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On the definition and interpretation of interviewer variability  
for a complex sampling design 

Siegfried Gabler and Partha Lahiri 1 

Abstract 

Interviewer variability is a major component of variability of survey statistics. Different strategies related to question 

formatting, question phrasing, interviewer training, interviewer workload, interviewer experience and interviewer 

assignment are employed in an effort to reduce interviewer variability. The traditional formula for measuring interviewer 

variability, commonly referred to as the interviewer effect, is given by int int: _ 1 ( 1) ,ieff deff int n= = + − ρ  where intρ  

and intn  are the intra-interviewer correlation and the simple average of the interviewer workloads, respectively. In this 

article, we provide a model-assisted justification of this well-known formula for equal probability of selection methods 

(epsem) with no spatial clustering in the sample and equal interviewer workload. However, spatial clustering and unequal 

weighting are both very common in large scale surveys. In the context of a complex sampling design, we obtain an 

appropriate formula for the interviewer variability that takes into consideration unequal probability of selection and spatial 

clustering. Our formula provides a more accurate assessment of interviewer effects and thus is helpful in allocating more 

reasonable amount of funds to control the interviewer variability. We also propose a decomposition of the overall effect into 

effects due to weighting, spatial clustering and interviewers. Such a decomposition is helpful in understanding ways to 

reduce total variance by different means. 
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1. Introduction 
 

A major source of measurement errors in surveys is due 

to the interviewer. This fact was recognized as early as 1929 

by Rice and later by many survey researchers. Factors such 

as the quality of questionnaire design and the interviewer 

can influence the interviewer effects on survey statistics.  

The interviewer can introduce homogeneity in survey 

data, which generally reduces the effective sample size and 

thereby increases the total variance of a survey estimator. 

The within interviewer homogeneity has been traditionally 

measured by the intra-interviewer correlation coefficient 

int.ρ  The magnitude of the intra-interviewer correlation was 

studied by many researchers, mostly in the context of 

telephone surveys without any spatial clustering effects 

(Kish 1962; Gray 1956; Hanson and Marks 1958; Tucker 

1983; Groves and Magilavy 1986; Heeb and Gmel 2001, 

and others). Researchers have argued that the nature of the 

survey items may affect the value of int.ρ  Attitude items 

and complex factual items are considered more sensitive to 

the intra-interviewer correlation than simple factual items 

are (Collins and Butcher 1982; Feather 1973; Fellegi 1964; 

Gray 1956; Hansen, Hurwitz and Bershad 1961). According 

to Groves (1989), values above 0.1 are seldom observed. 

See Schnell and Kreuter (2005) for further discussion on 

this issue. 

As noted by several researchers, the standard interviewer 

effect formula int int1 ( 1)n+ − ρ suggests that even with a 

small intra-interviewer correlation, the interviewer effect 

could be substantial simply due to a high average 

interviewer workload. For example, when int 0.01ρ =  and 

int 70n =  we have 1.69ieff =  (Schnell and Kreuter 

2005). Note that a high average interviewer workload (e.g., 

between 60 and 70) is very common in telephone surveys 

(Tucker 1983; Groves and Magilavy 1986). For the 

European Social Survey, Philippens and Loosveldt (2004) 

provided box plots of the intra-interviewer correlations and 

the interviewer workloads for 18 participating countries.  

The interviewer effect or variance is generally defined as 

the inflation to the total variance caused solely by the 

interviewers. For an epsem design with equal interviewer 

workload, the interviewer variance for the sample mean is 

simply given by int int1 ( 1) ,n+ − ρ  where intn  is the 

common interviewer workload. For complex surveys with 

unequal interviewer workload, survey researchers frequently 

use a simple modification of this formula where the 

common interviewer workload is replaced by the average 

interviewer workload, i.e., the formula int int1 ( 1) .n+ − ρ
 
In 

Section 2, we argue that this standard formula 

int int1 ( 1)n+ − ρ  cannot be interpreted as an inflation to the 

total variance caused by the interviewers even for an epsem 

design with unequal interviewer workload. In Sections 2-4, 

we observe that the interviewer variance definition depends 
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on the nature of the complex sampling design and also on 

the interviewer workload assignment. In this paper, we 

provide appropriate definitions of the interviewer variance 

in different survey scenarios. A reliable definition of the 

interviewer variance is helpful in determining actions that 

need to be taken in order to reduce interviewer variability. 

This paper is foremost applicable to the planning of surveys 

rather than analyzing survey data. In other words, in this 

paper we have concentrated on the definitions and 

interpretation of the interviewer variability and not on 

estimating it from a given survey. 

In Section 2, we consider an epsem design with no 

spatial clustering and provide a model-assisted interpretation 

of .ieff  We show that for the equal interviewer workload 

ieff  is simply the ratio of the variances of the sample mean 

under a correlated model that accounts for the homogeneity 

of the observations collected by the same interviewer and a 

simple uncorrelated model that fails to account for such 

homogeneity. Thus, multiplying the variance of the sample 

mean for simple random sampling by the ieff  one can 

obtain the total variance of the sample mean that 

incorporates both the sampling and the interviewer 

variability. This is a very intuitive interpretation of ieff  and 

complements the model-assisted justification given earlier 

by Kish (1962). In this section, we also show that for an 

epsem design ieff  is lower than the model-assisted 

interviewer effect formula if the interviewer workload varies 

and the intra-interviewer correlation is positive. Thus, the 

survey designer who uses ieff  would give less effort to 

control interviewer variability than is really needed. In this 

situation, an appropriate interviewer effect formula can be 

obtained from ieff  when a weighted average interviewer 

workload is used in place of the usual simple average. 

In Section 3, we entertain the possibility of unequal 

weighting but no spatial clustering. We obtain a model-

assisted interpretation for ieff  if and only if the respondents 

interviewed by the same interviewer share the same 

sampling weight and the interviewer workload is inversely 

proportional to the square of the common weight for the 

interviewer. Interestingly, unlike the epsem design, equal 

interviewer workload does not necessarily guarantee a 

model-assisted interpretation for .ieff  When there is an 

equal interviewer workload and there is at least one 

interviewer for which the respondents do not all share the 

same sampling weight, we show that ieff  is always higher 

than the model-assisted formula. We also point out the 

factors that cause the difference between these two 

formulae. These results have a practical relevance in terms 

of saving survey costs. To be specific, the survey designer 

who uses ieff  is likely to allocate more funds to control 

interviewer variability than is really needed. We have also 

cited some situations where ieff  could have an under-

estimation problem and thus survey designers who use ieff  

could give less emphasis to control the interviewer effects. 

