8  65.5  94.0  90.3  81.7  88.0  96.1   

 Degree 3 82.3  90.2  65.8  93.1  90.1  82.2  87.7  96.2   

Unweighted Local Polynomial         

Regression:         

 Degree 0 82.2  85.8  77.6  95.8  71.9  69.2  70.7  74.7   

 Degree 1 85.6  90.1  79.4  95.7  74.4  71.1  71.2  74.6   

 Degree 2 86.6  91.3  79.3  96.1  91.8  84.5  91.8  96.8   

 Degree 3 87.3  91.5  78.5  95.0  91.2  84.7  91.2  96.9   

Weighting Within Cell 79.7  89.1  62.1  91.6  82.5  77.0  81.1  92.3   

Naive  71.3  58.0  81.7  74.6  48.6  48.7  45.5  45.1     
 

The above simulation results showed the behavior of 

several nonresponse adjustments in the NHANES setting. 

We now consider the replication variance estimation 

approach of Section 4 and evaluate its usefulness as a 

sample-based measure of uncertainty for the nonresponse-

adjusted estimators in the same setting. We implemented 

(17) with the Jackknife method. Since NHANES does not 

provide information on the joint sample inclusion 

probabilities, we could not apply a full Jackknife variance 

estimator as in, for instance, Berger and Skinner (2005), as a 

means to account for the selection of units with varying 

probabilities in the survey. Because of this, we assumed the 

within-stratum designs in NHANES could be approximated 

by cluster sampling with replacement and rewrite (17) in the 

form proposed by Rust (1985),  

ɵ ( ) 2

1

ˆ ˆV̂ ( ) ( )
t

T
tj

JK t
t j s

c
= ∈

θ = θ − θ ,∑ ∑  (18) 

where ts  denote the set of units in sample from the tht  

NHANES stratum, 1 2 , tt … T n= , , ,  be the number of 

units selected to , ( 1)t t t ts c n n= − /  and ( )ˆ tjθ  is obtained 

from (5) by replacing the iw  with the replication weights  

( )

0, for a survey participant

PSU

( 1) , for a survey participant

PSU ( )

, for a survey participant

.

t
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i

t

i j j s

w n n w

i j j s j j

w

i s

















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These weights were also applied in the estimation of the 

response propensities for the weighted local polynomial 

regression procedure adjustment procedure.  

The Jackknife variance estimator (18) was applied to 

each response vector from the two propensity functions, 

yielding estimates ɵˆ ( ( )),JKv bθ 1, 2, , ,b … B=  for all 

adjusted estimators in the experiment. For the sake of 

comparison, it would be informative to produce estimates of 

the corresponding variances by the Monte Carlo method. 

However, as the NHANES sample is fixed, the Monte Carlo 

variance of the point estimates ɵ ( )bθ  across response 

vectors estimates only the conditional variance ˆVar( )sνθ|  

with respect to the response model. Since  

ɵ ɵ ɵVar( ) Var(E( )) E(Var( ))s sν νθ = θ| + θ| ,  

where the “inner” moments are taken with respect to the 

response model given the sample and the “outer” moments 

are with respect to the sampling design, the design variance 

of ɵE( )sνθ|  needs to be accounted for in order to have a 

valid estimation target for ˆV̂ ( ).JK θ  Using the fact that 

weighted and unweighted local polynomial regression and 

weighting within cell all produce approximately condi-

tionally unbiased estimators of the full sample estimator, 

rat
,i s i si i iw y wy

ν ν∈ ∈π, ∑ ∑= /  for the two response pro-

pensities functions, we decided to use the Jackknife variance 

estimator of ratyπ,  as a “proxy” for ɵVar(E( )).sνθ|  Hence, 

our “comparison variance” will be defined as  

2

rat
1

1ˆ ˆ ˆˆ ˆ( ) ( ) ( ( ) )
1

B

C JK
b

v v by
Bπ,

=

θ = + θ − θ .
−
∑  
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Using ˆˆ ( )Cv θ  instead of the true variance will tend to 

underestimate any bias issues associated with the use of the 

jackknife variance estimator for the full sample estimator. 