Our formula provides a more accurate assessment of 

interviewer variability and thus is helpful in the allocation of 

more reasonable amount of funds to control the interviewer 

variability. Furthermore, the change in planning formulae 

will affect the sample size.  

In many large scale sample surveys, due to various 

organizational and financial reasons such as the absence of a 

general population register or to reduce the overall survey 

costs, a multi-stage clustered sampling design is considered 

to be a cost-efficient alternative to simple random sampling. 

Under a multi-stage clustered sampling design, respondents 

who live in close spatial proximity of each other get 

selected. Respondents living in the same spatial cluster tend 

to share similar attitudes because of their similar socio-

economic background and hence increase the internal 

homogeneity of the survey data. This spatial homogeneity 

violates the iid (independently identically distributed) 

assumption frequently used in standard statistical inferential 

procedures and so does the clustering within the 

interviewers. This fact has been recognized by many survey 

researchers and adjustments to various statistical procedures 

and the related software issues have been addressed in the 

literature (see Rao and Scott 1984; Skinner, Holt and Smith 

1989; Biemer and Trewin 1997; Chambers and Skinner 

2003; among others). In Section 4, we present a new 

definition of the interviewer variability in the presence of 

unequal weighting and spatial clustering. In the presence of 

spatial clustering, we argue that ieff  generally has a 

tendency to overestimate the interviewer variability. Thus 

for complex surveys involving spatial clustering, ieff  may 

unnecessarily give a false alarm regarding the magnitude of 

the interviewer variability. 

In Section 5, we discuss the effects due to the combined 

effects of weighting, spatial clustering and the interviewer. 

The formula for overall effects offers an accurate 

determination of the sample size at the planning stage. We 

provide a nice factorization of the overall effects into the 

effects due to weighting, clustering and interviewer. Such a 

decomposition of the overall effects can be useful in 

understanding ways to reduce the total variance by different 

means. In discussing Verma, Scott and O’Muircheartaigh 

(1980), Hedges mentioned the need for such an overall 

effect formula. We generalize a formula earlier proposed by 

Davis and Scott (1995) to a non-epsem design and for a 

general correlation model valid for both discrete and 

continuous data. We present proofs of all the technical 

results in the Appendix. 

  



Survey Methodology, June 2009 87 
 

 

Statistics Canada, Catalogue No. 12-001-X 

2. EPSEM design with no spatial clustering 
 

Let iky  denote the observation obtained from the thk  

respondent interviewed by the thi  interviewer 

( 1, ..., ; 1, ... ).ii I k n= =  Define 1 ,I
i in n=∑=  the total 

sample size, 1 11/ ,inI
i k iky n y= =∑ ∑=  the unweighted sample 

mean, and 1int ( ) ,I
i i in a n=∑=a  a weighted average of the 

interviewer workload, where ia  is an arbitrary weight 

attached to the thi  interviewer workload and =a  

1( , ..., ).Ia a  

We shall first provide a model-assisted justification of the 

traditional interviewer effect formula, i.e., 1ieff = +  

int int( 1) ,n − ρ  where intn  is the unweighted average of 

interviewer workload. Note that int int 0( ),n n= a  with 

0 01 0 0( , ..., ),  1/I ia a a I= =a  and 0( ).ieff ieff= a  Using 

Result 1 given in the Appendix, we get 

2

1

1 int 1 int

Var ( )
( ) 1 [ ( ) 1] ,

Var ( )

M

M

y
ieff n

y
= = + − ρa a  

where 1 11 1( , ..., ),Ia a=a  with 1 / .i ia n n=  In the above, 

1
Var ( )M y  and 

2
Var ( )M y  are the variances of y  under the 

following two models, respectively, 

2

1

2

2

2 int

if , ,
: Cov( , )

0 otherwise,

if , ,

: Cov( , ) if , ,

0 otherwise.

ik i k

ik i k

i i k k
M y y

i i k k

M y y i i k k

′ ′

′ ′

 ′ ′σ = =
= 


 ′ ′σ = =
 ′ ′= ρ σ = ≠



 

Note that unlike model 1,M  model 2M  introduces 

homogeneity of the observations collected by the same 

interviewer.  
Remark 2.1: It follows from the corollary to Result 1, given 

in the Appendix, that for int 0,ρ > 1( )ieff ieff=a  if and 

only if /in n I=  for all ,i  i.e., if and only if each 

interviewer has the same workload. For the balanced case, 

Kish (1962) provided a model-assisted justification of ieff  

using a linear mixed model, which is a special case of 2M . 

For the unbalanced case, it is interesting to note the 

similarity between the interviewer variability formula 

1( )ieff a  and the design effects formula given in (A3) of 

Holt in discussing Verma et al. (1980).  
Remark 2.2: It follows from the corollary to Result 1 that if 

int 0ρ >  and in ’s are not equal then 1( ) .ieff ieff>a   
In the following example, we demonstrate the extent to 

which 1( )ieff a  and ieff  could differ for different 

interviewer workload patterns.   

Example 1: In Table 1, we consider three different workload 

assignments for ten interviewers, each with n = 790. Case 
A) represents the most variable workload assignment with a 

standard deviation =  68.3; Case B) is nearly balanced with 

a standard deviation =  9.5; Case C) corresponds to the 

equal interviewer assignment.   
Table 1 

Three different interviewer workload assignments (Example 1) 
 

 Interviewer workload pattern 

Interviewer A) B) C) 

1 4 70 79 
2 10 70 79 
3 20 70 79 
4 34 70 79 
5 52 70 79 
6 74 88 79 
7 100 88 79 
8 130 88 79 
9 164 88 79 
10 202 88 79 

n 790 790 790 

int 1( )n a  132 80 79 

 
Let 1; 1;( ),  ( ),A Bieff ieffa a  and 1;( )Cieff ieff=a  denote 

1( ),ieff a  the model-assisted interviewer variance formula 

corresponding to the cases A, B and C, respectively. For 

int 0ρ >  the function 1( )ieff a  is Schur-convex, which 

explains the fact 1; 1; 1;( ) ( ) ( ) .A B Cieff ieff ieff ieff≥ ≥ =a a a  

Figure 1 provides the values of the interviewer variance 

obtained from the standard formula (i.e., )ieff  and our 

model-assisted interview variance formula for all 

combinations of the two influencing factors, i.e., weighted 

average of interviewer workload and the intra-interviewer 

correlation. From Figure 1, it is interesting to note that ieff  

could underreport by about 100%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 A graph of 1(a )ieff  vs. intρρρρ  for different int 1(a )n  
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3. Unequal weighting with no spatial clustering 
 

In this section, we consider the situation when we have 

unequal weights. Let ikw  be the survey weight attached to 

the thk  respondent interviewed by the thi  interviewer. In 

this situation, a weighted mean /i k i kw ik ik iky w y w∑ ∑ ∑ ∑=  

is a popular estimator of the finite population mean (See 

Brewer 1963; Hájek 1971) and the model-assisted 

interviewer variance formula is given by  

2

1

2

int 2

Var ( )

Var
.

( )
1 1

ik

i k

i

M

i

w

w

M w k
k

y
ieff

w

y w
= =

  
  
  + ρ − 
 
 

∑ ∑

∑∑
 

See Result 1 given in the Appendix. 

Define 11/ ,in

ki i ikw n w=∑=  the average survey weight 

for the thi  interviewer and 2 2 2 =1/ ,ki i ik in w w∑σ −  the 

variance of the survey weights for the thi  interviewer. It can 

be shown that  

int1 ( 1),w wief nf ρ −= +  

where  

2 2

2 2
.

i i

i
w

i i i i
i i

n w

n
n w n

=
+ σ

∑

∑ ∑
 

Note that, in general, wieff  cannot be written in the form 

int int1 ( ( ) 1)wieff n= + ρ −a  with 1.i ia∑ =   
Remark 3.1: From Result 2 in the Appendix, we have  

2( ),wieff ieff≤ a  

where 

2

2 21 2 2 2
( , ..., ),  with .

ik

k
I i

ik
i k

w

a a a
w

= =
∑

∑∑
a  

In the above, for int 0,ρ > 2( )wieff ieff= a  if and only if all 
2

iσ are zero. Thus, 2( )ieff a  can be interpreted as a 

conservative interviewer variance.  

Equality holds if and only if ik iw w=  for all i  and k  in 

which case  

*

2( ),  wieff ieff= a  

where 

2
* * * *

2 21 2 2 2
( , ..., ),  with  .i i

I i

i i
i

n w
a a a

n w
= =

∑
a  

Thus, the formulae *

2 and ( ) wieff ieff a are equivalent if and 

only if the survey weights are all the same for a given 

interviewer. One example of such a design is an epsem 

design for which we have  

*

2
i

i

n
a

n
=  

and  

*

2 1( ) ( ). wieff ieff ieff= =a a  

Now we shall try to understand the factors that explain 

the difference between wieff  and .ieff  To this end, define 
 

1 111/ / ,inI I
i ik ik i iw n w n n w= ==∑ ∑ ∑= =  the average survey 

weight for all interviewers, 
 

2
1 ( ) ,I

i i iSSB n w w=∑= −  the between interviewer sum of 

squares of the survey weights, 
 

2 2
1 11( ) ,inI I

i ik ik i i iSSW w w n= ==∑ ∑ ∑= − = σ  the within inter-

viewer sum of squares of the survey weights, 
 

,SST SSB SSW= +  the total sum of squares of the survey 

weights, 
 

/ ,w SSW SSTτ =  an indicator of the relative contribution of 

the within interviewer variability of survey weights to the 

total variability, 
 

/ / ,wCV SST n w=  the coefficient of variation of the 

survey weights in the entire sample. 
 

It can be shown that (see Result 4) 

2int
int2

1 int

1

w

I
i

i i
i

ieff ieff

n n
n w SSW

nSST nw =

−

  
= − − ρ  

+    
∑  (1)

 

2int
int2

1 int

1
(1 )

I
i

i i
iw

n n
n w SSW

nCV SST−
=

  
= − − ρ  

+    
∑  (2) 

2

1 intint
int2

1

1 .
1

I
i

i i
iw

w

n
n w

nn

SSWCV

=

−

  
−  

τ   = − ρ 
 +

∑
 (3) 

Remark 3.2: We can use formula (1) in any situation. For 

epsem designs, we have  

int
int

1 int

1 .
I

i
w i

i

n n
ieff ieff n

n n=

 
− = ρ − 

 
∑  

Note that an application of the Cauchy-Schwarz 

inequality suggests 0wieff ieff ≥−  with equality if and 

only if / for all .in n I i=  
 

Remark 3.3: We can use (2) if 0,SST ≠ i.e., if the design is 

not epsem. If int 0,ρ >  (2) implies 
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0 wieff ieff− ≤  if and only if 2

1 int

1 .
I

i
i i

i

n
n w SSW

n=

 
− ≤ 

 
∑  

If high interviewer workload tends to be associated with 

small average survey weights and vice versa and 0,SSW ≠  

we can expect ieff  to be a conservative value of the actual 

interviewer variance wieff . In Example 2, c) and d), we 

have such a situation. 

Now, we have wieff ieff=  if and only if ik iw w=  (or, 

equivalently, SSW =  0) and 2 2/ 1/ii i i in w n w I∑ =  for all i  

and ,k  i.e., wieff ieff=  if and only if ik iw w=  and 

1/i iw n∝  for all i  and .k  

Thus, for a non-epsem design, equal interviewer 

workload does not necessarily provide us a model-assisted 

interpretation for .ieff  For example, if the survey weights 

vary within at least one interviewer, we will not have a 

model-assisted interpretation of .ieff  Obviously, for an 

epsem design the two formulae are equivalent if and only if 

we have equal interviewer workload.  
Remark 3.4: If the interviewer workload is the same for all 

interviewers, we have 

int
int21

w
w

w

n
ieff ieff

CV −

τ
− = − ρ

+
 

(assume 0).SST ≠  Thus, ieff  is a conservative value of the 

actual interviewer effect .wieff  Furthermore, | |wieff ieff−  is 

an increasing function of the common interviewer workload 

intn  and 2/ (1 )w wCV −τ +  (for fixed 2,wCV −  the latter is an 

increasing function of ).wτ  The same interviewer workload 

is given in Example 2 a).  
Remark 3.5: We can use formula (3) if SSW > 0, i.e., if 

there is at least one interviewer for which weights are not all 

equal.   
Example 2. 
 