However, it will show how well the replication procedure 

manages to capture the nonresponse variability.  

Table 3 gives relative biases of the Jackknife variance 

estimators obtained in this experiment. The results show that 

the jackknife variance estimator performs reasonably well 

for both nonresponse mechanisms and all estimators 

considered. The weighted local polynomial regression 

adjusted procedure appears to yield estimated variances in 

greater consonance with the comparison variance than when 

the procedure is implemented by its unweighted version. 

The results for the nonlinear predictor function exhibit more 

bias than those for the linear predictor, with more 

pronounced positive and negative biases present for the 

former for all the variables. As discussed in Da Silva and 

Opsomer (2006), replication methods for nonresponse-

adjusted estimators often ignore a component of the total 

variance, which includes the effect of both sampling and the 

response mechanism. We therefore conjecture that the 

different bias behaviors exhibited for the different variables 

could be due to this missing variance component.  

 
6. Concluding remarks 

 
In this article, we studied properties of nonparametric 

propensity weighting as an adjustment procedure for survey 

nonresponse. The local polynomial regression technique is 

seen to offer a flexible way of constructing new survey 

adjustments for nonresponse. The results in the article 

extend those in Da Silva and Opsomer (2006) by allowing 

the use of local polynomials of arbitrary degree, which 

offers both theoretical and practical advantages over zero-

degree kernel regression.  

In addition to its good theoretical properties, the 

estimator was shown in the simulation experiment to be 

competitive with an estimator based on a correctly specified 

parametric model in terms of bias and variance, while 

protecting against a potentially misspecified model. The 

weighting-cell estimator is similarly robust against model 

misspecification, but a particular advantage of nonpara-

metric regression methods over weighting cell approaches is 

the connection to broad classes of modeling techniques 

available in the non-survey literature. Extensions of the 

methodology we described here to semiparametric and 

(generalized) additive models (Hastie and Tibshirani 1986) 

are readily formulated and should work well in a wide range 

of potential response model scenarios, including situations 

with multiple covariates that are both categorical and 

continuous. A detailed discussion of these extensions is 

beyond the scope of the current paper, however.  

In Section 5, we applied the nonparametric nonresponse 

adjustment to NHANES data by modeling the response 

probability as a smooth function of the age of the 

respondents, and weighting the data by the inverses of the 

estimated response probabilities. The same approach can be 

used in other survey datasets whenever continuous 

covariates related to the response probability are available 

for all elements in the original sample. This provides a 

viable alternative to the commonly used weighting-within-

cell approach for situations in which cells are constructed by 

“binning” one or several continuous variables.  

 

 

 
Table 3 
Relative biases (%) of the Jackknife variance estimators of estimators of the mean systolic blood pressure (SBP), diastolic blood 

pressure (DBP), indicator of hypertension (HTN) and indicator of high serum total cholesterol (HTC), based on 1,000 response sets 
for two propensity functions of the age of the survey participant in NHANES 2005-2006 
 

 Logistic propensity function  
(linear predictor) 

Logistic propensity function  
(nonlinear predictor) 

Type of adjustment  SBP DBP HTN HTC SBP DBP HTN HTC 

True Response Propensities 0.55  -0.47  -0.06  0.16  0.92  -0.26  -1.03  -2.76   

Weighted Local Polynomial           

Regression:         

 Degree 0 -0.66  2.33  2.74  4.44  1.63  -2.27  -5.12  -9.44   

 Degree 1 -0.31  -1.03  0.31  1.87  5.27  4.03  2.60  -9.95   

 Degree 2 -0.14  -0.76  0.41  0.49  0.25  0.65  -2.60  -3.60   

 Degree 3 -0.27  -1.03  0.39  0.48  0.19  0.45  -2.19  -3.02   

Unweighted Local Polynomial         

Regression:         

 Degree 0 2.00  2.77  3.57  5.56  5.73  0.31  1.83  -10.22   

 Degree 1 2.02  1.06  2.63  2.61  7.46  5.57  4.33  -10.43   

 Degree 2 2.26  1.07  2.88  1.36  4.16  3.81  1.62  -2.94   

 Degree 3 2.21  1.01  2.94  1.46  3.45  3.65  0.96  -2.63   

Weighting Within Cell -1.15  1.70  -0.47  5.16  2.69  -6.91  3.06  -5.88    
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There are still a number of open issues that need to be 

further investigated with respect to implementation of the 

method in actual surveys, whether in the univariate case 

described in detail here or in the various model extensions 

just mentioned. An important practical issue is the selection 

of estimator settings such as the degree of the local 

polynomial and the bandwidth. As noted in the non-

parametric literature (e.g., Fan and Gijbels 1996, page 77) 

and also confirmed in the simulations, higher degree 

polynomials reduce the bias but increase the variance, so 

that polynomials of degree 1k =  or 2 are generally 

recommended as a good compromise. More critical is the 

choice of bandwidth parameter. In our simulations, the 

results were only modestly sensitive to the choice of 

bandwidth within a “reasonable” range of values, i.e., ones 
ensuring that the number of observations used for estimating 

( )xφ  at any x  does not become too small (see discussion at 

the end of Section 2), or that is so large that the fit cannot 

capture changes in ( )φ ⋅  over the range of .x  As a rule of 

thumb, we would recommend considering values for h  that 

are within 20% and 50% of the range of x  as a good place 

to start, and making a final determination by looking at both 

model diagnostics for the model fit ɵ ( )xφ  and weight 

diagnostics for the adjusted survey weights 1ˆ( ) ,i i
−π φ  

similarly as would be done when constructing cell-based 

weights.  
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Appendix 

 
A.1 Assumptions  

We now state the assumptions needed to derive our main 

results. A detailed discussion of these assumptions is 

provided in Da Silva and Opsomer (2008). Consider the 

asymptotic framework of Section 3. Let 1(v I= ,I  

2 ..., )NI I
ν
′,  be the sample inclusion indicator vector for the 

thν  population. Suppressing the ν  for ease of notation, let 

Pr( 1),i iIπ = =  and let  

( )
1 ... d 1

E ( )
k

k

j j j jI, , =
∆ ≡ − π∏

ℓ ℓℓ
 (19) 

denote higher moments for the sample inclusion indicators 

1 2
, , ...,

kj j jI I I  with respect to the sampling design. We 

assume that there are positive constants 1 2 6, , ,…λ λ λ  such 

that:   
(A1) 1

1 2 ;iN n i U−
ν ν νλ < π < λ < ∞, ∀ ∈  

 

(A2) 1 ,N n−
ν ν → π  for some 0 1,< π <  as ;ν → ∞  

 

(A3) For  distinct 1 2, ..., ,kj j j Uν, ∈  where 2k = ,  
3, ..., 8,  

2

1
1

2

1

31

...,
1

41

( 1) if is even

( 1) if is odd

k

k
k

k

j j
k

N n k

N n k
−

−

ν=

,
−

ν=

 − + λ , 
|∆ |≤

 − + λ 

∏

∏

ℓ

ℓ

ℓ

ℓ

 

 

(A4) 1lim ( )i U iN y
ν

−
∈ν→∞ ν ∑ =µ∈ −∞, ∞  and 1 4

i U iN y
ν

−
∈ν ∑ | | ≤  

5,λ  for all 1.ν ≥  

 

Let 1 2( , ..., )v NR R R
ν
′= ,R  denote the response 

indicator vector for the ν -th population. In addition to the 

assumptions on the sampling design and the population 

distribution of the variable ,Y  we will also need the 

following assumptions on the response mechanism:   
(B1) 1 2, , ..., NR R R

ν
 are independent random variables;  

 

(B2)
 
Pr{ 1 }

Pr{ 1 } ;

i v v

i v i

R

R i U

ν

ν

= | , , =

= | ≡ φ , ∀ ∈

I xy

x
 

 

(B3) ( ) ,i ix i Uνφ = φ , ∀ ∈  where ( )φ ⋅  is a th( 2)k +  

continuously differentiable function with 

6 ( ) 1.λ < φ ⋅ ≤  The first derivative ( )′φ ⋅  has a finite 

number of sign changes.  
 