Table 2 presents eight different combinations of 
2( , , )i i in w σ . The first combination assumes equal in  values 

but unequal weights. The second combination assumes 
2 2.i iw ∝ σ  The other six combinations show all possible 

ordering of int int 1 int 2, ( ), , ( )wn n n na a  and, therefore, ,ieff  

1 2( ), , ( )wieff ieff ieffa a  taking into consideration that 

1( )ieff ieff≤ a  and 2( ).wieff ieff≤ a  
 

 

 
Table 2 

Ordering of interviewer effects formulae for several parameter combinations (Example 2); in the 
last column 

int
ρ =ρ =ρ =ρ = 0.01 

 

 i
n  

i
w  2

i
σσσσ  

int
n  int 1

(a )n  
w
n  int 2

(a )n  Interviewer effects /
w

ieff ieff
 

a) 25 

25 

25 

25 

1.022 

1.036 

0.998 

0.945 

0.299 

0.375 

0.276 

0.260 

25 25 19.20 25 
1 2

( ) ( )
w

ieff ieff ieff ieff= = >a a  1.003 

b) 10 

20 

30 

40 

1 

1 

1 

1 

1 

1 

1 

1 

25 30 15 30 
1 2

( ) ( )
w

ieff ieff ieff ieff< < =a a  1.007 

c) 10 

20 

30 

40 

1 

1 

1 

1 

1 

2 

3 

4 

25 30 7.5 32.5 
1 2

( ) ( )
w

ieff ieff ieff ieff< < <a a  1.023 

d) 10 

20 

30 

40 

1 

1 

1 

1 

4 

3 

2 

1 

25 30 10 26.7 
2 1

( ) ( )
w

ieff ieff ieff ieff< < <a a  1.015 

e) 10 

20 

30 

40 

4  

2  

0.333  

0.250 

144  

 9  

 0.555  

 0.125 

25 30 1.80 11.71 
2 1

( ) ( )
w

ieff ieff ieff ieff< < <a a  0.998 

f) 10 

20 

30 

40 

0.333 

0.666 

1  

1.333 

0.025 

0.075 

0.125 

0.175 

25 30 31.82 35.26 
1 2

( ) ( )
w

ieff ieff ieff ieff< < <a a  1.015 

g) 10 

20 

30 

40 

1 

1 

1 

1 

0.010  

0.020  

0.030  

0.040 

25 30 29.13 30.10 
1 2

( ) ( )
w

ieff ieff ieff ieff< < <a a  0.999 

h) 10 

20 

30 

40 

1 

1 

1 

1 

0.004  

0.003  

0.002  

0.001 

25 30 29.94 29.99 
2 1

( ) ( )
w

ieff ieff ieff ieff< < <a a  0.998 
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In the example, .i i in w n∑ =  We now explain the eight 

different patterns.   
a) Since all in  are equal, 1 2( ) ( ).ieff ieff ieff= =a a  

Moreover, wieff  is smaller than the rest because of 

the fact that 2 >iσ 0. 
 

b) Since 2

iσ  are relatively large, .wieff ieff<  Also, 
2

iσ = 2

ic w⋅  implies 1 2( ) ( ).ieff ieff=a a  
 

c) Since 2

iσ  are relatively large, .wieff ieff<  Moreover, 

since 2 2

i iw + σ  and in  are both increasing, we have 

1 2( ) ( ).ieff ieff<a a  
 

d) Since 2

iσ  are relatively large, .wieff ieff<  Since 
2 2

i iw +σ  is decreasing and in  is increasing, we have 

2 1( ) ( ).ieff ieff<a a  
 

e) Since 2

iσ  are relatively large, .wieff ieff<  Also, 
2 2 and  i iw σ  are decreasing and in  is increasing 

implying 2 1( ) ( ).ieff ieff<a a  
 

f) The fact that 2

iw  and in  are increasing implies that 

;wieff ieff>  since 2

iσ  and in  are both increasing, 

we have 1 2( ) ( ).ieff ieff<a a  
 

g) Since 2

iw  and in  are increasing, we have 

wieff ieff>  and since 2

iσ  is increasing, we have 

1( )ieff <a 2( ).ieff a  Moreover, 1( )wieff ieff< a  

since 2

iσ  is smaller than that in f). 
 

h) Since 2

iw  and in  are increasing, we have wieff >  
ieff  and since 2

iσ  is decreasing, we have 2( )ieff <a  

1( ).ieff a  

 
4. Unequal weighting and spatial clustering  
In this section, we obtain an appropriate interviewer 

variance formula in the presence of spatial clustering and 

unequal probability of selection. Consider the situation 

when more than one interviewer work independently in the 

same psu and the respondents in each psu are randomly 

assigned to the interviewers. We shall assume that no 

interviewer works in more than one psu. Such a design was 

considered in Biemer and Stokes (1985). Now we shall 

separate the interviewer effect from psu effect (i.e., spatial 

clustering) and unequal weighting. Let piky  and pikw  be the 

observation and the associated survey weight for the thk  

respondent in the thp  psu interviewed by the thi  

interviewer ( 1, ..., ; 1, ... ; 1, ..., ).p pip P i I k n= = =  Let 

1
pI

ip pin n=∑=  be the number of sampling units in psu p. 