Regarding the distribution of the ix  and the kernel 

estimator, we assume that:   
(C1) For all 1,ν ≥ 1 2, ..., Nx x x

ν
,  are realizations of 

random variables 1 2, ..., NX X X
ν

,  independent and 

identically distributed with distribution ( )XF x =  

( ) ,
x

Xf t dt−∞∫  where ( )Xf ⋅  is a continuous and 

positive probability density function on a compact 

set [ ];X Xa b,  
 

(C2) The kernel function ( )K ⋅  is a bounded and 

continuous probability density, which is symmetric 

around zero and supported on [-1, 1]; 
 

(C3) 
1 4

1
( ) ;kz K z dz+

−∫ | | < ∞  
 

(C4) For all 1,ν ≥ { }hν  is a sequence of bandwidths 

satisfying 0 1,hν< ≤ 0,hν → 2n hν ν → ∞  and 

log ,N h Nν ν ν/ → ∞  as ;ν → ∞  
 

(C5) The first derivative ( )Xf ′ ⋅  is continuously 

differentiable and contains a finite number of sign 

changes on supp( ).Xf  The first derivative ( )K ′ ⋅  has 

a finite number of sign changes on supp( );K  
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(C6) The matrix 1

iN −
νT  is non-singular for all i Uν∈  

and all 1.ν ≥  
 
A.2 Technical derivations  

Complete proofs are in Da Silva and Opsomer (2008). 

The proof of Theorem 1 relies on bounding the moments of 

the difference ˆ v  y yπψ πφν− ɶ  under the combined design and 

response model probability mechanism, followed by 

deriving the rates of convergence for the bias and variance 

of the linearized estimator ˆ .y πψν  This is done in a series of 

six lemmas, which are stated here without proof. The proof 

of Theorem 2 is based on the result of Theorem 1, followed 

by an additional linearization of the ratio form.  

For notational simplicity in what follows, we suppressed 

the fact that the results are conditional on the sequences 

1( , , )v Nx … x
ν

=x  in the populations .Uν  However, the 

results in these lemmas are shown to hold with probability 

one over these sequences in Da Silva and Opsomer (2008), 

as was also done in Da Silva and Opsomer (2006). Hence, 

the results can be interpreted to hold for all population 

sequences, except on a set of probability 0 with respect to 

the distribution of the .vx   
Lemma 1. Assume that assumptions (C1)-(C5) hold. 
Consider ( ) ( ) ,

x hDK x z K z dz
,

∫µ , = ℓ

ℓ
 where x hD

ν, =  
{ ( ) supp( )} supp( ).Xt x ht f K: + ∈ ∩  Then, for all 0= ,ℓ  

1 2,… k, , +  

supp( )

1
sup ( ) ( ) 0

X

j
j

x f j U

X x
K X x E x

N h h
ν

ν
ν→∞∈ ∈ν ν ν

− 
− − , → , 

 
∑ ℓ

ℓ  

where  

1 1

1

( ) ( ) ( )

( ) ( ) ( )

X

X

E x f x K x h

f x K x h o h

ν ν

′ + +
+ ν ν

, = µ ,

+ µ , + .

ℓ

ℓ

ℓ ℓ

ℓ

ℓ
 

 
Lemma 2. Assume that assumptions (C1)-(C5) hold. 
Consider the population fit ( ),i ix k hνφ = φ , ,ɶ ɶ ,i Uν∈  
defined in (10). Hence, for all ,i Uν∈  there exists positive 
bounded terms 1( ),ic x 2 ( )ic x  and 3 ( ),ic x  such that if ix  in 
an interior point of supp( )Xf   

2 2

1

1 1

2

( ) ( )
( )