 

 

 

 

In this case, we use the following weighted average to 

estimate the finite population mean: 

1 1 1

1 1 1

.

piP

piP

nIP

pik pik
p i k

w nIP

pik
p i k

w y

y

w

= = =

= = =

=
∑∑∑

∑∑∑
 

Define 

4

3

,

Var ( )
,

Var ( )

M w

s w

M w

y
ieff

y
=  

where the suffixes s  and w  signify the presence of spatial 

clustering and unequal weighting. In the above, 
3

Var ( )M wy  

and 
4

Var ( )M wy  are the variances of wy  under the following 

two models respectively 

2

2

3

2

2

4
2

if , ,

:  Cov( , )  if  ,

0 otherwise

if , ,

if  ,
:  Cov( , )

if  , ,

0 if  

pik p i k C

C

pik p i k

p p i i k k

M y y p p k k

p p i i k k

p p i i
M y y

p p i i k k

p p

′ ′ ′

′ ′ ′

 ′ ′ ′σ = = =
 ′ ′= ρ σ = ≠



 ′ ′ ′σ = = =


′ ′ρ σ = ≠
= 

′ ′ ′ρσ = = ≠


′≠

 

In the above, Cρ  is the intra-psu correlation and ρ  is the 
combined interviewer and psu intra-class correlation. Define 

int ,Cρ = ρ−ρ  intra-interviewer correlation. Usually, int 0.ρ >  

From Result 5, we have 

int
, int

psu

( ) 1
1 ,

1 ( ( ) 1)

w
s w

C w

n
ieff

n

−
= + ρ

+ ρ −

A

b
 

where 

2

1, ...,

1, ..., 2

1 1 1

(( ))   and  
p p pi

pi pi

w wpi i I wpi I nP
p P

pik
p i k

n w
a a

w

=
=

= = =

= =

∑∑∑
A  

with 

2

1

int
1 2

1 1 1

1
,

( ) ,

pi

piP

P

p pi

n

pi pik

kpi

nIP

pikIP
p i k

w wpi pi I nP
p i

pik
p i k

w w
n

w

n a n

w

=

=

= = =

=

 
  
 = =

∑

∑∑ ∑
∑∑

∑∑∑
A

 

and  
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2

1, ,

2

1 1 1

( )   and  ,
p pi

p p

w wp p P wp I nP

pik
p i k

n w
b b

w

=

= = =

= =

∑∑∑
b

…

 

with 

1 1

1 1
,

p pi pI n I

p pik pi pi
i k ip p

w w n w
n n= =

= =∑∑ ∑  

and 

2

1

psu
1 2

1 1 1

( ) .

piP

p pi

nIP

pik
P

p i k

w wp p I nP
p

pik
p i k

w

n b n

w

=

=

= = =

 
  
 = =

∑ ∑∑
∑

∑∑∑
b  

Note that int psu( ) ( )w wn n≤A b  with equality if and only 

if 1.PI =  Also note that int ( )wn A  is invariant of the 

allocation of the interviewers to the psu’s while psu ( )wn b  is 

not.  
Remark 4.1: If Cρ = 0 we get 

, int int1 ( ( ) 1).s w wieff n= + ρ −A  

This formula is similar to wieff  given in Section 2. Thus, 

all the comments given in Remark 2.1 apply here. Note that 

int ( ),wn A  just like ,wn  cannot be generally written in the 

form 1 11 1int ( )   with  1;p pI IP P
p pi iw wpi pi wpin a n a= == =∑ ∑ ∑ ∑= =A  

the same comment applies to psu ( ).wn b   
Remark 4.2: Define 

int
1

( ) ,  where (( )),  with ,
PIP

pi

pi pi pi pi
p i

n
n a n a a

n=

= = =∑∑A A  

and  

psu 1
1

( ) ,  where  ( , ..., ) with .
P

p

p p P p
p

n
n b n b b b

n=

= = =∑b b  

If Cρ ≠ 0 but we have an epsem design, then we drop the 
suffix w  in , .s wieff  Note that 

int
int

psu

psuint int

psu psu

( ) 1
1

1 [ ( ) 1]

( ( ) 1)( ) 1
1

( ) 1 1 ( ( ) 1)

s

C

C

C C

n
ieff

n

nn

n n

−
= + ρ

+ ρ −

ρ −ρ −
= + ⋅ ⋅

ρ − + ρ −

A

b

bA

b b

 

 

 

so that 

int int int int

psu psu

( ) 1 ( )
1 1 .

( ) 1 ( )
s

C C

n n
ieff

n n

ρ − ρ
< + ⋅ < + ⋅

ρ − ρ

A A

b b
 

It can be readily seen that the right side of the inequality 

increases with the ratios int / Cρ ρ  and  

int

psu

( ) 1
.

( ) 1

n

n

−

−

A

b
 

We have 

int
psu

int
int int

psu

( ) 1
[1 ( ( ) 1)]

1
( 1).

1 ( ( ) 1)

C

s

C

n
n

n
ieff ieff n

n

−
− +ρ −

−
− =ρ −

+ρ −

A
b

b
 

Thus, for int >ρ 0, 

sieff ieff<  if and only if  

int
psu

int

( ) 1
: 1 ( ( ) 1) ,

1
s C

n
Deff n

n

−
= +ρ − >

−

A
b  

i.e., if and only if the design effect due to the spatial 

clustering is larger than the ratio of the weighted average of 

the interviewer workload –1 and the average interviewer 

workload –1. If the interviewer workload is the same for all 

the interviewers, the right hand side of the inequality is 1 

and so the inequality is always valid. It is interesting to note 

that 4 sieff ieff≈ ⋅  if int psu0.1, 0.05, ( ) 140,C n bρ = ρ = =  

and int 70.n =   
Remark 4.3: In the general case, we have 

int
, int int

psu

( ) 1
( 1) .

1 ( ( ) 1)

w
s w

C w

n
ieff ieff n

n

 −
− = ρ − −  + ρ − 

A

b
 

Thus, for int >ρ 0, 

,s wieff ieff<  if and only if  

int
, psu

int

( ) 1
: 1 ( ( ) 1) ,

1

w
s w C w

n
Deff n

n

−
= + ρ − >

−

A
b  

i.e., if and only if 

*int int

int psu

( )
: ,  say.

( 1) ( ( ) 1)

w
C C

w

n n

n n

−
ρ > = ρ

− −

A

b
 

In Example 2 (see Table 3), ieff  is a conservative value for 

,s wieff  for a) to e) if >Cρ 0. The same holds for f) to h) if 

>Cρ 0.004. 
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Table 3 
Average interviewer workloads for several parameter combinations (Example 2); 

,
/

s w
ieff ieff  for 

int
ρρρρ = 0.01 and 

C
ρρρρ = 0.02 

 

     1,3IA = ( )= ( )= ( )= ( )
 

2,2IA = ( )= ( )= ( )= ( )
 

3,1IA = ( )= ( )= ( )= ( )
 

 i
n  

i
w  2

i
σσσσ  

int
n  int

( )
w

n A  
psu
(b )

w
n  *

C
ρρρρ  

,s w

ieff

ieff  int
( )

w
n A  

psu
(b )

w
n  *

C
ρρρρ  

,s w

ieff

ieff  int
( )

w
n A  

psu
(b )

w
n  *

C
ρρρρ  

,s w

ieff

ieff  

a) 25 

25 

25 

25 

1.022 

1.036 

0.998 

0.945 

0.299 

0.375 

0.276 

0.260 

25 19.202 47.528 -0.005 1.133 19.202 38.389 -0.006 1.123 19.202 49.039 -0.005 1.135 

b) 10 

20 

30 

40 

1 

1 

1 

1 

1 

1 

1 

1 

25 15 41 -0.010 1.151 15 29 -0.015 1.138 15 26 -0.017 1.134 

c) 10 

20 

30 

40 

1 

1 

1 

1 

1 

2 

3 

4 

25 7.5 20.5 -0.037 1.185 7.5 14.5 -0.054 1.180 7.5 13 -0.061 1.178 

d) 10 

20 

30 

40 

1 

1 

1 

1 

4 

3 

2 

1 

25 10 27.333 -0.024 1.171 10 19.333 -0.034 1.163 10 17.333 -0.038 1.161 

e) 10 

20 

30 

40 

4  

2  

0.333  

0.250 

144  

 9  

 0.555 

 0.125 

25 1.801 2.755 -0.551 1.230 1.801 3.603 -0.371 1.231 1.801 4.344 -0.289 1.231 

f) 10 

20 

30 

40 

0.333 

0.666 

1  

1.333 

0.025 

0.075 

0.125 

0.175 

25 31.820 75.685 0.004 1.104 31.820 58.427 0.005 1.084 31.820 40.629 0.007 1.058 

g) 10 

20 

30 

40 

1 

1 

1 

1 

0.010  

0.020  

0.030  

0.040 

25 29.126 79.612 0.002 1.118 29.126 56.311 0.003 1.094 29.126 50.485 0.003 1.086 

h) 10 

20 

30 

40 

1 

1 

1 

1 

0.004  

0.003  

0.002  

0.001 

25 29.940 81.836 0.003 1.117 29.940 57.884 0.004 1.092 29.940 51.896 0.004 1.084 

 

 

If a household and a person within the household are 

selected at random, then the weights are often independent 

of the psu and the interviewer and depend only on the 

household sizes. In such a situation, the household sizes 

form the weighting classes. For weighting classes, we define 

 
:pijm  number of sampling units in psu p  assigned to 

interviewer i  belonging to weighting class ,j  
 

1 :pI

ipj pijm m=∑=  number of sampling units in psu p  

belonging to weighting class ,j  
 

1 1 :pIP
p ij pijm m= =∑ ∑=  number of sampling units belonging to 

weighting class .j  
 
Thus, 
 

1 :J
jpi pijn m=∑=  number of sampling units in psu p  

assigned to interviewer ,i  
 

11 :pI J
jip pijn m==∑ ∑=  number of sampling units in psu ,p  

 

1 11 :pIP J
p ji pijn m= ==∑ ∑ ∑=  sample size. 

 
 

Furthermore, 

2 2

1 1 1 1 1 1

int

22

11 1 1

( )

piP P

p pi

nIP IP J

pik j pij
p i k p i j

w I n JP

j jpik
jp i k

w w m

n

w mw

= = = = = =

== = =

   
    
   = =

∑∑ ∑ ∑∑ ∑

∑∑∑∑
A  

and  

( )
2

2

1 1

psu

22

11 1 1

( ) ,

piP

p pi

nIP P

pik j pj
p i k p j

w I n JP

j jpik
jp i k

w w m

n

w mw

= =

== = =

 
  
 = =

∑ ∑∑ ∑ ∑

∑∑∑∑
b  

are ratios of quadratic forms in 1( , ..., ).Jw w=w  

 
5. Overall effects  

The overall effects take into account unequal weighting, 

spatial clustering, and the interview effects and can be 

viewed as a generalization to the traditional design effects. 

Multiplying the SRS variance for the unweighted sample 

mean by the overall effects will provide the total variance 

estimator.  



Survey Methodology, June 2009 93 
 

 

Statistics Canada, Catalogue No. 12-001-X 

4

*
1
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Var ( )
,

Var ( )
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w s

M

y
eff eff eff eff

y
= = × ×  

where 

( )
( )

( )
( )

( )
( )

*
1

*
1

3
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1

4

3

int ,

Var
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Var
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.
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wM

w

M

M w

s

wM

M w

s w

M w

y
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y

y
eff

y

y
eff ieff

y

=

=

= =

 

In the above, *
1

Var
M

is with respect to the following 

model:  

2
*

1

if , , ,  
:  Cov( , )

0   otherwise. 
pik p i k

p p i i k k
M y y ′ ′ ′

 ′ ′ ′σ = = == 


 

It can be shown that 

2

1 1 1

2

1 1 1

2 2

1 1 1 1
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2 2

1 1 1 1 1 1

1 1 1

p pi

p pi

p pi piP

p pi p pi

I nP
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p i k

I nP
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I n nIP P
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p i k p i k

C I n I nP P
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p i k p i k

n w
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w

w w

w w

= = =

= = =

= = = =

= = = = = =

=
 
  
 
     
             × +ρ − +ρ −  
  
   
  

∑∑∑

∑∑∑

∑ ∑∑ ∑∑ ∑

∑∑∑ ∑∑∑
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 
 
 
 
    

 

The relative contributions of weighting, spatial clustering, 

and interviewer effects to the overall effects are given by  

2

1 1 1

2

1 1 1

psu

psu

int

psu

Re ,  

1 ( ( ) 1)
Re ,  

( ) 1
1

1 ( ( ) 1)
Re .
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I nP
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p i k

I nP
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p i k

w

C w
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w

C w
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n w
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 
  
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=

∑∑∑

∑∑∑

b
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In Figure 2, we present three dimensional graphs of the 

relative contributions of weighting, spatial clustering, and 

interviewer effects to the overall effects for different 

combinations of intra-cluster and intra-interviewer correla-

tions for different patterns of weights given in cases a), f) and 

h) of Table 3 with (1, 3),IA =  where ( , )IA a b=  indicates 

that the first a of the four interviewers are in psu 1 and the last 

b interviewers are in psu 2.  