( ) ( )

k k
i

i i
k k

i

c x h o h k is even
x

c x h o h k is odd

+ +
ν ν

+ +
ν ν

 +
φ − φ = 

 +

ɶ  

and if ix  in a boundary point of supp( )Xf  
1 1

3( ) ( ) ( )k k
i i ix c x h o h+ +

ν νφ − φ = + ,ɶ  

where all the smaller order terms hold uniformly in .i Uν∈   
Lemma 3. Assume that assumptions (C1) and (C4) hold. 
Then,  

i) For [0 )p ∈ ,∞  fixed,  

{ }

1
limsup

j

p

x h x x h
j U

I
N h ν ν

ν

− ≤ ≤ +
ν→∞ ∈ν ν

  < ∞, 
 

∑  

  uniformly in ;x  
 

ii) { [0 ] (1 1]}

1
limsup

2 jx h h
j U

I
N h ν ν

ν

∈ , ∪ − ,
ν→∞ ∈ν ν

< ∞;∑  

iii) { ( 1 ]}

1
limsup .

jx h h
j U

I
N ν ν

ν

∈ , −
ν→∞ ∈ν

< ∞∑  

iv) there  exists ,∗ν  independent of ,x  such that 
whenever ,∗ν ≥ ν  

{ } 1
jx x h

j U

I k
ν

ν

| − |≤
∈

≥ + ;∑  

  
Lemma 4. Suppose the assumptions of Theorem 1 hold. 
Consider the matrices ˆ ˆ{ }si si pqT ,=T  and { }i si pqT ,=T  and 
the vectors ˆ ˆ{ },si si pt ,=t { }i i pt ,=t  and { }i i pB ,=B  
given in (7) and (10). Then,  

i) the 1
i pqN T−

ν ,  and 1
i pN t−

ν ,  are uniformly bounded 
in ,i Uν∈  for all 1, ..., 1;p q k, = +  

ii) the ˆ
si pqT ,  and ŝi pt ,  satisfy  

�
8

4 41 1

8

4 41 1

1
max E

1
max E

i pqsi pq

p q k

i psi p

p k

TT
O and

N n h

tt
O

N n h

,,

≤ , ≤ +
ν ν ν

,,

≤ ≤ +
ν ν ν

−   
=   

   

−   
= ,   

   

ɵ

 

  uniformly in ;i Uν∈  
iii) the  random variable 1

1
ˆˆ( )i si si i

−′ −T t T Be  satisfies  

1

1

1ˆˆmaxE ( ( ) )i si si i i i
i U

I R O
n hν

−

∈
ν ν

 
′ − =  

 
T t T Be  (20) 

  and  

41

1 2 2

1
ˆˆmaxE ( ( ))i si si ii U

O
n hν

−

∈
ν ν

 
= .′ −  

 
T t T Be  (21) 

  
Lemma 5. Suppose the assumptions of Theorem 1 hold. 
Then, for all 1ν ≥   

i) the  reciprocal of iφɶ  is uniformly bounded in 
;i Uν∈  

ii) the  partial derivatives of 1ˆ
i
−φ  of orders one up to 

four, when evaluated at ˆ ,si i=T T ˆ ,si i=t t 1 0δ =  

and 2 0,δ =  are uniformly bounded in ;i Uν∈  

iii) 4ˆE( )i
−φ  is uniformly bounded in ;i Uν∈  

iv) the  reciprocal of ˆ iφ  satisfies  
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1

2 2
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ν
ν ν

′φ = φ − φ −

 
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T t T Bɶ ɶ e
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uniformly in ,i Uν∈  where the iνε  are random 
variables such that  

2

2 2

1
maxE i
i U

O
n hν

 
 ν ∈

ν ν

 
ε = . 

 
 

 
Lemma 6. Suppose the assumptions of Theorem 1 hold. 
Define the random variables ,y πφνɶ d πφνɶ  and πφνε ɶ  as  

1 1 1 1
1

( )

1 ˆˆ(1 ( ) )i i i i si si i i i i
i s

y d

e y R
N

ν

πφνπφνπφν

− − − −
ν

∈ν

′, , =ε

′ ′π φ , φ − , ε .∑ T t T B

ɶɶɶ

ɶ ɶ
 

Then,  

(3 2)

1
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k

N
k

O h k even
y y

O h k odd
ν

+ /
ν
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+

ν
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1
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2 1
(E[ ] E[ ])d d Â O

n hπφν πφν
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and  

2
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