Remark 5.1: From Result 6, we get 

int1 1 1 .C

n n
eff

P I

   ≥ + ρ − + ρ −   
   

 

The right side is the overall effect if the same number of 

interviewers with equal workload is assigned to each psu. It 

is interesting to note the similarity between the right hand 

side of the above inequality and the design effects formula 

given in (3.1) of Hansen, Hurwitz and Madow (1953, Vol. I, 

page 370). To claim the similarity, we need to treat the 

secondary sampling units as the units belonging to an 

interviewer. In this connection, we also note the formula 

(3.7) given in Hansen et al. (1953, Vol. II, page 292) for the 

case .I P=   
Remark 5.2: When we have the same weighting classes 

across psu × interviewer, we have 

2

1

2

1

2 2

1 1 1 1 1

int

2 2

1 1

1 1 1 .
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j

J

j j
j
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= = = = =

= =

=
 
 
 

              
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∑
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∑ ∑
 

Remark 5.3: Consider the special case 

pi j

pij

n m
m

n
=  

in which we allow variation in weights within psu × 
interviewer classes, but we constrain the weights to have the 

same relative frequency distribution in each class, i.e., the 

means and the variances of the weights within the classes do 

not depend on the class (Lynn and Gabler 2004). It is easy 

to see that in this case 
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Figure 2 Relative contributions of weighting, design and interviewer effects to the overall effects for cases a), f) and h) in 

Example 2 for the case IA = (1, 3) 

 

 

 

 

Using the same argument given in the proof of Result 6, 

we get 

2
2

1

int2
1 1

psu int int

1 1 1

1 ( ( ) 1) ( ( ) 1).

P

P

p IP
p pi

C
p i

C

n
n

eff
nn

n n

=

= =

 
    ≥ + ρ − + ρ −       

= + ρ − + ρ −

∑
∑∑

b A

 

This means that the overall effect is larger than the 

overall effect for an epsem design (see Remark 5.4).   
Remark 5.4: For an epsem design, we have 

psu int int1 ( ( ) 1) ( ( ) 1),Ceff n n= + ρ − + ρ −b A  

where  

2 2

1 1

psu int( )  and ( ) .

PIP P

p pi
p p i

n n

n n
n n

= == =
∑ ∑∑

b A  

Note that Davis and Scott (1995) obtained this formula 

for the special case of the following linear mixed model: 

,pik i p piky = µ + α + β + ε  

where  is the overall effect, ,  i pµ α β  are random effects 

due to the interviewer ,i  psu p and pikε  is the pure error. 

They assumed that the random effects are independent with 

pik

2 2 2~ (0, ), ~ (0, ) and ~ (0, ).i pN N Nα β εα σ β σ ε σ  

For the above linear mixed model, it is easy to check that 

22

int 2 2 2 2 2 2
 and  .c

βα

α β ε α β ε

σσ
ρ = ρ =

σ + σ + σ σ + σ + σ
 

However, it is instructive to note that the definition eff does 

not require intρ and cρ to be strictly positive and the 

definition goes beyond the linear mixed model. For 

example, the definition applies to the following example:  
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Example 3: A simple model for binary data.  
Assuming 0 <min( , ) < <α β θ 1, we define the following 

model: 

For all pin  different respondents of interviewer i  in 

psu .p  
 

1 2( , )pik pikP Y x Y x′= =  

                2x  

 1x  
1 0 Total 

1 α  θ − α  θ  
0 θ − α  1 2− θ + α  1 − θ  

Total θ  1 − θ  1 

 
For all pin  respondents of interviewer i  and psu p  and 

all pin ′  respondents of interviewer i′  and psu .p  
 

1 2( , )pik pi kP Y x Y x′ ′= =  

                2x  

 1x  
1 0 Total 

1 β  θ − α  θ  
0 θ − α  1 2− θ + β  1 − θ  

Total θ  1 − θ  1 

 
For all pn  respondents of psu p  and all pn ′  respondents 

of psu .p′  
 

1 2( , )pik p i kP Y x Y x′ ′ ′= =  

                2x  

 1x  
1 0 Total 

1 2θ  (1 )θ − θ  θ  

0 (1 )θ − θ  2
(1 )− θ  1 − θ  

Total θ  1 − θ  1 

 
Therefore, we have 

2

2

( )   for all  , , ,

Var ( ) (1 )  for all  , , ,

Cov( , )

Var ( )Var ( )

  for all  ,   and  ,
(1 )

Cov( , )

Var ( )Var ( )

  for all   and  
(1 )

pik

pik

pik pik

pik pik

pik pi k

C

pik pi k

E Y p i k

Y p i k

Y Y

Y Y

p i k k

Y Y

Y Y

p

′

′

′ ′

′ ′

= θ

= θ − θ

ρ =

α − θ
′= ≠

θ − θ

ρ =

β − θ
=
θ − θ

,i i′≠

 

 

which is a special case of Model 4M  with 2σ =  

Var ( ) (1 ).pikY = θ − θ  Note that both Cρ  and ρ  may be 

negative and int Cρ = ρ − ρ  is positive if and only if 

α > β .  
Remark 5.5: For an epsem design with common psu size 

/ ,b n P=  we have 

int int1 ( 1) ( ( ) 1).Ceff b n A= + ρ − + ρ −  

Remark 5.6: In discussing Verma et al. (1980), Holt 

considered the case when there is no interviewer variability 

and psu is the weighting class, i.e., the case when int 0ρ =  

and  for all  , , .pik pw w p i k=  In this case eff  reduces to 

2 2 2

1 1

2
2

1
1

1 1 .

P P

p p p p
p p

C P
P

p p
p p

p
p

n n w n w

eff

n wn w

= =

=
=

  
  
  = × + ρ −
            

∑ ∑

∑∑
 

Note that the above formula can be obtained from 

equation (A4) of Holt in discussing Verma et al. (1980), 

after correcting an obvious typo (i.e., deleting n  in the 

denominator), choosing his choice of survey weight and 

some algebra. Design effect formulae in the absence of the 

interviewer effects were considered by many authors. See 

Kish (1965), Verma et al. (1980), Skinner (1986), Valliant 

(1987), Skinner et al. (1989), Gabler, Häder and Lahiri 

(1999), Lynn and Gabler (2004), Kalton, Brick and Lê 

(2005) and others.  

 
6. Concluding remarks 

 
We have noticed that the standard interviewer effects 

formula could have either an overestimation or under-

estimation problem depending on the situation. For 

example, it could severely underestimate the interviewer 

effects in an epsem sampling design with different 

interviewer workloads. Interestingly, spatial correlation can 

turn this underestimation to an overestimation. In the former 

case, the survey designer who uses the standard interviewer 

effect formula may pay little attention to control the 

interviewer effect. In the latter case, a high value of the 

interviewer effect may unnecessarily raise concerns about 

the quality of data connected with the interviewer. This may 

trigger allocation of a higher portion of budget than is 

necessary to reduce the interviewer effect, which may be 

already much lower than the value obtained by an 

application of the standard formula. The paper is an attempt 

to define and interpret interviewer effects that are 

appropriate in different complex survey situations.  
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We have considered the case when an interviewer is 

assigned only in one psu. The case when an interviewer 

works in different psu’s is also important and will be 

considered in a later paper. The weights used in the 

proposed formulae only account for sampling weights as 

they are planned at the design stage, but do not necessarily 

reflect the actual weights attached to each case once the data 

are collected. In other words, our interviewer effect 

formulae do not incorporate the effects due to nonresponse 

and post-stratification adjustments. The formulae presented 

in the paper are mainly useful in the planning and design 

stage when we have some ideas about the intra-interviewer 

and spatial correlations.  

Reliable estimation of int c and ρ ρ  is important. Although 

there are some papers that deal with the estimation of 

int c and ,ρ ρ  there is certainly a need to advance research in 

this important area. In comparing the two sources of 

homogeneity, Hansen et al. (1961) found that the 

interviewer variability was often larger than the sampling 

variability. In many surveys, such an evaluation, which 

requires estimation of the intra-interviewer and intra-cluster 

correlations, is either difficult or even impossible because 

the interviewer effects are often confounded with the spatial 

clustering effects. The use of an interpenetrating design, first 

proposed by Mahalanobis (1946), where respondents are 

randomly assigned to the interviewers, is a way to get 

around the problem. In practice, the implementation of such 

a design in a large scale sample survey is difficult, but some 

approximated interpenetrated designs can be applied 

(Hansen et al. 1961, Bailar, Bailey and Stevens 1977, 

Bailey, Moore and Bailar 1978, Collins and Butcher 1982, 

O’Muircheartaigh and Campanelli 1998). Multi-level 

models have been used as a partial remedy to the problem 

(Hox and De Leeuw 1994, Davis and Scott 1995, 

O’Muircheartaigh and Campanelli 1998, Scott and Davis 

2001). We have not considered the problem of the esti-

mation of the intra-interviewer and intra-cluster correlations. 

This is an important problem and will be considered in a 

later paper.  

In practice, interviewer or design effects are computed 

for many items using the same formula and a summary 

measure such as the median interviewer or design effect is 

taken for the planning and design of the survey. So far as the 

issues related to handling multiple items are concerned, one 

may continue to follow one’s own protocol; the only change 

we may suggest is to use our new definitions for interviewer 

effects or overall effects whenever applicable. The use of 

our formula may suggest overall effects, which may be 

much lower than the standard formula. This, in turn, may 

suggest lower sample size and hence may save survey costs. 
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Result 1. 2
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Proof: The result follows by noting  

( )1 1

2 2

2
Var ( ) Var ,
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M w M

ik ik
i k i k

w y w
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w w

  σ
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and  

( )2

2 2

int

2
Var ( ) ,

ik ik ik
i k i k k

M w

ik
i k

w w w

y
w

′
′≠

 σ + ρ
  =
∑∑ ∑∑

∑∑
 

and some algebra. 
 
Corollary: Assume int 0 and 1/ .ikw nρ > =  Using Result 1 

and the Cauchy-Schwarz inequality, we get  

2

1 int int( ) 1 1 1 1 .
i

i

n
n

ieff ieff
n I

 
  = +ρ − ≥ +ρ − =     

 

∑
a  

 
Result 2. 2( ),wieff ieff≤ a  where  

2

2 21 2 2 2
( , ..., ) with .

ik

k
I i

ik
i k

w

a a a
w

= =
∑

∑∑
a  

 
Proof: Using the Cauchy-Schwarz inequality, we have 

( )2 2

ik i ik

i k i k

w n w≤∑ ∑ ∑ ∑  

with equality if and only if  for all  and ,ik iw w i k=  where  

1

in

ik
k

i

i

w

w
n

==
∑

 

is the average survey weight for the thi  interviewer. Thus, 

we have int 2 int 21 [ ( ) 1] ( ).wieff n ieff≤ + − ρ =a a  

The equality holds if and only if  for all  and ik iw w i k=  

in which case *

2( ),  wieff ieff= a where 

2
* * * *

2 21 2 2 2
( , ..., ),  with .i i

I i

i i
i

n w
a a a

n w
= =

∑
a  
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If all weights are non-negative, then 

2 2 21
 = ( ) ( 1) ,i ik i i i

ki

w w n w
n

σ − ≤ −∑  

since 2

iσ  is Schur-convex. Defining 

2

2
1 i

i
i

i

w
x

n

σ
+

=  implies
1

1i

i

x
n

≤ ≤  
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2 2 2 2 2

int 2 2 2 2

3 2 2 2 2

2 2 2 2

3 2 3 2
2 2

2 2 2 2 2 2
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i i i i

i
ii i i i i i i
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∑ ∑

∑ ∑

∑ ∑
∑
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with equality if and only if 2 2( 1)i i in wσ = −  for all i  or if 

all in  are equal. 

The inequality follows from the logarithmic concavity of 

int 2( )n a  as function of 1( , ..., ).Ix x   
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Proof. We have 
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For /in n I=  for all ,i  we get 

*
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Now the result follows using algebra.  
Result 5. 
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and some algebra.  
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